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Abstract: 

 

This paper presents the effects of different particle size 

distribution functions on the magnetic entropy change 

S  for fine magnetic particle systems within the 

context of super paramagnetic theory. The model is 

taken of superparamagnetic fine particle with particle 

size distribution in magnetic media. Finally the method 

used in numerical calculations of the entropy change is 

presented on ideal superparamagnetic particles without 

interaction, then general superparamagnetic behavior 

of an aligned assembly of uni axially anisotropic 

particles, and then the effect of magnetic dipolar 

interaction is considered, finally the effect of both 

magnetic dipolar interaction an anisotropy constant is 

considered.  

 

Index Terms: 

Fine Magnetic particles, paramagnetism, magnetic 

anisotropy 

I. Introduction:  

The effects of different particle size distribution 

functions on the magnetic entropy change S  for fine 

magnetic particle systems within the context of 

superparamagnetic theory. The magnetic entropy 

change S  in magnetic fine particle system were 

calculated numerically as a function of mean volume 

of particles (



V ), the standard deviation )( , and the 

magnetic field )H( , the absolute temperature )T( , 

using the classical theory of super paramagnetism. 

Frenkel and Dorfman were the first to predict that a 

particle of ferromagnetic material, below a critical 

particle size, would consist of a single magnetic 

domain. Kittel and others have estimated this critical 

particle size, and an approximate figure for a spherical  

 

sample of the common ferromagnetic materials Fe3O4 

is a radius of 150Å. Consider an assembly of uniaxial, 

single-domain particles, each with an anisotropy 

energy 2sinKVE  , where K is the anisotropy 

constant and   is the angel between the magnetic 

moment   of the dipole and the applied field (or the 

easy axis). If the volume of each particle is V , then 

the energy barrier that must be overcome before a 

particle can reverse it is magnetization is E KV . 

Now in any material, fluctuations of thermal energy 

are continually occurring on a microscopic scale. In 

1949 Néel pointed out that, if single-domain particles 

became small enough, KV  would become so small 

that energy fluctuations could overcome the anisotropy 

forces and spontaneously reverse the magnetization of 

a particle from one easy direction to the other, even in 

the absence of an applied field. Each particle has a 

magnetic moment VM S0   and, if a field is 

applied, the field will tend to align the moments of the 

particles, whereas thermal energy will tend to disalign 

them. This is just like the behavior of a normal 

paramagnetic, with one notable exception. The 

magnetic moment per atom or ion in a normal 

paramagnetic is only a few Bohr magnetons, whereas a 

spherical particle of iron, say, 50 Å in diameter, 

contains 5560 atoms and has the relatively enormous 

moment of B000,12  .  

As a result, Bean has coined the term     `super 

paramagnetism` to describe the magnetic behavior of 

such particles. If 0K  , so that each particle in the 

assembly has no anisotropy, then the moment of each 

particle can point in any direction, and the classical 

theory of paramagnetism will be applied, then the 

energy of each particle is given by: 

 cosHE 
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Then the total magnetization of the assembly 

consisting of magnetic particles, will be given by: 

)(LsbMM   (1-2) 

Here sbM  is the saturation magnetization of the 

assembly. 
TK

H

B


  and )(L  is called Langevin 

function, and is given by: 




1
coth)(L   (1-3) 

So this treatment of the thermal equilibrium 

magnetization properties of an assembly of isotropic 

single domain particles, of course, analogous to the 

Langevin treatment of atomic paramagnetism It differs 

only in that the moment  we are dealing with is not 

that of a single atom, but rather of a single domain 

ferromagnetic particle. Which may contain more than 

105 atoms ferromagnetically coupled by exchange 

forces large susceptibilities are involved.At the other 

extreme, if K  is finite and the particles are aligned 

with their easy axes parallel to one another and to the 

field, then the moment directions are severely 

quantized, either parallel or anti parallel to the field, 

and quantum theory will apply. Then the total 

magnetization is given by: 

tanh
sb

MM 
 

Two aspects of superparamagnetic behavior are always 

true: 

1. Magnetization curves measured at different 

temperatures superimpose when M is plotted as a 

function of H/T. 

2. There is no hysteresis, we are therefore dealing 

with particles having diameters smaller than the 

critical value.  

