

 Page 1

Design and Characterization of Parallel Prefix Adders
S.Sri Mounika

Department of Electronics and

Communications Engineering,

St. Mary’s College of Engineering

& Technology, Hyderabad,

Telangana-502 319, India.

K.Aksa Rani

Department of Electronics and

Communications Engineering,

St. Mary’s College of Engineering

& Technology, Hyderabad,

Telangana-502 319, India.

M.S.Shyam

Department of Electronics and

Communications Engineering,

St. Mary’s College of Engineering

& Technology, Hyderabad,

Telangana-502 319, India.

Abstract:

The binary adder is the critical element in most digital

circuit designs including digital signal processors

(DSP) and microprocessor data path units. As such,

extensive research continues to be focused on

improving the power delay performance of the adder.

In VLSI implementations, parallel-prefix adders are

known to have the best performance [1]. Parallel-

prefix adders (also known as carry-tree adders) are

known to have the best performance in VLSI designs.

However, this performance advantage does not

translate directly into FPGA implementations due to

constraints on logic block configurations and routing

overhead. This paper investigates three types of carry-

tree adders (the Kogge-Stone, sparse Kogge-Stone,

and spanning tree adder) and compares them to the

simple Ripple Carry Adder (RCA) and Carry Skip

Adder (CSA).

These designs of varied bit-widths were implemented

on a Xilinx Spartan 3E FPGA and delay measurements

were made with a high-performance logic analyzer.

Due to the presence of a fast carry-chain, the RCA

designs exhibit better delay performance up to 128

bits. The carry-tree adders are expected to have a

speed advantage over the RCA as bit widths approach

256. In this project for simulation we use Model sim

for logical verification, and further synthesizing it on

Xilinx-ISE tool using target technology and

performing placing & routing operation for system

verification on targeted FPGA.

I. INTRODUCTION:

To humans, decimal numbers are easy to comprehend

and implement for performing arithmetic.

However, in digital systems, such as a microprocessor,

DSP (Digital Signal Processor) or ASIC (Application-

Specific Integrated Circuit), binary numbers are more

pragmatic for a given computation. This occurs

because binary values are optimally efficient at

representing many values.

1. Binary Adders:

Binary adders are one of the most essential logic

elements within a digital system. In addition, binary

adders are also helpful in units other than Arithmetic

Logic Units (ALU), such as multipliers, dividers and

memory addressing [2]. Therefore, binary addition is

essential that any improvement in binary addition can

result in a performance boost for any computing

system and, hence, help improve the performance of

the entire system. The major problem for binary

addition is the carry chain. As the width of the input

operand increases, the length of the carry chain

increases. Figure 1 demonstrates an example of an 8-

bit binary add operation and how the carry chain is

affected. This example shows that the worst case

occurs when the carry travels the longest possible path,

from the least significant bit (LSB) to the most

significant bit (MSB). In order to improve the

performance of carry-propagate adders, it is possible to

accelerate the carry chain, but not eliminate it.

Consequently, most digital designers often resort to

building faster adders when optimizing a computer

architecture, because they tend to set the critical path

for most computations.

Cite this article as: S.Sri Mounika, K.Aksa Rani & M.S.Shyam,

"Design and Characterization of Parallel Prefix Adders",

International Journal & Magazine of Engineering, Technology,

Management and Research, Volume 4, Issue 12, 2017, Page 18-31.

 Page 2

Figure 1: Binary Adder Example

The binary adder is the critical element in most digital

circuit designs including digital signal processors

(DSP) and microprocessor data path units. As such,

extensive research continues to be focused on

improving the power delay performance of the adder.

In VLSI implementations, parallel-prefix adders are

known to have the best performance. Reconfigurable

logic such as Field Programmable Gate Arrays

(FPGAs) has been gaining in popularity in recent years

because it offers improved performance in terms of

speed and power over DSP-based and microprocessor-

based solutions for many practical designs involving

mobile DSP and telecommunications applications and

a significant reduction in development time and cost

over Application Specific Integrated Circuit (ASIC)

designs.

