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Abstract: 

The binary adder is the critical element in most digital 

circuit designs including digital signal processors 

(DSP) and microprocessor data path units. As such, 

extensive research continues to be focused on 

improving the power delay performance of the adder. 

In VLSI implementations, parallel-prefix adders are 

known to have the best performance [1]. Parallel-

prefix adders (also known as carry-tree adders) are 

known to have the best performance in VLSI designs. 

However, this performance advantage does not 

translate directly into FPGA implementations due to 

constraints on logic block configurations and routing 

overhead. This paper investigates three types of carry-

tree adders (the Kogge-Stone, sparse Kogge-Stone, 

and spanning tree adder) and compares them to the 

simple Ripple Carry Adder (RCA) and Carry Skip 

Adder (CSA).  

 

These designs of varied bit-widths were implemented 

on a Xilinx Spartan 3E FPGA and delay measurements 

were made with a high-performance logic analyzer. 

Due to the presence of a fast carry-chain, the RCA 

designs exhibit better delay performance up to 128 

bits. The carry-tree adders are expected to have a 

speed advantage over the RCA as bit widths approach 

256. In this project for simulation we use Model sim 

for logical verification, and further synthesizing it on 

Xilinx-ISE tool using target technology and 

performing placing & routing operation for system 

verification on targeted FPGA. 

 

I. INTRODUCTION: 

To humans, decimal numbers are easy to comprehend 

and implement for performing arithmetic.  

 

However, in digital systems, such as a microprocessor, 

DSP (Digital Signal Processor) or ASIC (Application-

Specific Integrated Circuit), binary numbers are more 

pragmatic for a given computation. This occurs 

because binary values are optimally efficient at 

representing many values. 

 

1. Binary Adders: 

Binary adders are one of the most essential logic 

elements within a digital system. In addition, binary 

adders are also helpful in units other than Arithmetic 

Logic Units (ALU), such as multipliers, dividers and 

memory addressing [2]. Therefore, binary addition is 

essential that any improvement in binary addition can 

result in a performance boost for any computing 

system and, hence, help improve the performance of 

the entire system. The major problem for binary 

addition is the carry chain. As the width of the input 

operand increases, the length of the carry chain 

increases. Figure 1 demonstrates an example of an 8- 

bit binary add operation and how the carry chain is 

affected. This example shows that the worst case 

occurs when the carry travels the longest possible path, 

from the least significant bit (LSB) to the most 

significant bit (MSB). In order to improve the 

performance of carry-propagate adders, it is possible to 

accelerate the carry chain, but not eliminate it. 

Consequently, most digital designers often resort to 

building faster adders when optimizing a computer 

architecture, because they tend to set the critical path 

for most computations. 
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Figure 1: Binary Adder Example 

 

The binary adder is the critical element in most digital 

circuit designs including digital signal processors 

(DSP) and microprocessor data path units. As such, 

extensive research continues to be focused on 

improving the power delay performance of the adder. 

In VLSI implementations, parallel-prefix adders are 

known to have the best performance. Reconfigurable 

logic such as Field Programmable Gate Arrays 

(FPGAs) has been gaining in popularity in recent years 

because it offers improved performance in terms of 

speed and power over DSP-based and microprocessor-

based solutions for many practical designs involving 

mobile DSP and telecommunications applications and 

a significant reduction in development time and cost 

over Application Specific Integrated Circuit (ASIC) 

designs. 

 

The power advantage is especially important with the 

growing popularity of mobile and portable electronics, 

which make extensive use of DSP functions. However, 

because of the structure of the configurable logic and 

routing resources in FPGAs, parallel-prefix adders will 

have a different performance than VLSI 

implementations. In particular, most modern FPGAs 

employ a fast-carry chain which optimizes the carry 

path for the simple Ripple Carry Adder (RCA). In this 

paper, the practical issues involved in designing and 

implementing tree-based adders on FPGAs are 

described. Several tree-based adder structures are 

implemented and characterized on a FPGA and 

compared with the Ripple Carry Adder (RCA) and the 

Carry Skip Adder (CSA). Finally, some conclusions 

and suggestions for improving FPGA designs to enable 

better tree-based adder performance are given. 