Superparamagnetic materials consist of individual 

domains of elements that have ferromagnetic 

properties in bulk. Their magnetic susceptibility is 

between that of ferromagnetic and paramagnetic 

materials. Examples of a superparamagnetic material 

include iron containing contrast agents for bowel, 

liver, and lymph node imaging.The magnetic entropy 

change S  in magnetic fine particle system were 

calculated numerically as a function of mean volume 

of particles (



V ), the standard deviation )( , and the 

magnetic field )H( , the absolute temperature )T( , 

using the classical theory of superparamagnetism. 

Frenkel and Dorfman were the first to predict that a 

particle of ferromagnetic material, below a critical 

particle size, would consist of a single magnetic 

domain. Kittel and others have estimated this critical 

particle size, and an approximate figure for a spherical 

sample of the common ferromagnetic materials Fe3O4 

is a radius of 150Å. Consider an assembly of uniaxial, 

single-domain particles, each with an anisotropy 

energy 2sinKVE  , where K is the anisotropy 

constant and   is the angel between the magnetic 

moment   of the dipole and the applied field (or the 

easy axis). If the volume of each particle is V , then 

the energy barrier that must be overcome before a 

particle can reverse it is magnetization is E KV . 

Now in any material, fluctuations of thermal energy 

are continually occurring on a microscopic scale. In 

1949 Néel pointed out that, if single-domain particles 

became small enough, KV  would become so small 

that energy fluctuations could overcome the anisotropy 

forces and spontaneously reverse the magnetization of 

a particle from one easy direction to the other, even in 

the absence of an applied field. Each particle has a 

magnetic moment VM S0   and, if a field is 

applied, the field will tend to align the moments of the 

particles, whereas thermal energy will tend to disalign 

them. This is just like the behavior of a normal 

paramagnetic, with one notable exception. The 

magnetic moment per atom or ion in a normal 

paramagnetic is only a few Bohr magnetons, whereas a 

spherical particle of iron, say, 50 Å in diameter, 

contains 5560 atoms and has the relatively enormous 

moment of B000,12  .  

As a result, Bean has coined the term 

superparamagnetism to describe the magnetic behavior 

of such particles. If 0K  , so that each particle in 

the assembly has no anisotropy, then the moment of 

each particle can point in any direction, and the 

classical theory of paramagnetism will be applied, then 

the energy of each particle is given by: 

 cosHE   
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Here sbM  is the saturation magnetization of the 

assembly. 
TK

H

B


  and )(L  is called Langevin 

function, and is given by: 




1
coth)(L    

Two aspects of superparamagnetic behavior are always 

true: 

3. Magnetization curves measured at different 

temperatures superimpose when M is plotted as a 

function of H/T. 

4. There is no hysteresis, we are therefore dealing 

with particles having diameters smaller than the 

critical value. 

Superparamagnetic materials consist of individual 

domains of elements that have ferromagnetic 

properties in bulk. Their magnetic susceptibility is 

between that of ferromagnetic and paramagnetic 

materials. Examples of a superparamagnetic material 

include iron containing contrast agents for bowel, 

liver, and lymph node imaging. 

 

II. Related Theory:  

The theory deals with the mathematical derivation of 

the change in the entropy S  of fine magnetic 

particle systems, taking into account the effect of 

particles size distributions. The organization is devoted 

to give a theoretical background for the evaluation of 

the free energy for a paramagnetic system, magnetic 

and magnetocaloric properties of superparamagnetic 

systems utilizing first the thermodynamical approach, 

then the statistical approach. 

 

1. Evaluation of Free Energy for a Paramagnetic 

System: 

Paramagnetism describes a feeble magnetism which 

exhibits positive susceptibility of the order of χ=10-5-

10-2 [18-22]. This magnetic behavior is found in 

materials that contain magnetic atoms or ions that are 

widely separated so that they exhibit no appreciable 

interaction with one another.  Paramagnetic materials 

include oxygen and ions of various metals like Fe, Mg, 

and Gd. These ions have unpaired electrons, resulting 

in a positive magnetic susceptibility. The magnitude of 

 