The power advantage is especially important with the

growing popularity of mobile and portable electronics,

which make extensive use of DSP functions. However,

because of the structure of the configurable logic and

routing resources in FPGAs, parallel-prefix adders will

have a different performance than VLSI

implementations. In particular, most modern FPGAs

employ a fast-carry chain which optimizes the carry

path for the simple Ripple Carry Adder (RCA). In this

paper, the practical issues involved in designing and

implementing tree-based adders on FPGAs are

described. Several tree-based adder structures are

implemented and characterized on a FPGA and

compared with the Ripple Carry Adder (RCA) and the

Carry Skip Adder (CSA). Finally, some conclusions

and suggestions for improving FPGA designs to enable

better tree-based adder performance are given.

2. Carry-Propagate Adders:

Binary carry-propagate adders have been extensively

published, heavily attacking problems related to carry

chain problem. Binary adders evolve from linear

adders, which have a delay approximately proportional

to the width of the adder, e.g. ripple-carry adder

(RCA), to logarithmic-delay adder, such as the carry-

look ahead adder (CLA) [2]. There are some additional

performance enhancing schemes, including the carry-

increment adder and the Ling adder that can further

enhance the carry chain, however, in Very Large Scale

Integration (VLSI) digital systems, the most efficient

way of offering binary addition involves utilizing

parallel-prefix trees, this occurs because they have the

regular structures that exhibit logarithmic delay.

Parallel-prefix adders compute addition in two steps:

one to obtain the carry at each bit, with the next to

compute the sum bit based on the carry bit [3].

Unfortunately, prefix trees are algorithmically slower

than fast logarithmic adders, such as the carry

propagate adders, however, their regular structures

promote excellent results when compared to traditional

CLA adders.

This happens within VLSI architectures because a

carry-lookahead adder, such as the one implemented in

one of Motorola's processors, tends to implement the

carry chain in the vertical direction instead of a

horizontal one, which has a tendency to increase both

wire density and fan-in/out dependence. Therefore,

although logarithmic adder structures are one of the

fastest adders algorithmically, the speed efficiency of

the carry-lookahead adder has been hampered by

diminishing returns given the fan-in and 2 fan-out

dependencies as well as the heavy wire load

distribution in the vertical path [4]. In fact, a traditional

carry-lookahead adder implemented in VLSI can

actually be slower than traditional linear-based adders,

such as the Manchester carry adder. The

implementations that have been developed in this

dissertation help to improve the design of parallel-

prefix adders and their associated computing

architectures.

 Page 3

This has the potential of impacting many application

specific and general purpose computer architectures.

Consequently, this work can impact the designs of

many computing systems, as well as impacting many

areas of engineers and science. In this paper, the

practical issues involved in designing and

implementing tree-based adders on FPGAs are

described. Several tree-based adder structures are

implemented and characterized on a FPGA and

compared with the Ripple Carry Adder (RCA) and the

Carry Skip Adder (CSA). Finally, some conclusions

and suggestions for improving FPGA designs to enable

better tree-based adder performance are given.

II. RELATED STUDY:

Adders are one of the most essential components in

digital building blocks, however, the performance of

adders become more critical as the technology

advances. The problem of addition involves algorithms

in Boolean algebra and their respective circuit

implementation. Algorithmically, there are linear-

delay adders like ripple-carry adders (RCA), which are

the most straightforward but slowest. Adders like

carry-skip adders (CSKA), carry-select adders (CSEA)

and carry-increment adders (CINA) are linear-based

adders with optimized carry-chain and improve upon

the linear chain within a ripple-carry adder. Carry-

lookahead adders (CLA) have logarithmic delay and

currently have evolved to parallel-prefix structures.

Other schemes, like Ling adders, NAND/NOR adders

and carry-save adders can help improve performance

as well.

1. Binary Adder Notations and Operations:

As mentioned previously, adders in VLSI digital

systems use binary notation. In that case, add is done

bit by bit using Boolean equations. Consider a simple

binary add with two n-bit inputs A;B and a one-bit

carry-in cin along with n-bit output S.

2. Ripple-Carry Adders (RCA):

The simplest way of doing binary addition is to

connect the carry-out from the previous bit to the next

bit's carry-in. Each bit takes carry-in as one of the

inputs and outputs sum and carry-out bit and hence the

name ripple-carry adder. This type of adders is built by

cascading 1-bit full adders. A 4-bit ripple-carry adder

is shown in Figure 2.3. Each trapezoidal symbol

represents a single-bit full adder. At the top of the

figure, the carry is rippled through the adder from cin

to cout.

