

 Page 151

Securing Shared Data in Public Cloud with User Revocation

Ms. Yarramathi Mounika

M.Tech (CSE)

Department of CSE,

N.B.K.R Institute of Science & Technology,

Vidyanagar.

Mr. V. VeeraRaghavulu, M.Tech, [Ph.D]

Assistant Professor,

Department of CSE,

N.B.K.R Institute of Science & Technology,

Vidyanagar.

ABSTRACT

With data storage and sharing services in the cloud,

users can easily modify and share data as a group. To

ensure share data integrity can be verified publicly,

users in the group need to compute signatures on all

the blocks in shared data. Different blocks in shared

data are generally signed by different users due to

data modifications performed by different users. For

security reasons, once a user is revoked from the

group, the blocks which were previously signed by

this revoked user must be re-signed by an existing

user. The straight forward method, which allows an

existing user to download the corresponding part of

shared data and re-sign it during user revocation, is

inefficient due to the large size of shared data in the

cloud. In this paper, we propose a novel public

auditing mechanism. For the integrity of shared data

with efficient user revocation in mind. By utilizing

the idea of proxy re-signatures, we allow the cloud

tore-sign blocks on behalf of existing users during

user revocation, so that existing users do not need to

download and re-sign blocks by themselves. In

addition, a public verifier is always able to audit the

integrity of shared data without retrieving the entire

data from the Cloud, even if some part of shared data

has been re-signed by the cloud. Moreover, our

mechanism is able to support batch auditing by

verifying multiple auditing tasks simultaneously.

Experimental results show that our mechanism can

significantly improve the efficiency of user

revocation.

INTRODUCTION

WITH data storage and sharing services (such as Drop

box and Google Drive) provided by the cloud, people

can easily work together as a group by sharing data

with each other. More specifically, once a user creates

shared data in the cloud, every user in the group is able

to not only access and modify shared data, but also

share the latest version of the shared data with the rest

of the group. Although cloud providers promise a more

secure and reliable environment to the users, the

integrity of data in the cloud may still be

compromised, due to the existence of

hardware/software failures and human errors. To

protect the integrity of data in the cloud, number of

mechanisms have been proposed. In these

mechanisms, a signature is attached to each block in

data, and the integrity of data relies on the correctness

of all the signatures. One of the most significant and

common features of these mechanisms is to allow a

public verifier to efficiently check data integrity in the

cloud without downloading the entire data, referred to

as public auditing (or denoted as Provable Data

Possession). This public verifier could be a client who

would like to utilize cloud data for particular purposes

(e.g., search, computation, data mining, etc.) or a third

party auditor (TPA) who is able to provide verification

services on data integrity to users. Most of the

previous works focus on auditing the integrity of

personal data. Different from these works, several

recent works focus on how to preserve identity privacy

from public verifiers when auditing the integrity of

 Page 152

shared data. Unfortunately, none of the above

mechanisms, considers the efficiency of user

revocation when auditing the correctness of shared

data in the cloud.

With shared data, once a user modifies a block, she

also needs to compute a new signature for the modified

block. Due to the modifications from different users,

different blocks are signed by different users. For

security reasons, when a user leaves the group or

misbehaves, this user must be revoked from the group.

As a result, this revoked user should no longer be able

to access and modify shared data, and the signatures

generated by this revoked user are no longer valid to

the group. Therefore, although the content of shared

data is not changed during user revocation, the blocks,

which were previously signed by the revoked user, still

need to be re-signed by an existing user in the group.

As a result, the integrity of the entire data can still be

verified with the public keys of existing users only.