this susceptibility is less than one thousands of that of 

ferromagnetic materials. Theory of paramagnetism 

assumes that the discrete sources of magnetic moments 

do not interact with one another, thus the thermal 

energy causes them to fluctuate among all possible 

orientations without preference, and unless an external 

magnetic field H is applied the magnetization of the 

material as a whole is zero [23]. However, at any 

temperature T, application of an external magnetic 

field H produces a preferential orientation of the 

moments, resulting in a magnetization M which, with 

increasing H, rises at first linearly and then more 

slowly as it approaches a saturation value 

corresponding to a complete alignment of all the 

moments parallel to the field H. Moreover, the effects 

of H and T on the moment’s alignment oppose each 

other in such away that M depends universally on the 

ratio of H/T. However, according to the classical 

theory, the magnetic moments are assumed to be freely 

rotating. Thus, for a substance containing n-magnetic 

moments   per unit volume, the magnetization M can 

be calculated using standard statistical physics 

procedure.As a model of a  Hence we must calculate 

the partition function of a system with the energy: 







N

1i
i H.E  If the uniform field H


points in the 

z-direction, then the orientation of each dipole can be 

expressed by the polar angles i and i . Each 

microstate corresponds exactly to a set   ii ,  of 

orientations of all dipoles. The partition function over 

all microstate depends on T, H, and N, where the 

magnetic field plays a role similar to that which the 

volume usually plays: 










  


N

i
iN

kT

H
dddNHTZ

1
21 cosexp...),,( 


 

Where  iZZi cosHHH.i 


is assumed. 

The integrals  i  extend over all spatial angles.  

The partition function factors, since we have not 

assumed any interaction between the individual 

dipoles: 
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 )1,H,T(Z
N

)N,H,T(Z   










 


 cos
kT

H
expd)1,H,T(Z  

The above integral is standard and has a value of; 

kT

H

kT

H
sinh

4)1,H,T(Z



















   

The free energy for this system can be obtained 

from the following relation: 

)N,H,T(ZlnkT)N,H,T(F    

And the magnetic entropy (S) can be obtained from the 

equation of state, i.e. 

                            )
T
F(S

H
  (2-7) 

 (2-8) 

















 )
kT

H
coth(

kT

H
1)

kT

H

)
kT

H
sinh(

ln(π)ln(4NkS






The 

change in entropy of a magnetic system can be also 

calculated using standard classical thermodynamics. 

Where T  and H are respectively the temperature and 

applied magnetic field. From this exact differential, the 

following Maxwell relation may be derived relating 

the incremental entropy change accompanying an 

incremental change in magnetic field to the measurable 

quantities of magnetization and temperature: 

)
T
M()

H
S(

HT 





 

Upon integrating over H , the total entropy change of 

the system upon the application of a magnetic field 

may be determined: 





H

0 H
dH)

T
M(S  

2. Magnetocaloric Effect: 

The magnetocaloric effect is the adiabatic temperature 

change of a material upon application of a magnetic 

field. it is very closely related to the isothermal field 

induced entropy change, which, for temperature 

changes, differs from the magnetocaloric effect by a 

factor of the temperature, divided by the specific heat 

of the material. By grouping spins together in 

superparamagnetic clusters, the magnetic moments are 

more easily aligned than in paramagnetic systems, and 

for certain range of field, temperature and cluster size, 

the entropy of the spins is more easily changed by the 

application of a field. 

Certain magnetic materials heat up when they are 

placed in a magnetic field and cool down when the 

field is moved away. This phenomenon is known as 

the magnetocaloric effect. For a given material, the 

larger the change in magnetic field, the larger the 

magnetocaloric effect. Pierre Weiss and A.Picard [33] 

first explained this principle in 1918. In 1926 P.Debye 

and W.Giaque [33], suggested how the step magnetic 

refrigeration cycles could be used to reduce the 

temperatures of some research samples from 1 K  to 

a small fraction of a Kelvin. Giauque and MacDougall 

experimentally verified the method in 1933. 

III. Related Work: 

(I)   Superparamagnetism System: 

The magnetic entropy of N -independent magnetic 

moments placed in a uniform field H , at temperature 

T , is calculated directly through the partition function 

Z , assuming classical behavior of the moments, from 

















 )
kT

H
coth(

kT

H
1)

kT

H

)
kT

H
sinh(

ln(π)ln(4NkS C







 

This expression for the entropy of the magnetic 

moments has a value of )4ln(Nk   at 0H  , 

high field limit (H>>kT) i.e.; 







 )

kT

H2
ln(1)4ln(NkSc


  
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Which become negative for large H and low T . This 

anomaly is due to the classical nature of the system 

and is related to the fact that in a classical system there 

is no minimum energy as in a quantum system. 

















