
 Volume No: 2(2015), Issue No: 2 (February) February 2015
 www.ijmetmr.com Page 113

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

Abstract:

This paper deals the design and implementation of
SoC’s UART-SPI interface. The UART-SPIinterfacepro-
videsusage for the universal asynchronous receiver/
transmitter (UART) to serial peripheralinterface (SPI).
This interface can be used to communicate to SPI slave
devices from a PC with UART port. Theconverter con-
sists of three blocks: the UART interface, the UART -to
SPI interfacing block and the SPI Masterinterface. The
Interface of UART - SPI in SOC will prove very effective
in many applications. Thecommunication in the SOC
architecture makes easy as they have been connected
with a bus. In future, moreapplications will add into
the subsystem, by which the routing architecture plays
a vital role in the system and itcan be implemented in
SOC.

Keywords:
UART; asynchronous serial communication; VHDL;
Quartus II; simulation

I. INTRODUCTION:

The aim of our project is to interface the UART with SPI
master by using a controller called SPI UART controller.
The Interface of UART - SPI in SOC will come very ef-
fective in many applications. The communication in the
SOC architecture makes easy as they have been con-
nected with a bus. In future as of more applications will
add into the subsystem the routing architecture plays
a vital role in the system and it can be implemented in
SOC .The UART-SPI interface a special type of interface
because the SPI is a synchronous bus and the UART
is an asynchronous bus. UART can communicate with
only one peripheral.This type of interface is necessary
where PC wants to communicate with the SPI slaves
through UART port of PC, in this the SPI-UART inter-
face is useful and also like this we need this type of in-
terface in many applications.

Leena L Kanjani

M.Tech Student,
Avanthi Institute.

N.Ashok Kumar, M.Tech

Associate Prof & HOD,
ASRA, Hyderabad.

Using the UART-SPI Interface, UART can communicate
with more number of devices.

The Universal Asynchronous Receiver/Transmitter
(UART) takes bytes of data and transmits the individual
bits in a sequential fashion. At the destination, a second
UART re-assembles the bits into complete bytes. Each
UART contains a shift register, which is the fundamen-
tal method of conversion between serial and parallel
forms. Serial transmission of digital information (bits)
through a single wire or other medium is less costly
than parallel transmission through multiple wires. The
UART usually does not directly generate or receive the
external signals used between different items of equip-
ment.

Separate interface devices are used to convert the logic
level signals of the UART to and from the external sig-
naling levels. External signals may be of many different
forms Communication may be simplex (in one direction
only, with no provision for the receiving device to send
information back to the transmitting device), full du-
plex (both devices send and receive at the same time)
or half duplex (devices take turns transmitting and re-
ceiving).During idle, no data state is high-voltage, or
powered. This is a historic legacy from telegraphy, in
which the line is held high to show that the line and
transmitter are not damaged. Eachcharacter is sent as
a logic low start bit, a configurable number of data bits
(usually 8, but users can choose 5 to 8 or 9 bits depend-
ingon which UART is in use), an optional parity bit if the
number of bits per character chosen is not 9 bits, and
one or more logic high stop bits .The start bit signals
the receiver that a new character is coming.

Design of UART Serial Communication Module and
Simulation Using VHDL

 Volume No: 2(2015), Issue No: 2 (February) February 2015
 www.ijmetmr.com Page 114

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

The next five to nine bits, depending on the code set
employed, represent the character. If a parity bit is
used, it would be placed after all of the data bits. The
next one or two bits are always in the mark (logic high,
i.e., ‘1’) condition and called the stop bit(s).They signal
the receiver that the character is completed. Since the
start bit is logic low (0) and the stop bit is logic high (1)
there are always at least two guaranteed signal chang-
es between characters If the line is held in the logic
low condition for longer than a character time, this is a
break condition that can be detected by the UART.

II. IMPLEMENTATION:

The structure of UART is as shown in figure 3.4, con-
sists of Transmitter part and Receiver part, rather we
can say, it consists of 3 units, transmitter circuit, receiv-
er circuit and Control/Status Registers.

A. Design of UART Transmitter:

The Block diagram of UART Transmitter is as shown in
figure 3.5. The data is loaded from Data Bus Into TBR
(Transmit Buffer Register) and from TBR to TSR (Trans-
mit Shift Register), based on the control and status sig-
nals produced by the Control unit.