 

2. Carry-Propagate Adders: 

Binary carry-propagate adders have been extensively 

published, heavily attacking problems related to carry 

chain problem. Binary adders evolve from linear 

adders, which have a delay approximately proportional 

to the width of the adder, e.g. ripple-carry adder 

(RCA), to logarithmic-delay adder, such as the carry-

look ahead adder (CLA) [2]. There are some additional 

performance enhancing schemes, including the carry-

increment adder and the Ling adder that can further 

enhance the carry chain, however, in Very Large Scale 

Integration (VLSI) digital systems, the most efficient 

way of offering binary addition involves utilizing 

parallel-prefix trees, this occurs because they have the 

regular structures that exhibit logarithmic delay. 

Parallel-prefix adders compute addition in two steps: 

one to obtain the carry at each bit, with the next to 

compute the sum bit based on the carry bit [3]. 

Unfortunately, prefix trees are algorithmically slower 

than fast logarithmic adders, such as the carry 

propagate adders, however, their regular structures 

promote excellent results when compared to traditional 

CLA adders.  

 

This happens within VLSI architectures because a 

carry-lookahead adder, such as the one implemented in 

one of Motorola's processors, tends to implement the 

carry chain in the vertical direction instead of a 

horizontal one, which has a tendency to increase both 

wire density and fan-in/out dependence. Therefore, 

although logarithmic adder structures are one of the 

fastest adders algorithmically, the speed efficiency of 

the carry-lookahead adder has been hampered by 

diminishing returns given the fan-in and 2 fan-out 

dependencies as well as the heavy wire load 

distribution in the vertical path [4]. In fact, a traditional 

carry-lookahead adder implemented in VLSI can 

actually be slower than traditional linear-based adders, 

such as the Manchester carry adder. The 

implementations that have been developed in this 

dissertation help to improve the design of parallel- 

prefix adders and their associated computing 

architectures. 
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This has the potential of impacting many application 

specific and general purpose computer architectures. 

Consequently, this work can impact the designs of 

many computing systems, as well as impacting many 

areas of engineers and science. In this paper, the 

practical issues involved in designing and 

implementing tree-based adders on FPGAs are 

described. Several tree-based adder structures are 

implemented and characterized on a FPGA and 

compared with the Ripple Carry Adder (RCA) and the 

Carry Skip Adder (CSA). Finally, some conclusions 

and suggestions for improving FPGA designs to enable 

better tree-based adder performance are given. 

 

II. RELATED STUDY: 

Adders are one of the most essential components in 

digital building blocks, however, the performance of 

adders become more critical as the technology 

advances. The problem of addition involves algorithms 

in Boolean algebra and their respective circuit 

implementation. Algorithmically, there are linear-

delay adders like ripple-carry adders (RCA), which are 

the most straightforward but slowest. Adders like 

carry-skip adders (CSKA), carry-select adders (CSEA) 

and carry-increment adders (CINA) are linear-based 

adders with optimized carry-chain and improve upon 

the linear chain within a ripple-carry adder. Carry-

lookahead adders (CLA) have logarithmic delay and 

currently have evolved to parallel-prefix structures. 

Other schemes, like Ling adders, NAND/NOR adders 

and carry-save adders can help improve performance 

as well. 

 

1. Binary Adder Notations and Operations: 

As mentioned previously, adders in VLSI digital 

systems use binary notation. In that case, add is done 

bit by bit using Boolean equations. Consider a simple 

binary add with two n-bit inputs A;B and a one-bit 

carry-in cin along with n-bit output S. 