3. Carry-Select Adders (CSEA):

Simple adders, like ripple-carry adders, are slow since

the carry has to to travel through every full adder

block. There is a way to improve the speed by

duplicating the hardware due to the fact that the carry

can only be either 0 or 1. The method is based on the

conditional sum adder and extended to a carry-select

adder. With two RCA, each computing the case of the

one polarity of the carry-in, the sum can be obtained

with a 2x1 multiplexer with the carry-in as the select

signal. An example of 16-bit carry-select adder is

shown in Figure 2.4. In the figure, the adder is grouped

into four 4-bit blocks. The 1-bit multiplexors for sum

selection can be implemented.

4. Carry-Skip Adders (CSKA):

There is an alternative way of reducing the delay in the

carry-chain of a RCA by checking if a carry will

propagate through to the next block. This is called

carry-skip adders.

5. Carry-Look-ahead Adders (CLA):

The carry-chain can also be accelerated with carry

generate/propagate logic. Carry-lookahead adders

employ the carry generate/propagate in groups to

generate carry for the next block [5]. In other words,

digital logic is used to calculate all the carries at once.

When building a CLA, a reduced version of full adder,

which is called a reduced full adder (RFA) is utilized.

The carry generate/propagate signals gi/pi feed to

carry-lookahead generator (CLG) for carry inputs to

RFA [6].

 Page 4

III. PARALLEL-PREFIX STRUCTURES:

To resolve the delay of carry-lookahead adders, the

scheme of multilevel-lookahead adders or parallel-

prefix adders can be employed. However, the other

two stages for these adders are called pre-computation

and post-computation stages. In pre-computation stage,

each bit computes its carry generate/propagate and a

temporary sum. In the prefix stage, the group carry

generate/propagate signals are computed to form the

carry chain and provide the carry-in for the adder. In

the post-computation stage, the sum and carry-out are

finally produced. The carry-out can be omitted if only

a sum needs to be produced.All parallel-prefix

structures can be implemented with the equations;

however, Equation can be interpreted in various ways,

which leads to different types of parallel-prefix trees

[7]. For example, Brent-Kung is known for its sparse

topology at the cost of more logic levels. There are

several design factors that can impact the performance

of prefix structures.

 Radix/Valency

 Logic Levels

 Fan-out

 Wire tracks

Parallel-prefix structures are found to be common in

high performance adders because of the delay is

logarithmically proportional to the adder width. Such

structures can usually be divided into three stages, pre-

computation, prefix tree and post-computation. In the

prefix tree, group generate/propagate are the only

signals used. The group generate/propagate equations

are based on single bit generate/propagate, which are

computed in the pre-computation stage.

1. Prefix Tree Family:

Parallel-prefix trees have various architectures. These

prefix trees can be distinguished by four major factors.

1) Radix/Valency 2) Logic Levels 3) Fan-out 4) Wire

Tracks In the following discussion about prefix trees,

the radix is assumed to be 2 (i.e. the number of inputs

to the logic gates is always 2).

The more aggressive prefix schemes have logic levels

[log2(n)], where n is the width of the inputs [8].

However, these schemes require higher fanout, or

many wire-tracks or dense logic gates, which will

compromise the performance e.g. speed or power.

Some other schemes have relieved fan-out and wire

tracks at the cost of more logic levels. When radix is

fixed, The design trade-off is made among the logic

levels, fan-out and wire tracks.

2. Preparing Prefix Tree:

The synthesis rules apply to any type of prefix tree. In

this section, the methodology utilized to build fixed

prefix structures is discussed. Moreover, procedure to

build fixed prefix tree can be adapted to building non-

fixed prefix tree with a slight modification. In general,

building prefix trees can be reduced to solving the

following problems.

 How to align the bit lines.

 Where to place cells that compute group generate

G and propagate P, i.e. black cells in this case

(gray cells are ignored here to simplify the

discussion.).

 How to connect input/output of the cells

.

The solutions are based on the numbers which are

power of 2 as both of the locations of the cells and

wires can be related to those numbers.