The Size of TSR is taken in such a way that, it should
accommodate the START and STOP bits alongwith the
Data bits which are loaded from the Data Bus.The Data
loaded into TSR has the format of STARTDATA-STOP
bits which is as shown in figure of which, every time
one bit will be sent, with reference to baudclock.Cor-
respondingly, the data in TSR will keeps updating with
0‟s; will be completely filled with 0s, aftertransmission
of the complete data packet.

The Size of TSR is taken in such a way that, it should
accommodate the START and STOP bits alongwith the
Databits which are loaded from the Data Bus.The Data
loaded into TSR has the format of STARTDATA-STOP
bits which is as shown in figure of which, every time
one bit will be sent, with reference to baudclock.Cor-
respondingly, the data in TSR will keeps updating with
0s; will be completely filled with 0s, aftertransmission
of the complete data packet.

B. Design of UART Receiver:

The Block diagram of UART Receiver is as shown in fig-
ure 3.6. The data receiving will be capturedusing receiv-
ing baud clock and then loaded into RSR (Receive Shift
Register) and from RSR to RBR (ReceiveBuffer Regis-
ter), and then to Data Bus, based on the control and
status signals produced by the Control unitThe Size of
RSR is taken in such a way that, it should accommodate
the START and STOP bits along with theData bits which
are loaded from the Data Bus.

 Volume No: 2(2015), Issue No: 2 (February) February 2015
 www.ijmetmr.com Page 115

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

The start bit is always a 0 (logic low), which is also
called a space. The start bit signals the receiving DTE
that a character code is coming. The next five to eight
bits, depending on the code set employed, represent
the character. In the ASCII code set the eighth data bit
may be a parity bit. The next one or two bits are always
in the mark (logic high, i.e., ‘1’) condition and called
the stop bit(s). They provide a “rest” interval for the
receiving DTE so that it may prepare for the next char-
acter which may be after the stop bit(s). The rest inter-
val was required by mechanical Teletypes which used
a motor driven camshaft to decode each character. At
the end of each character the motor needed time to
strike the character bail (print the character) and reset
the cam shaft .All operations of the UART hardware
are controlled by a clock signal which runs at a multiple
(say,16) of the data rate - each data bit is as long as 16
clock pulses.

The receiver tests the state of the incomingsignal on
each clock pulse, looking for the beginning of the start
bit. If the apparent start bit lasts at least onehalfof the
bit time, it is valid and signals the start of a new charac-
ter. If not, the spurious pulse is ignored .Afterwaiting a
further bit time, the state of the line is again sampled
and the resulting level clocked into a shift register. Af-
ter the required number of bit periods for the character
length (5 to 8 bits, typically) have elapsed, thecontents
of the shift register is made available (in parallel fash-
ion) to the receiving system. The UART will set aflag
indicating new data is available, and may also generate
a processor interrupt to request that the hostproces-
sortransfers the received data. In some common types
of UART, a small first-in, first-out (FIFO) buffermemory
is inserted between the receiver shift register and the
host system interface.This allows thehostprocessor
more time to handle an interrupt from the UART and
prevents loss of received data at high rates.Transmis-
sion operation is simpler since it is under the control of
the transmitting system. As soon asdata is deposited in
the shift register, the UART hardware generates a start
bit, shifts the required number ofdata bits out to the
line, generates and appends the parity bit (if used), and
appends the stop bits. Sincetransmission of a single
character may take a long time relative to CPU speeds,
the UART will maintain a flagshowing busy status so
that the host system does not deposit a new character
for transmission until the previousone has been com-
pleted; this may also be done with an interrupt.

Since full-duplex operation requires charactersto be
sent and received at the same time, practical UARTs
use two different shift registers for transmittedcharac-
ters and received characters.Transmitting and receiving
UARTs must be set for the same bit speed, character
length, parity, andstop bits for proper operation. The
receiving UART may detect some mismatched settings
and set a “framingerror” flagbit for the host system;
in exceptional cases the receiving UART will produce
an erratic stream ofmutilatedcharacters and transfer
them to the host system.Typical serial ports used with
personal computers connected to modems use eight
data bits, no parity,and one stop bit; for this configura-
tion the number of ASCII character per seconds equals
the bit rate divided by10.

B.1 Special Receiver Conditions:

Over-run Error:

An “overrun error” occurs when the UART receiver
cannot process the character that just came inbefore
the next one arrives. Various UART devices have dif-
fering amounts of buffer space to hold receivedchar-
acters. The CPU must service the UART in order to re-
move characters from the input buffer. If the CPUdoes
not service the UART quickly enough and the buffer
becomes full, an Overrun Error will occur.