Since shared data is outsourced to the cloud and users

no longer store it on local devices, a straight forward

method to re-compute these signatures during user

revocation (as shown in Fig. 1) is to ask an existing

user (i.e., Alice) to first download the blocks

previously signed by the revoked user (i.e., Bob),

verify the correctness of these blocks, then re-sign

these blocks, and finally upload the new signatures to

the cloud. However, this straightforward method may

cost the existing user a huge amount of communication

and computation resources by downloading and

verifying blocks, and by re-computing and uploading

signatures, especially when the number of re-signed

blocks is quite large or the membership of the group is

frequently changing. To make this matter even worse,

existing users may access their data sharing services

provided by the cloud with resource limited devices,

such as mobile phones, which further prevents existing

users from maintaining the correctness of shared data

efficiently during user revocation.

EXISTING SYSTEM

An existing system the file uploaded in cloud which

not signed by user in each time of upload. So that

integrity of shared data is not possible in existing

system. However, since the cloud is not in the same

trusted domain with each user in the group,

outsourcing every user’s private key to the cloud

would introduce significant security issue.

PROPOSED SYSTEM

Proposed system may lie to verifiers about the

incorrectness of shared data in order to save the

reputation of its data services and avoid losing money

on its data services. In addition, we also assume there

is no collusion between the cloud and any user during

the design of our mechanism. Generally, the

incorrectness of share data under the above semi

trusted model can be introduced by hardware/software

failures or human errors happened in the cloud.

Considering these factors, users do not fully trust the

cloud with the integrity of shared data.

ADVANTAGES

 Blocking User account

 Page 153

 Security question

 Login with secret key in each time

SYSTEM ARCHITECTURE

SYSTEM OVERVIEW:

The system model includes three entities: the cloud,

the third party auditor (TPA), and users who share data

as a group (as illustrated in Fig. 3). The cloud offers

data storage and sharing services to users. The TPA is

able to publicly audit the integrity of shared data in the

cloud for users. In a group, there is one original user

and a number of group users. The original user is the

original owner of data. This original user creates and

shares data with other users in the group through the

cloud. Both the original user and group users are able

to access, download and modify shared data.

Shared data is further divided into a number of blocks.

A user can modify a block in shared data by

performing an insert, delete or update operation on the

block. Generally, the integrity of shared data is

threatened by three factors. First, the cloud service

provider may inadvertently pollute shared data due to

hardware/software failures and human errors. Second,

an external adversary may try to corrupt shared data in

the cloud, and prevent users from using shared data

correctly. Third, a revoked user, who no longer has the

right as existing users, may try to illegally modify

shared data. Considering these threats, users do not

fully trust the cloud with the integrity of shared data.

To protect the integrity of shared data, each block in

shared data is attached with a signature, which is

computed by one of the users in the group. When

shared data is initially created by the original user in

the cloud, all the signatures on shared data are

computed by the original user. After that, once a user

modifies a block, this user also needs to sign the

modified block with his/her own private key. By

sharing data among a group of users, different blocks

may be signed by different users due to modifications

from different users. When a user in the group leaves

or misbehaves, the group needs to revoke this user.

Generally, as the creator of shared data, the original

user acts as the group manager and is able to revoke

users on behalf of the group. Once a user is revoked ,

the signatures computed by this revoked user become

invalid to the group, and the blocks that were

previously signed by this revoked user need to be re-

signed by an existing user, so that the correctness of

the entire data can still be verified with the public keys

of existing users only. Note that allowing every user in

the group to share acommon group private key and

sign each block with it, is also a possible way to

protect the integrity of shared data. However, when a

user is revoked from the group, a new group private

key needs to be securely distributed to every existing

user andall the blocks in the shared data have to be re-

signed with the new private key, which increases the

complexity of key management and affects the

efficiency of user revocation.

Design Goals

To correctly verify the integrity of shared data with

efficient user revocation, our public auditing

mechanism should achieve the following properties:

(1) Correctness: The TPA is able to correctly check

the integrity of shared data.

(2)Efficient and Secure User Revocation: On one

hand, once a user is revoked from the group, the

blocks signed by the revoked user can be efficiently re-

signed. On the other hand, only existing users in the

group can generate valid signatures on shared data, and

the revoked user can no longer compute valid

signatures on shared data.