To solve the problems, 3 terms are defined.

 l level: logic level;

 u: maximum output bit span;

 v: maximum input bit span;

3. Kogge-Stone Prefix Tree:

Kogge-Stone prefix tree is among the type of prefix

trees that use the fewest logic levels. In fact, Kogge-

Stone is a member of Knowles prefix tree. The 16-bit

prefix tree can be viewed as Knowels [1,1,1,1]. The

numbers in the brackets represent the maximum

branch fan-out at each logic level. The maximum fan-

out is 2 in all logic levels for all width Kogge-Stone

prefix trees.

 Page 5

4. CARRY-TREE ADDER DESIGNS:

Parallel-prefix adders, also known as carry-tree adders,

pre-compute the propagate and generate signals. These

signals are variously combined using the fundamental

carry operator (fco).

(gL, pL) ο (gR, pR) = (gL + pL•gR, pL • pR)

Due to associative property of the fco, these operators

can be combined in different ways to form various

adder structures. For, example the four-bit carry-

lookahead generator is given by:

c4 = (g4, p4) ο [(g3, p3) ο [(g2, p2) ο (g1, p1)]]

A simple rearrangement of the order of operations

allows parallel operation, resulting in a more efficient

tree structure for this four bit example:

c4 = [(g4, p4) ο (g3, p3)] ο [(g2, p2) ο (g1, p1)]

IV. SIMULATION RESULTS:

The corresponding simulation results of the adders are

shown below.

Figure 2: Ripple-Carry Adder

Figure 3: Carry-Select Adder

Figure 4: Carry-Skip Adder

Figure 5: Kogge-Stone Adder

Figure 6: Sparse Kogge-Stone Adder

Figure 7: Spanning Tree adder

 Page 6

V. FPGA IMPLEMENTATION:

FPGA contains a two dimensional arrays of logic

blocks and interconnections between logic blocks.

Both the logic blocks and interconnects are

programmable. Logic blocks are programmed to

implement a desired function and the interconnections

are programmed using the switch boxes to connect the

logic blocks. Xilinx logic block consists of one Look

Up Table (LUT) and one Flip-Flop. An LUT is used to

implement number of different functionality. The input

lines to the logic block go into the LUT and enable it.

The output of the LUT gives the result of the logic

function that it implements and the output of logic

block is registered or unregistered output from the

LUT. SRAM is used to implement a LUT.A k-input

logic function is implemented using 2^k * 1 size

SRAM. Number of different possible functions for k

input LUT is 2^2^k. Advantage of such an architecture

is that it supports implementation of so many logic

functions, however the disadvantage is unusually large

number of memory cells required to implement such a

logic block in case number of inputs is large.

Figure 8: 4-input LUT based implementation of

logic block

LUT based design provides for better logic block

utilization. A k-input LUT based logic block can be

implemented in number of different ways with tradeoff

between performance and logic density. An n-LUT can

be shown as a direct implementation of a function

truth-table. Each of the latch hold’s the value of the

function corresponding to one input combination [9].

For Example: 2-LUT can be used to implement 16

types of functions like AND, OR, A +not B.... Etc.

In this part of tutorial we are going to have a short

intro on FPGA design flow. A simplified version of

design flow is given in the flowing diagram.

Figure 9: FPGA Design Flow

There are different techniques for design entry.

Schematic based, Hardware Description Language and

combination of both etc. Selection of a method

depends on the design and designer. If the designer

wants to deal more with Hardware, then Schematic

entry is the better choice. When the design is complex

or the designer thinks the design in an algorithmic way

then HDL is the better choice. Language based entry is

faster but lag in performance and density.

Figure 10: FPGA Synthesis

The process that translates VHDL/ Verilog code into a

device netlist format i.e. a complete circuit with logical

elements (gates flip flop, etc…) for the design. If the

design contains more than one sub designs, ex. to

implement a processor, we need a CPU as one design

element and RAM as another and so on, then the

synthesis process generates netlist for each design

element Synthesis process will check code syntax and

 Page 7

analyze the hierarchy of the design which ensures that

the design is optimized for the design architecture, the

designer has selected. The resulting netlist(s) is saved

to an NGC (Native Generic Circuit) file (for Xilinx®

Synthesis Technology (XST)).