Under run Error:

An “under-run error” occurs when the UART transmit-
ter has completed sending a character and the transmit
buffer is empty. In asynchronous modes this is treated
as an indication that no data remains to be transmit-
ted, rather than an error, since additional stop bits can
be appended. This error indication is commonly found
in USARTs, since an under run is more serious in syn-
chronous systems.

Framing Error:

A “framing error” occurs when the designated “start”
and “stop” bits are not valid. As the “start” bit is used
to identify the beginning of an incoming character, it
acts as a reference for the remaining bits. If the data
line is not in the expected idle state when the “stop”
bit is expected, a Framing Error will occur.

 Volume No: 2(2015), Issue No: 2 (February) February 2015
 www.ijmetmr.com Page 114

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

The next five to nine bits, depending on the code set
employed, represent the character. If a parity bit is
used, it would be placed after all of the data bits. The
next one or two bits are always in the mark (logic high,
i.e., ‘1’) condition and called the stop bit(s).They signal
the receiver that the character is completed. Since the
start bit is logic low (0) and the stop bit is logic high (1)
there are always at least two guaranteed signal chang-
es between characters If the line is held in the logic
low condition for longer than a character time, this is a
break condition that can be detected by the UART.

II. IMPLEMENTATION:

The structure of UART is as shown in figure 3.4, con-
sists of Transmitter part and Receiver part, rather we
can say, it consists of 3 units, transmitter circuit, receiv-
er circuit and Control/Status Registers.

A. Design of UART Transmitter:

The Block diagram of UART Transmitter is as shown in
figure 3.5. The data is loaded from Data Bus Into TBR
(Transmit Buffer Register) and from TBR to TSR (Trans-
mit Shift Register), based on the control and status sig-
nals produced by the Control unit.

The Size of TSR is taken in such a way that, it should
accommodate the START and STOP bits alongwith the
Data bits which are loaded from the Data Bus.The Data
loaded into TSR has the format of STARTDATA-STOP
bits which is as shown in figure of which, every time
one bit will be sent, with reference to baudclock.Cor-
respondingly, the data in TSR will keeps updating with
0‟s; will be completely filled with 0s, aftertransmission
of the complete data packet.

The Size of TSR is taken in such a way that, it should
accommodate the START and STOP bits alongwith the
Databits which are loaded from the Data Bus.The Data
loaded into TSR has the format of STARTDATA-STOP
bits which is as shown in figure of which, every time
one bit will be sent, with reference to baudclock.Cor-
respondingly, the data in TSR will keeps updating with
0s; will be completely filled with 0s, aftertransmission
of the complete data packet.

B. Design of UART Receiver:

The Block diagram of UART Receiver is as shown in fig-
ure 3.6. The data receiving will be capturedusing receiv-
ing baud clock and then loaded into RSR (Receive Shift
Register) and from RSR to RBR (ReceiveBuffer Regis-
ter), and then to Data Bus, based on the control and
status signals produced by the Control unitThe Size of
RSR is taken in such a way that, it should accommodate
the START and STOP bits along with theData bits which
are loaded from the Data Bus.

 Volume No: 2(2015), Issue No: 2 (February) February 2015
 www.ijmetmr.com Page 115

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

The start bit is always a 0 (logic low), which is also
called a space. The start bit signals the receiving DTE
that a character code is coming. The next five to eight
bits, depending on the code set employed, represent
the character. In the ASCII code set the eighth data bit
may be a parity bit. The next one or two bits are always
in the mark (logic high, i.e., ‘1’) condition and called
the stop bit(s). They provide a “rest” interval for the
receiving DTE so that it may prepare for the next char-
acter which may be after the stop bit(s). The rest inter-
val was required by mechanical Teletypes which used
a motor driven camshaft to decode each character. At
the end of each character the motor needed time to
strike the character bail (print the character) and reset
the cam shaft .All operations of the UART hardware
are controlled by a clock signal which runs at a multiple
(say,16) of the data rate - each data bit is as long as 16
clock pulses.