 )
kT

H
coth(

kT

H
)

kT

H

)
kT
mHsinh(

ln(1Nk




 

We can find S max by setting 0S 





, where 

kT
mH , then a transidental equation results, 

namely:  

 

kT

H


0)sinhln(coth2hcsc 22 

  

Fig 2.1   Shows the entropy changes –ΔS Vs  of a 

superparamagnet with saturation moment  sb as a 

function of particle moment , induced by removal of 

a field H=5000Oe at a temperature T=300 K. For a 

given value of H and T, the maximum entropy change 

occurs at  =3.5 where TΔS=-0.2720 H.Thus,

S max can be found numerically. S  has a 

maximum change at 5.3 (Fig 2.1) and it’s value 

is [10,17,33,34]: 

T

HM
272.0S

sb
max   

The broadness of the maximum in Eq shows that the 

entropy change for superparamagnetic particles drops 

off slowly as particle sizes deviate from optimum. The 

decrease in S  is due to decreasing the number of 

clusters as the cluster size grows.Note that in this limit 

S  increases linearly with   when the saturation 

magnetization M sb  is held constant. For paramagnets 

with magnetic moments consisting of single atoms, Eq 

(2-15) is a good approximation except for very low 

temperatures and very high fields, where saturation 

effects can be seen. In the low field limit, the entropy 

change is proportional to 

T

H
2

2

, in contrast, in a 

superparamagnetic material where saturation effects 

will occur at higher temperatures and low fields, that 

S  in the optimized superparamagnetic material is 

proportional to 
T
H

. 

(ii)  The effect of magnetic anisotropy (uniaxially 

anisotropic particles): 

The magnetic energy of such particles with uniaxial 

anisotropy is usually written in the form; 

sinKVE
2

K   

where   is the angle between the magnetization 

direction and an easy direction of magnetization, V  is 

the particle volume, and K is the anisotropy energy 

per unit volume. For very small particles, the energy 

barrier KV , which separates the two minima at 

0
  and 180

 , may be smaller than the 

thermal energy, even below room temperature. This 

results in superparamagnetic relaxation, i.e. 

spontaneous fluctuations of the magnetisation 

direction. The superparamagnetic relaxation time (τ) is 

given by: 

)kT
KVexp(ττ    

Where  
 is of the order of 1010

1310   s. 

0 1 2 3 4 5
0

1

2

3

4

5

6

7

Δ
S

 (
1

0
3 em

u
/g

m
. K

) 
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Consider an assembly of particles, each having a 

uniaxial symmetry i.e., sinKVE
2

K  , if a field 

H  is applied along the symmetry axis. This will lead 

to a different Boltzman distribution of orientations of 

  with respect to H  in thermal equilibrium than we 

had without the anisotropy term. The magnetisation 

curve will no longer be a simple Langevin 

function.The partition function which describes the 

thermal equilibrium behavior of an aligned assembly 

of uniaxially anisotropic particles in a field H  applied 

along the direction of alignment is: 

                                  



0

d)
kT
Eexp(sin2)1,H,T(Z   

                             



0

2 d))sincos(exp(sin2    

where 
kT

H
  , 

kT
KV , and   is the angle 

between the spontaneous magnetization and the 

anisotropy axis of particle of volume V . 

From Eq.2.23  Z  is given with Precision of 
2

 by 

[10]:

 









 )]
A
B1(0sin

2
1

A
B

0cos[
2

1A4Z 22
2




 

Where 


t

0

dteA t
2

 and 


t

0

dtetB 2 t
2

  

If the diameter is less than 80Å then 1 , so we 

can expand Eq(2-21) as: 

...sin1)sinexp( 22     

Then Z reduces to: 

]cosh
2

)
21([sinh4Z

23











  The 

magnetic entropy )H(S of the system can then be 

found from the thermodynamic relation Eq(2-11), so 

we find: 

























cosh
2

)
2

1(sinh

cosh)12(sinh

2)cosh
2

)
21(sinh4[ln(Nk)H(S

2

23

















 

By increasing the field from 0  to 

H , the entropy changes by:  

]
)1

3
2(

1

cosh
2

)
2

1(sinh

cosh)12(sinh

)
3
21ln(2cosh

2
)

21(sinh[lnNkS

2

23












































 

 

Which can be rewritten as Where 0  is the 

permeability of vacuum  

( mH104 17
0

  ), and   is the 

concentration of magnetic particles. 