This process consists of a sequence of three steps

 Translate

 Map

 Place and Route

VI. SYNTHESIS RESULTS:

The corresponding schematics of the adders after

synthesis are shown below.

Figure 11: Top-level of Spanning Tree Adder

Figure 12: Internal block of Spanning Tree Adder

Figure 13: Area occupied by 16-bit Spanning Tree

Adder

This device utilization includes the following.

 Logic Utilization

 Logic Distribution

 Total Gate count for the Design

The device utilization summery is shown above in

which its gives the details of number of devices used

from the available devices and also represented in %.

Hence as the result of the synthesis process, the device

utilization in the used device and package is shown

below.

Table 1: Synthesis report of Ripple-Carry Adder

 Page 8

Table 2: Synthesis report of Carry-Select Adder

Table 3: Synthesis report of Carry-Skip Adder

Table 4: Synthesis report of Kogge-Stone Adder

Table 5: Synthesis report of Sparse Kogge-Stone

Adder

 Page 9

Table 6: Synthesis report of Spanning Tree Adder

VII. CONCLUSION AND FUTURE WORK:

Both measured and simulation results from this study

have shown that parallel-prefix adders are not as

effective as the simple ripple-carry adder at low to

moderate bit widths. This is not unexpected as the

Xilinx FPGA has a fast carry chain which optimizes

the performance of the ripple carry adder. However,

contrary to other studies, we have indications that the

carry-tree adders eventually surpass the performance

of the linear adder designs at high bit-widths, expected

to be in the 128 to 256 bit range. This is important for

large adders used in precision arithmetic and

cryptographic applications where the addition of

numbers on the order of a thousand bits is not

uncommon. Because the adder is often the critical

element which determines to a large part the cycle time

and power dissipation for many digital signal

processing and crypto graphical implementations, it

would be worthwhile for future FPGA designs to

include an optimized carry path to enable tree based

adder designs to be optimized for place and routing.

This would improve their performance similar to what

is found for the RCA.

We plan to explore possible FPGA architectures that

could implement a “fast-tree chain” and investigate the

possible trade-offs involved. The built-in redundancy

of the Kogge-Stone carry-tree structure and its

implications for fault tolerance in FPGA designs is

being studied. The testability and possible fault

tolerant features of the spanning tree adder are also

topics for future research

REFERENCES:

[1] N. H. E. Weste and D. Harris, CMOS VLSI

Design, 4th edition, Pearson–Addison-Wesley, 2011.

[2] P. Ndai, S. Lu, D. Somesekhar, and K. Roy, “Fine-

Grained Redundancy in Adders,” Int. Symp. on

Quality Electronic Design, pp. 317-321, March 2007.

[3] D. Harris, “A Taxonomy of Parallel Prefix

Networks,” in Proc. 37th Asilomar Conf. Signals

Systems and Computers, pp. 2213–7, 2003.

[4] P. M. Kogge and H. S. Stone, “A Parallel

Algorithm for the Efficient Solution of a General Class

of Recurrence Equations,” IEEE Trans. on Computers,

Vol. C-22, No 8, August 1973.

[5] D. Gizopoulos, M. Psarakis, A. Paschalis, and Y.

Zorian, “Easily Testable Cellular Carry Lookahead

Adders,” Journal of Electronic Testing: Theory and

Applications 19, 285-298, 2003.

[6] T. Lynch and E. E. Swartzlander, “A Spanning

Tree Carry Look ahead Adder,” IEEE Trans. on

Computers, vol. 41, no. 8, pp. 931-939, Aug. 1992.

[7] S. Xing and W. W. H. Yu, “FPGA Adders:

Performance Evaluation and Optimal Design,” IEEE

Design & Test of Computers, vol. 15, no. 1, pp. 24-29,

Jan. 1998.

[8] M. Bečvář and P. Štukjunger, “Fixed-Point

Arithmetic in FPGA,” Acta Polytechnica, vol. 45, no.

2, pp. 67- 72, 2005.

[9] K. Vitoroulis and A. J. Al-Khalili, “Performance of

Parallel Prefix Adders Implemented with FPGA

technology,” IEEE Northeast Workshop on Circuits

and Systems, pp. 498-501, Aug. 2007. 172.