The receiver tests the state of the incomingsignal on
each clock pulse, looking for the beginning of the start
bit. If the apparent start bit lasts at least onehalfof the
bit time, it is valid and signals the start of a new charac-
ter. If not, the spurious pulse is ignored .Afterwaiting a
further bit time, the state of the line is again sampled
and the resulting level clocked into a shift register. Af-
ter the required number of bit periods for the character
length (5 to 8 bits, typically) have elapsed, thecontents
of the shift register is made available (in parallel fash-
ion) to the receiving system. The UART will set aflag
indicating new data is available, and may also generate
a processor interrupt to request that the hostproces-
sortransfers the received data. In some common types
of UART, a small first-in, first-out (FIFO) buffermemory
is inserted between the receiver shift register and the
host system interface.This allows thehostprocessor
more time to handle an interrupt from the UART and
prevents loss of received data at high rates.Transmis-
sion operation is simpler since it is under the control of
the transmitting system. As soon asdata is deposited in
the shift register, the UART hardware generates a start
bit, shifts the required number ofdata bits out to the
line, generates and appends the parity bit (if used), and
appends the stop bits. Sincetransmission of a single
character may take a long time relative to CPU speeds,
the UART will maintain a flagshowing busy status so
that the host system does not deposit a new character
for transmission until the previousone has been com-
pleted; this may also be done with an interrupt.

Since full-duplex operation requires charactersto be
sent and received at the same time, practical UARTs
use two different shift registers for transmittedcharac-
ters and received characters.Transmitting and receiving
UARTs must be set for the same bit speed, character
length, parity, andstop bits for proper operation. The
receiving UART may detect some mismatched settings
and set a “framingerror” flagbit for the host system;
in exceptional cases the receiving UART will produce
an erratic stream ofmutilatedcharacters and transfer
them to the host system.Typical serial ports used with
personal computers connected to modems use eight
data bits, no parity,and one stop bit; for this configura-
tion the number of ASCII character per seconds equals
the bit rate divided by10.

B.1 Special Receiver Conditions:

Over-run Error:

An “overrun error” occurs when the UART receiver
cannot process the character that just came inbefore
the next one arrives. Various UART devices have dif-
fering amounts of buffer space to hold receivedchar-
acters. The CPU must service the UART in order to re-
move characters from the input buffer. If the CPUdoes
not service the UART quickly enough and the buffer
becomes full, an Overrun Error will occur.

Under run Error:

An “under-run error” occurs when the UART transmit-
ter has completed sending a character and the transmit
buffer is empty. In asynchronous modes this is treated
as an indication that no data remains to be transmit-
ted, rather than an error, since additional stop bits can
be appended. This error indication is commonly found
in USARTs, since an under run is more serious in syn-
chronous systems.

Framing Error:

A “framing error” occurs when the designated “start”
and “stop” bits are not valid. As the “start” bit is used
to identify the beginning of an incoming character, it
acts as a reference for the remaining bits. If the data
line is not in the expected idle state when the “stop”
bit is expected, a Framing Error will occur.

 Volume No: 2(2015), Issue No: 2 (February) February 2015
 www.ijmetmr.com Page 116

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

Parity Error:

A “parity error” occurs when the number of “active”
bits does not agree with the specified parity configu-
ration of the UART, producing a Parity Error. Because
the “parity” bit is optional, this error will not occur if
parity has been disabled. Parity error is set when the
parity of an incoming data character does not match
the expected value.

C. SPI Design:

SPI stands for Serial Peripheral Interface is a synchro-
nous protocol that allows a master device to initiate
communication with a slave device. Data is exchanged
between these devices. SPI is implemented by a hard-
ware module called the Synchronous Serial Port or the
Master Synchronous Serial Port. It allows serial commu-
nication between two or more devices at a high speed
and is reasonably easy to implement .SPI is a Synchro-
nous protocol. Only the master device can control the
clock line, SCK. Often a slave select signal will control
when a device isaccessed. This signal must be used for
when more than one slaveexists in a system, but can
be optional when only one slave exists in the circuit. As
a general rule, it should be used. This signal is known as
the SS signal and stands for “Slave Select.” It indicates
to a slave that the master wishes to start an SPI data
exchange between that slave device and itself. The sig-
nal is most often active low, so a low on this line will
indicate the SPI is active, while a high will signal inactiv-
ity. It is often used to improve noise immunity of the
system. Its function is to reset the SPI slave so that it is
ready to receive the next byte .

SPI is a Serial Interface and uses the following signals
to serially exchange data with another device:

SS - This signal is known as Slave Select. When it »»
goes low, the slave device will listen for SPI clock and
data signals.