 Page 154

(3)Public Auditing: The TPA can audit the integrity

of shared data without retrieving the entire data from

the cloud, even if some blocks in shared data have

been re-signed by thecloud.

IMPLEMENTATION

MODULE:

 Data Owner (Group Member)

 Cloud Server

 ProxyServer

 Data Integrity

 Public Verifier

 DataConsumer(End-User/Group Member)

MODULES DESCRIPTION:

Data Owner(Group Member)

In this module, the data owner uploads their data in the

cloud server. For the security purpose the data owner

encrypts the data file and then store in the cloud. The

Data owner can have capable of manipulating the

encrypted data file.

Cloud Server

The cloud service provider manages a cloud to provide

data storage service. Data owners encrypt their data

files and store them in the cloud for sharing with data

consumers. To access the shared data files, data

consumers download encrypted data files of their

interest from the cloud and then decrypt them.

ProxyServer

The Proxy Server manages all data forwards to cloud

service provider and if there is any un matching key

then it will sent to public Verifier to revoke the user

details.

Data Integrity

Data Integrity is very important in database operations

in particular and Data warehousing and Business

intelligence in general. Because Data Integrity ensured

that data is of high quality, correct, consistent and

accessible.

Public Verifier

The Public Verifier will perform the revocation and un

revocation of the remote user if he is the attacker or

malicious user over the cloud data.

Data Consumer (End User / Group Member)

In this module, the user can only access the data file

with the encrypted combined key if the user has the

privilege to access the file.

PERFORMANCE

We first discuss the communication and computation

cost of our mechanism. Then we evaluate the

performance of our mechanism in experiments.

A. Communication Cost

the size of an auditing message {(l, yl)}l∈L is c.(|n|

+|q|)bits, where c is the number of selected blocks,

|n|is the size of an element of set [1, n] and |q|is the

size of an element of Zq. The size of an auditing proof

{α,β, {idl}l∈L} is 2d・|p|+c(|id|) bits, where d is the

number of existing users in the group, |p|is the size of

an element of G1 or Zp, |id|is the size of a block

identifier. Therefore, the total communication cost of

an auditing task is 2d・|p| + c・(|id| + |n| + |q|)bits.

B. Computation Cost

As shown in ReSign of our mechanism, the cloud first

verifies the correctness of the original signature on a

block, and then computes a new signature on the same

block with a re-signing key. The computation cost of

re-signing a block in the cloud is 2ExpG1

+MulG+2Pair+HashG1, where ExpG1 denotes one

exponentiation in G1, MulG1denotes one

multiplication in G1, Pair denotes one pairing

operation oneG1×G1 →G2, and HashG1 denotes one

hashing operation in G1. The cloud can further reduce

the computation cost of the re-signing on a block to

ExpG1 by directly re-signing it without verification.

The public auditing performed by the TPA ensures that

the re-signed blocks are correct. Based on Equation,

the computation cost of an auditing task in our

mechanism is (c+d)

 Page 155

ExpG1+(c+2d)MulG1+(d+1)Pair+dMulG2 +

cHashG1.

C. Experimental Results

We evaluate the performance of our mechanismin

experiments. We utilize Pairing Based Cryptography

Library (PBC)1 to implement cryptographic operations

in our mechanism. All the experiments are tested under

Ubuntu withan Intel Core i5 2.5GHz Processor and

4GB Memory over1, 000 times. In the following

experiments, we assume the size of an element of

G1orZp is |p|=160bits, the size of an element of Zq is

|q|=80bits, the size of a block identifier is|id|=80 bits,

and the total number of blocks in shared data is

n=1,000,000. By utilizing aggregation methods from

the size of each block can be set as 2KB, then the total

size of shared data is 2GB.