 

2. Ripple-Carry Adders (RCA): 

The simplest way of doing binary addition is to 

connect the carry-out from the previous bit to the next 

bit's carry-in. Each bit takes carry-in as one of the 

inputs and outputs sum and carry-out bit and hence the 

name ripple-carry adder. This type of adders is built by 

cascading 1-bit full adders. A 4-bit ripple-carry adder 

is shown in Figure 2.3. Each trapezoidal symbol 

represents a single-bit full adder. At the top of the 

figure, the carry is rippled through the adder from cin 

to cout. 

 

3. Carry-Select Adders (CSEA): 

Simple adders, like ripple-carry adders, are slow since 

the carry has to to travel through every full adder 

block. There is a way to improve the speed by 

duplicating the hardware due to the fact that the carry 

can only be either 0 or 1. The method is based on the 

conditional sum adder and extended to a carry-select 

adder. With two RCA, each computing the case of the 

one polarity of the carry-in, the sum can be obtained 

with a 2x1 multiplexer with the carry-in as the select 

signal. An example of 16-bit carry-select adder is 

shown in Figure 2.4. In the figure, the adder is grouped 

into four 4-bit blocks. The 1-bit multiplexors for sum 

selection can be implemented. 

 

4. Carry-Skip Adders (CSKA): 

There is an alternative way of reducing the delay in the 

carry-chain of a RCA by checking if a carry will 

propagate through to the next block. This is called 

carry-skip adders. 

 

5. Carry-Look-ahead Adders (CLA): 

The carry-chain can also be accelerated with carry 

generate/propagate logic. Carry-lookahead adders 

employ the carry generate/propagate in groups to 

generate carry for the next block [5]. In other words, 

digital logic is used to calculate all the carries at once. 

When building a CLA, a reduced version of full adder, 

which is called a reduced full adder (RFA) is utilized. 

The carry generate/propagate signals gi/pi feed to 

carry-lookahead generator (CLG) for carry inputs to 

RFA [6]. 
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III. PARALLEL-PREFIX STRUCTURES: 

To resolve the delay of carry-lookahead adders, the 

scheme of multilevel-lookahead adders or parallel-

prefix adders can be employed. However, the other 

two stages for these adders are called pre-computation 

and post-computation stages. In pre-computation stage, 

each bit computes its carry generate/propagate and a 

temporary sum. In the prefix stage, the group carry 

generate/propagate signals are computed to form the 

carry chain and provide the carry-in for the adder. In 

the post-computation stage, the sum and carry-out are 

finally produced. The carry-out can be omitted if only 

a sum needs to be produced.All parallel-prefix 

structures can be implemented with the equations; 

however, Equation can be interpreted in various ways, 

which leads to different types of parallel-prefix trees 

[7]. For example, Brent-Kung is known for its sparse 

topology at the cost of more logic levels. There are 

several design factors that can impact the performance 

of prefix structures. 

 Radix/Valency 

 Logic Levels 

 Fan-out 

 Wire tracks 

 

Parallel-prefix structures are found to be common in 

high performance adders because of the delay is 

logarithmically proportional to the adder width. Such 

structures can usually be divided into three stages, pre-

computation, prefix tree and post-computation. In the 

prefix tree, group generate/propagate are the only 

signals used. The group generate/propagate equations 

are based on single bit generate/propagate, which are 

computed in the pre-computation stage. 

 

1. Prefix Tree Family: 

Parallel-prefix trees have various architectures. These 

prefix trees can be distinguished by four major factors. 

1) Radix/Valency 2) Logic Levels 3) Fan-out 4) Wire 

Tracks In the following discussion about prefix trees, 

the radix is assumed to be 2 (i.e. the number of inputs 

to the logic gates is always 2).  

The more aggressive prefix schemes have logic levels 

[log2(n)], where n is the width of the inputs [8]. 

However, these schemes require higher fanout, or 

many wire-tracks or dense logic gates, which will 

compromise the performance e.g. speed or power. 