SCK - This is the serial clock signal. It is generated by »»
the master device and controls when data is sent and
when it is read.

MOSI - The signal is generated by Master, recipient »»
is the Slave.

MISO -The signals are generated by Slaves, recipient »»

is the master.

SI - Serial Data Input (used to transfer data into the »»
SPI device).

SO - Serial Data Output (used to transfer data out of »»
the SPI device).

CS - Chip Select Input (for enabling device opera-»»
tion).

W- Write Protect Input (used to guard against pro-»»
gram/erase instructions).

C.1 Data transmission:

A typical hardware setup using two shift registers to
form an inter-chipcircular buffer To begin a commu-
nication, the bus master first configures the clock,
using a frequency less than or equal to themaximum
frequency the slave device supports. Such frequencies
are commonly in the range of 1–100 MHz.

The master then transmits the appropriate chip select
bit for the desired chip to logic 0. Logic 0 is transmit-
ted because the chip select line is active low, meaning
its off state is a logic 1; on is asserted with a logic0. If a
waiting period is required (such as for analog-to-digital
conversion), then the master must wait for at least that
period of time before starting to issue clock cycles.

 Volume No: 2(2015), Issue No: 2 (February) February 2015
 www.ijmetmr.com Page 117

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

During each SPI clock cycle, a full duplex data transmis-
sion occurs:

the master sends a bit on the MOSI line; the slave »»
reads it from that same line

the slave sends a bit on the MISO line; the master »»
reads it from that same line

Not all transmissions require all four of these opera-
tions to be meaningful but they do happen. Trans-
missions normally involve two shift registers of some
given word size, such as eight bits, one in the master
and one in the slave; they are connected in a ring. Data
is usually shifted out with the most significant bit first,
while shifting a new least significant bit into the same
register. After that register has been shifted out, the
master and slave have exchanged register values. Then
each device takes that value and does something with
it, such as writing it to memory. If there is more data to
exchange, the shift registers are loaded with new data
and the process repeats .Transmissions may involve
any number of clock cycles. When there is no more
data to be transmitted,the master stops toggling its
clock. Normally, it then deselects the slave.

Transmissions often consist of 8-bitwords, and a mas-
ter can initiate multiple such transmissions if it wishes/
needs. However, other word sizes are also common,
such as 16-bit words for touchscreen controllers or au-
dio codecs, like the TSC2101 from Texas Instruments;
or 12-bit words for many digital-to-analogs or analog-
to-digital converters. Every slave on the busthat hasn’t
been activated using its chip select line must disregard
the input clock and MOSI signals, and must not drive
MISO. The master must select only one slave at a time.
A timing diagram showing clock polarity and phase
in addition to setting the clock frequency, themaster
must also configure the clock polarity and phase with
respect to the data. Freescale’s SPI Block Guide names
these two options as CPOL and CPHA respectively, and
most vendors have adopted that convention.

The timing diagram is shown to the right. The timing is
further described below and applies to both the mas-
ter and the slave device

At CPOL=0 the base value of the clock is zero»»

For CPHA=0, data is captured on the clock’s rising »»

edge (lowhigh transition) and data is propagated on a
falling edge(highlow clock transition).

For CPHA=1, data is captured on the clock’s falling »»
edge and data is propagated on a rising edge.

At CPOL=1 the base value of the clock is one (inver-»»
sion of CPOL=0)

For CPHA=0, data is captured on clock’s falling edge »»
and data is propagated on a rising edge.

For CPHA=1, data is captured on clock’s rising edge »»
and data is propagated on a falling edge.

III. SYNTHESIS:

The developed UART is simulated and verified accord-
ing to their functionality. Once the functional verifica-
tion is done, the RTL model is taken to the synthesis
process using the Xilinx ISE tool. In synthesis process,
the RTL model will be converted to the gate level netlist
mapped to a specific technology library. Herein this
Spartan 3E family, many different devices were avail-
able in the Xilinx ISE tool. In order to synthesis thisDWT
and IDWT design the device named as “XC3S500E” has
been chosen and the package as “FG320” with the de-
vice speed such as “-4”.

A. Timing Summary:

In timing summary, details regarding time period and
frequency is shown are approximate while synthesize.
After place and routing is over, we get the exact timing
summery. Hence the maximum operating frequency
of this synthesized design is given as 167.983MHz and
the minimum period as 5.953ns. Here ,OFFSET IN is the
minimum input arrival time before clock and OFFSET
OUT is maximum output required time after clock.