1).Performance of User Revocation:

As introduced in Section I, the main purpose of our

mechanism is to improve the efficiency of user

revocation. Without our mechanism, to revoke a user

in the group, an existing user needs to download the

blocks were previously signed by the revoked user,

verify the correctness of these blocks, re-compute

signatures on these blocks and upload the new

signatures. In this experiment, we assume the

download speed and upload speed for the data storage

and sharing services is 1Mbps and 500Kbps,

respectively. We also assume the cloud and an existing

user leverage the same type of machine (Intel Core i5

2.5GHz Processor and 4GB Memory) to perform user

revocation. Let k denote the number of re-signed

blocks during user revocation. The performance of our

mechanism during user revocation is presented in

Figure. The cloud is able to not only efficiently re-sign

blocks but also save existing users’ computation and

communication resources. As shown in Figure, when

the number of re-signed blocks is 500, which is only

0.05% of the total number of blocks, the cloud in our

mechanism can re-sign these blocks within 15 seconds.

In contrast, without our mechanism, an existing user

needs about 22 seconds to re-sign the same number of

blocks by herself.

Besides, the 500 re-signed blocks that this existing

user downloaded costs her extra bandwidth during user

revocation. Both of the two revocation time are

linearly increasing with an increase of k—the number

of re-signed blocks. Since we assume the cloud and an

existing user have the same level of computation

resource in this experiment, it is easy to see that the

gap in terms of revocation time between the two lines

in Figure is mainly introduced by downloading the re-

signed blocks. In a practical cloud environment, the

cloud should have more powerful computation

capabilities than personal devices, which allows the

cloud to finish the re-signing on data even sooner.

Fig.4.Impact of k on revocationFig.5.Impact of k on

revocation time(s) time without verification(s).

In addition, as we analysed before, the cloud can even

directly re-sign data without verification, which can

further improve the efficiency of re-signing about 100

times. More specifically, the re-signing time on one

block with verification is 28.19 milliseconds while the

one without verification is only 0.28 milliseconds.

Note that due to the existence of transmission errors in

networks, it is not a good idea to allow an existing user

to re-sign the blocks without verifying them. Even if

an existing user directly re-signs the blocks without

verification, compared to our mechanism, this user still

needs to spend some extra time to download the

blocks. As illustrated in Fig.4.When the number of re-

signed blocks is still 500, the cloud in our mechanism

can re-sign these blocks in about 0.14 seconds; while

an existing user needs about 8.43 seconds by herself.

With the comparison between Fig.4 and Fig.5, we can

see that the verification on original signatures before

re-signing is one of the main factors that can slow

down the entire user revocation process. Meanwhile,

 Page 156

as shown in Fig.4 and Fig.5, the key advantage of our

mechanism is that we can improve the efficiency of

user revocation and release existing users from the

communication and computation burden introduced by

user revocation.

2) Performance of Auditing:

We can see from Fig.6 and Fig.7 that, in order to

maintain a higher detection probability, a verifier

needs more time and communication overhead to

finish the auditing task on shared data. Meanwhile, the

auditing time (the time that the TPA needs to verify

the correctness of an auditing proof based on Equation

is linearly increasing with the number of existing users

in the group. Our mechanism allows a verifier to

efficiently audit the correctness of shared data without

retrieving the entire data from the cloud. More

specifically, when c=460 and d=10, the

communication cost of an auditing task (the

communication cost that the TPA requires during an

auditing task) is about 11.9KB, and the auditing time

of the entire data is only about 300 milliseconds

Fig.6.Impact of d on auditing Fig.7.Impact of d on

communicationtime(ms). cost (KB).

CONCLUSION

In this system, we proposed a new public auditing

mechanism for shared data with efficient user

revocation in the cloud. When a user in the group is

revoked, we allow the semi-trusted cloud to re-sign

blocks that were signed by the revoked user with proxy

re-signatures. Experimental results show that the cloud

can improve the efficiency of user revocation, and

existing users in the group can save a significant

amount of computation and communication resources

during user revocation.