Some other schemes have relieved fan-out and wire 

tracks at the cost of more logic levels. When radix is 

fixed, The design trade-off is made among the logic 

levels, fan-out and wire tracks. 

 

2. Preparing Prefix Tree: 

The synthesis rules apply to any type of prefix tree. In 

this section, the methodology utilized to build fixed 

prefix structures is discussed. Moreover, procedure to 

build fixed prefix tree can be adapted to building non-

fixed prefix tree with a slight modification. In general, 

building prefix trees can be reduced to solving the 

following problems. 

 How to align the bit lines. 

 Where to place cells that compute group generate 

G and propagate P, i.e. black cells in this case 

(gray cells are ignored here to simplify the 

discussion.). 

 How to connect input/output of the cells  

. 

The solutions are based on the numbers which are 

power of 2 as both of the locations of the cells and 

wires can be related to those numbers. 

 

To solve the problems, 3 terms are defined. 

 l level: logic level; 

 u: maximum output bit span; 

 v: maximum input bit span; 

 

3. Kogge-Stone Prefix Tree: 

Kogge-Stone prefix tree is among the type of prefix 

trees that use the fewest logic levels. In fact, Kogge-

Stone is a member of Knowles prefix tree. The 16-bit 

prefix tree can be viewed as Knowels [1,1,1,1]. The 

numbers in the brackets represent the maximum 

branch fan-out at each logic level. The maximum fan-

out is 2 in all logic levels for all width Kogge-Stone 

prefix trees. 
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4. CARRY-TREE ADDER DESIGNS: 

Parallel-prefix adders, also known as carry-tree adders, 

pre-compute the propagate and generate signals. These 

signals are variously combined using the fundamental 

carry operator (fco). 

(gL, pL) ο (gR, pR) = (gL + pL•gR, pL • pR) 

 

Due to associative property of the fco, these operators 

can be combined in different ways to form various 

adder structures. For, example the four-bit carry-

lookahead generator is given by: 

c4 = (g4, p4) ο [ (g3, p3) ο [(g2, p2) ο (g1, p1)] ] 

 

A simple rearrangement of the order of operations 

allows parallel operation, resulting in a more efficient 

tree structure for this four bit example: 

c4 = [(g4, p4) ο (g3, p3)] ο [(g2, p2 ) ο (g1, p1)] 

 

IV. SIMULATION RESULTS: 

The corresponding simulation results of the adders are 

shown below. 

 
Figure 2: Ripple-Carry Adder 

 

 
Figure 3: Carry-Select Adder 

 
Figure 4: Carry-Skip Adder 

 

 
Figure 5: Kogge-Stone Adder 

 

 
Figure 6: Sparse Kogge-Stone Adder 

 

 
Figure 7: Spanning Tree adder 
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V. FPGA IMPLEMENTATION: 

FPGA contains a two dimensional arrays of logic 

blocks and interconnections between logic blocks. 

Both the logic blocks and interconnects are 

programmable. Logic blocks are programmed to 

implement a desired function and the interconnections 

are programmed using the switch boxes to connect the 

logic blocks. Xilinx logic block consists of one Look 

Up Table (LUT) and one Flip-Flop. An LUT is used to 

implement number of different functionality. The input 

lines to the logic block go into the LUT and enable it. 

The output of the LUT gives the result of the logic 

function that it implements and the output of logic 

block is registered or unregistered output from the 

LUT. SRAM is used to implement a LUT.A k-input 

logic function is implemented using 2^k * 1 size 

SRAM. Number of different possible functions for k 

input LUT is 2^2^k. Advantage of such an architecture 

is that it supports implementation of so many logic 

functions, however the disadvantage is unusually large 

number of memory cells required to implement such a 

logic block in case number of inputs is large.  

 
Figure 8: 4-input LUT based implementation of 

logic block 

 

LUT based design provides for better logic block 

utilization. A k-input LUT based logic block can be 

implemented in number of different ways with tradeoff 

between performance and logic density. An n-LUT can 

be shown as a direct implementation of a function 

truth-table. Each of the latch hold’s the value of the 

function corresponding to one input combination [9]. 