Speed Grade : -4
Minimum period: 5.953ns (Maximum Fre-
quency : 167.983MHz)
Minimum input arrival time before clock :
4.537ns
Maximum output required time after clock :
5.919ns

 Volume No: 2(2015), Issue No: 2 (February) February 2015
 www.ijmetmr.com Page 116

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

Parity Error:

A “parity error” occurs when the number of “active”
bits does not agree with the specified parity configu-
ration of the UART, producing a Parity Error. Because
the “parity” bit is optional, this error will not occur if
parity has been disabled. Parity error is set when the
parity of an incoming data character does not match
the expected value.

C. SPI Design:

SPI stands for Serial Peripheral Interface is a synchro-
nous protocol that allows a master device to initiate
communication with a slave device. Data is exchanged
between these devices. SPI is implemented by a hard-
ware module called the Synchronous Serial Port or the
Master Synchronous Serial Port. It allows serial commu-
nication between two or more devices at a high speed
and is reasonably easy to implement .SPI is a Synchro-
nous protocol. Only the master device can control the
clock line, SCK. Often a slave select signal will control
when a device isaccessed. This signal must be used for
when more than one slaveexists in a system, but can
be optional when only one slave exists in the circuit. As
a general rule, it should be used. This signal is known as
the SS signal and stands for “Slave Select.” It indicates
to a slave that the master wishes to start an SPI data
exchange between that slave device and itself. The sig-
nal is most often active low, so a low on this line will
indicate the SPI is active, while a high will signal inactiv-
ity. It is often used to improve noise immunity of the
system. Its function is to reset the SPI slave so that it is
ready to receive the next byte .

SPI is a Serial Interface and uses the following signals
to serially exchange data with another device:

SS - This signal is known as Slave Select. When it »»
goes low, the slave device will listen for SPI clock and
data signals.

SCK - This is the serial clock signal. It is generated by »»
the master device and controls when data is sent and
when it is read.

MOSI - The signal is generated by Master, recipient »»
is the Slave.

MISO -The signals are generated by Slaves, recipient »»

is the master.

SI - Serial Data Input (used to transfer data into the »»
SPI device).

SO - Serial Data Output (used to transfer data out of »»
the SPI device).

CS - Chip Select Input (for enabling device opera-»»
tion).

W- Write Protect Input (used to guard against pro-»»
gram/erase instructions).

C.1 Data transmission:

A typical hardware setup using two shift registers to
form an inter-chipcircular buffer To begin a commu-
nication, the bus master first configures the clock,
using a frequency less than or equal to themaximum
frequency the slave device supports. Such frequencies
are commonly in the range of 1–100 MHz.

The master then transmits the appropriate chip select
bit for the desired chip to logic 0. Logic 0 is transmit-
ted because the chip select line is active low, meaning
its off state is a logic 1; on is asserted with a logic0. If a
waiting period is required (such as for analog-to-digital
conversion), then the master must wait for at least that
period of time before starting to issue clock cycles.

 Volume No: 2(2015), Issue No: 2 (February) February 2015
 www.ijmetmr.com Page 117

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

During each SPI clock cycle, a full duplex data transmis-
sion occurs:

the master sends a bit on the MOSI line; the slave »»
reads it from that same line

the slave sends a bit on the MISO line; the master »»
reads it from that same line

Not all transmissions require all four of these opera-
tions to be meaningful but they do happen. Trans-
missions normally involve two shift registers of some
given word size, such as eight bits, one in the master
and one in the slave; they are connected in a ring. Data
is usually shifted out with the most significant bit first,
while shifting a new least significant bit into the same
register. After that register has been shifted out, the
master and slave have exchanged register values. Then
each device takes that value and does something with
it, such as writing it to memory. If there is more data to
exchange, the shift registers are loaded with new data
and the process repeats .Transmissions may involve
any number of clock cycles. When there is no more
data to be transmitted,the master stops toggling its
clock. Normally, it then deselects the slave.