REFERENCES

[1] B. Wang, B. Li, and H. Li, ―Public Auditing for

Shared Data with Efficient User Revoation in the

Cloud,‖ in the Proceedings of IEEE INFOCOM 2013,

2013, pp. 2904–2912.

[2] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R.

H. Katz, A. Konwinski, G. Lee, D. A. Patterson, A.

Rabkin, I. Stoica, and M. Zaharia, ―A View of Cloud

Computing,‖ Communications of the ACM, vol. 53,

no. 4, pp. 50–58, Apirl 2010.

[3] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L.

Kissner, Z. Peterson, and D. Song, ―Provable Data

Possession at Untrusted Stores,‖ in the Proceedings of

ACM CCS 2007, 2007, pp. 598–610.

[4] H. Shacham and B. Waters, ―Compact Proofs of

Retrievability,‖ in the Proceedings of ASIACRYPT

2008. Springer-Verlag,2008,pp. 90–107.

[5] C. Wang, Q. Wang, K. Ren, and W. Lou,

―Ensuring Data Storage Security in Cloud

Computing,‖ in the Proceedings of ACM/IEEE

IWQoS 2009, 2009, pp. 1–9.

[6] Q. Wang, C. Wang, J. Li, K. Ren, and W. Lou,

―Enabling Public Verifiability and Data Dynamic for

Storage Security in Cloud Computing,‖ in the

Proceedings of ESORICS 2009. Springer-Verlag,

2009, pp. 355–370.

[7] C. Wang, Q. Wang, K. Ren, and W. Lou, ―Privacy-

Preserving Public Auditing for Data Storage Security

in Cloud Computing,‖ in the Proceedings of IEEE

INFOCOM 2010, 2010, pp. 525–533.

[8] Y. Zhu, H.Wang, Z. Hu, G.-J. Ahn, H. Hu, and S.

S. Yau, ―Dynamic Audit Services for Integrity

Verification of Outsourced Storage in Clouds,‖ in the

Proceedings of ACM SAC 2011, 2011, pp. 1550–

1557.

 Page 157

[9] C. Wang, Q. Wang, K. Ren, and W. Lou, ―Towards

Secure and Dependable Storage Services in Cloud

Computing,‖ IEEE Transactions on Services

Computing, vol. 5, no. 2, pp. 220–232, 2011.

[10] Y. Zhu, G.-J. Ahn, H. Hu, S. S. Yau, H. G. An,

and S. Chen, ―Dynamic Audit Services for Outsourced

Storage in Clouds,‖ IEEE Transactions on Services

Computing, accepted.

[11] N. Cao, S. Yu, Z. Yang, W. Lou, and Y. T. Hou,

―LT Codes-based Secure and Reliable Cloud Storage

Service,‖ in the Proceedings of IEEE INFOCOM

2012, 2012, pp. 693–701.

[12] J. Yuan and S. Yu, ―Proofs of Retrievability with

Public Verifiability and Constant Communication Cost

in Cloud,‖ in Proceedings of ACM ASIACCS-

SCC’13, 2013.

[13] H. Wang, ―Proxy Provable Data Possession in

Public Clouds,‖ IEEE Transactions on Services

Computing, accepted.

[14] B. Wang, B. Li, and H. Li, ―Oruta: Privacy-

Preserving PublicAuditing for Shared Data in the

Cloud,‖ in the Proceedings of IEEECloud 2012, 2012,

pp. 295–302.

[15] S. R. Tate, R. Vishwanathan, and L. Everhart,

―Multi-user DynamicProofs of Data Possession Using

Trusted Hardware,‖ inProceedings of ACM

CODASPY’13, 2013, pp. 353–364.

[16] B. Wang, B. Li, and H. Li, ―Knox: Privacy-

Preserving Auditing forShared Data with Large

Groups in the Cloud,‖ in the Proceedingsof ACNS

2012, June 2012, pp. 507–525.