For Example: 2-LUT can be used to implement 16 

types of functions like AND, OR, A +not B.... Etc. 

In this part of tutorial we are going to have a short 

intro on FPGA design flow. A simplified version of 

design flow is given in the flowing diagram. 

 
Figure 9: FPGA Design Flow 

 

There are different techniques for design entry. 

Schematic based, Hardware Description Language and 

combination of both etc. Selection of a method 

depends on the design and designer. If the designer 

wants to deal more with Hardware, then Schematic 

entry is the better choice. When the design is complex 

or the designer thinks the design in an algorithmic way 

then HDL is the better choice. Language based entry is 

faster but lag in performance and density. 

 
Figure 10: FPGA Synthesis 

 

The process that translates VHDL/ Verilog code into a 

device netlist format i.e. a complete circuit with logical 

elements (gates flip flop, etc…) for the design. If the 

design contains more than one sub designs, ex. to 

implement a processor, we need a CPU as one design 

element and RAM as another and so on, then the 

synthesis process generates netlist for each design 

element Synthesis process will check code syntax and 
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analyze the hierarchy of the design which ensures that 

the design is optimized for the design architecture, the 

designer has selected. The resulting netlist(s) is saved 

to an NGC (Native Generic Circuit) file (for Xilinx® 

Synthesis Technology (XST)). 

 

This process consists of a sequence of three steps  

 Translate 

 Map 

 Place and Route 

 

VI. SYNTHESIS RESULTS: 

The corresponding schematics of the adders after 

synthesis are shown below. 

 
Figure 11: Top-level of Spanning Tree Adder 

 

 
Figure 12: Internal block of Spanning Tree Adder 

 
Figure 13: Area occupied by 16-bit Spanning Tree 

Adder 

 

This device utilization includes the following. 

 Logic Utilization 

 Logic Distribution 

 Total Gate count for the Design 

 

The device utilization summery is shown above in 

which its gives the details of number of devices used 

from the available devices and also represented in %. 

Hence as the result of the synthesis process, the device 

utilization in the used device and package is shown 

below. 

 
Table 1: Synthesis report of Ripple-Carry Adder 
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Table 2: Synthesis report of Carry-Select Adder 

 

 
Table 3: Synthesis report of Carry-Skip Adder 

 
Table 4: Synthesis report of Kogge-Stone Adder 

 

 
Table 5: Synthesis report of Sparse Kogge-Stone 

Adder 
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Table 6: Synthesis report of Spanning Tree Adder 

 

VII. CONCLUSION AND FUTURE WORK: 

Both measured and simulation results from this study 

have shown that parallel-prefix adders are not as 

effective as the simple ripple-carry adder at low to 

moderate bit widths. This is not unexpected as the 

Xilinx FPGA has a fast carry chain which optimizes 

the performance of the ripple carry adder. However, 

contrary to other studies, we have indications that the 

carry-tree adders eventually surpass the performance 

of the linear adder designs at high bit-widths, expected 

to be in the 128 to 256 bit range. This is important for 

large adders used in precision arithmetic and 

cryptographic applications where the addition of 

numbers on the order of a thousand bits is not 

uncommon. Because the adder is often the critical 

element which determines to a large part the cycle time 

and power dissipation for many digital signal 

processing and crypto graphical implementations, it 

would be worthwhile for future FPGA designs to 

include an optimized carry path to enable tree based 

adder designs to be optimized for place and routing. 

This would improve their performance similar to what 

is found for the RCA.  

We plan to explore possible FPGA architectures that 

could implement a “fast-tree chain” and investigate the 

possible trade-offs involved. The built-in redundancy 

of the Kogge-Stone carry-tree structure and its 

implications for fault tolerance in FPGA designs is 

being studied. The testability and possible fault 

tolerant features of the spanning tree adder are also 

topics for future research 
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