Transmissions often consist of 8-bitwords, and a mas-
ter can initiate multiple such transmissions if it wishes/
needs. However, other word sizes are also common,
such as 16-bit words for touchscreen controllers or au-
dio codecs, like the TSC2101 from Texas Instruments;
or 12-bit words for many digital-to-analogs or analog-
to-digital converters. Every slave on the busthat hasn’t
been activated using its chip select line must disregard
the input clock and MOSI signals, and must not drive
MISO. The master must select only one slave at a time.
A timing diagram showing clock polarity and phase
in addition to setting the clock frequency, themaster
must also configure the clock polarity and phase with
respect to the data. Freescale’s SPI Block Guide names
these two options as CPOL and CPHA respectively, and
most vendors have adopted that convention.

The timing diagram is shown to the right. The timing is
further described below and applies to both the mas-
ter and the slave device

At CPOL=0 the base value of the clock is zero»»

For CPHA=0, data is captured on the clock’s rising »»

edge (lowhigh transition) and data is propagated on a
falling edge(highlow clock transition).

For CPHA=1, data is captured on the clock’s falling »»
edge and data is propagated on a rising edge.

At CPOL=1 the base value of the clock is one (inver-»»
sion of CPOL=0)

For CPHA=0, data is captured on clock’s falling edge »»
and data is propagated on a rising edge.

For CPHA=1, data is captured on clock’s rising edge »»
and data is propagated on a falling edge.

III. SYNTHESIS:

The developed UART is simulated and verified accord-
ing to their functionality. Once the functional verifica-
tion is done, the RTL model is taken to the synthesis
process using the Xilinx ISE tool. In synthesis process,
the RTL model will be converted to the gate level netlist
mapped to a specific technology library. Herein this
Spartan 3E family, many different devices were avail-
able in the Xilinx ISE tool. In order to synthesis thisDWT
and IDWT design the device named as “XC3S500E” has
been chosen and the package as “FG320” with the de-
vice speed such as “-4”.

A. Timing Summary:

In timing summary, details regarding time period and
frequency is shown are approximate while synthesize.
After place and routing is over, we get the exact timing
summery. Hence the maximum operating frequency
of this synthesized design is given as 167.983MHz and
the minimum period as 5.953ns. Here ,OFFSET IN is the
minimum input arrival time before clock and OFFSET
OUT is maximum output required time after clock.

Speed Grade : -4
Minimum period: 5.953ns (Maximum Fre-
quency : 167.983MHz)
Minimum input arrival time before clock :
4.537ns
Maximum output required time after clock :
5.919ns

 Volume No: 2(2015), Issue No: 2 (February) February 2015
 www.ijmetmr.com Page 118

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

B. RTL Schematic:

The RTL (Register Transfer Logic) can be viewed as
black box after synthesize of design is made. ItShows
the inputs and outputs of the system. By double-click-
ing on the diagram we can see gates, flip flops and
MUX.

IV. SIMULATION RESULTS:

Above fig shows the waveforms of the UART transmit-
ter. The present_state indicates the current stateof
thestatemachine. It traverses from IDLE to STOP state.
The data input can be seen on din and corresponding-
serial output is given on sout. Since parity_en = 1, parity
bit is appended to data.

Above fig shows the receiver waveforms. The state
transitions are similar to transmitter. The serial datain-
put comes on sin and output data is dout. The data is
sampled when data_rx_done = „1.

Above fig shows the waveforms of parity generator.
Depending on the odd_ even _parity, odd (if odd_
even_ parity = „1) or even (if odd_ even _parity=0)
parity is generated. The parity _rx bit corresponds to
receiver data (din _rx) and parity_ tx corresponds to
transmitter data (din _tx).

V. CONCLUSION:

This design uses VHDL as design language to achieve
the modules of UART. Using Quartus II software, Al-
tera’s Cyclone series FPGA chip EP2C5F256C6 to com-
plete simulation and test. The results are stable and re-
liable. The design has great flexibility, high integration,
with some reference value. Especially in the field of
electronic design, where SOC technology has recently
become increasingly mature, this design shows great
significance.

REFERENCES:

[1]. Zou,Jie Yang,Jianning Design and Realization of
UART Controller Bas ed on FPGALiakot Ali Roslina
Sidekshak Aris Alauddin Mohd. Ali Bambang Sunaryo
Suparjo.Design of a micro - UART for SoC applica-
tion [J].In: Computers and Electrical Engineering 30
(2004)257– 268.

[2]. HU Hua, BAI Feng-e. Design and Simulation of
UART Serial Communication Module Based onVerilog
-HDL[J]. J ISUANJ I YU XIANDA IHUA 2008 Vol. 8

[3]. Frank Durda Serial and UART Tutorial. uhclem@
FreeBSD.org