(iii) The effect of magnetic dipolar interactions: 

Magnetic dipolar interaction (MDI) is always present 

in an assembly of ferromagnetic (or antiferromagnetic) 

particles. For close compact assembly, with particles 

very near to each other. The MDI energy is around 

5×106 erg/ cm
3

for metallic iron (but the MDI 

anisotropic part can be much smaller, and the MDI 

energy value is lower because of spin disorder 

occurring in particle surface), to be compared to the 

magnetocrystalline anisotropy value which is equal to 

10.5 5
 erg/ cm

3
 [35]. In the case of oxidize iron MDI 

energy is around 10.3 4
 and 103 erg/cm

3
for a 

diameter D equal to 30 and 100Å, respectively. 

In order to treat the MDI effects, we can distinguish 

two cases (i) a regular arrangement of identical 

particles, and (ii) a disordered assembly of non-

identical particles with a certain volume distribution. 
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In the first case, the particles are indistinguishable and 

their   sees the same energy barrier.  

A synchronous rotation of   is expected. In the 

second case, EB  is distributed, depending on the 

volume and on MDI. This results in a distribution of 

the relaxation times. In such case, it is not possible to 

calculate MDI as in static condition because the angle 

between   of two non-identical particles fluctuate 

with time. We remark that very small variations in the 

particle volume induce such an effect, which shows 

that the first case must never be considered for real 

samples.The model for mean MDI energy Eint  is 

given by cosEE
2

intBint   


j

iji
2

iji
2

intB )
kT

cosaiV
(LbVE





j

j
2

j

2

intB )
VkT

a
(Lb)

V
(E


Where L  denotes 

the langevin function, V is the mean volume, 

d

)12cos3(
Va

j
3

j
j





 and b j close to a j . Her 

d j and a j correspond respectively to the distance and 

to an angle parameter of space position of the particle 

j , with respect to an origin particle, for regular 

arrangement of particles with uniform volume V. Eq(2-

33) can be rewritten as: 


j

iji
2

iji
2

intB )
kT

cosaiVM
(LbVME


 

The E intB value can be simplified through the 

approximation of the langevin function: 
3
x)x(L   

for 9.0x   and 
x
11)x(L   for 2x  , if the 

first approximation is fulfilled for the first neighbors, it 

will also be valid for other neighbors, in this case 

E intB  is approximated by [35]: 

d
1.1kTfor

d
)

kT
6(E 3

2

6

4

intB


  

Nevertheless, this approximation is valid for 

temperatures relatively high. The energy of the particle 

will be: 

 cosHcosEE 2
intB   

The partition function, which describes the thermal 

equilibrium behavior of an aligned assembly with 

dipolar interaction, can be written as: 

 

]
)3(

))
3
11(4[ln(Nk)0(S






 

 



0

d)
kT
Eexp(sin2Z  

Where 
kT

H
  , 

kT
E intB , since 1 , so we 

can expand 

...cos1)cosexp( 22   Equation 

reduces to: 

 



0

2 d)cosexp()sin1(sin2Z  

Which yields; 

]cosh2)21([sinh4Z
23













 

The magnetic entropy )H(S of the system can then 

be found from the thermodynamical relations as in, so 

we find: 











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cosh2)21(sinh

coshsinh)21(
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23

3

23
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





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



 As 

0H  , )H(S  has a value of: 
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By increasing the field from 0  to H , the entropy 

changes  S  is given by: 

]
)3(cosh2)21(sinh

coshsinh)21(

)
3
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V
kS
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(iv) The effect of both magnetic dipolar interactions 

and anisotropy energies: 

The energy of the particle which describe the system 

will be 

 sinKVcosHcosEE 22
intB   

The partition function, which describes the thermal 

equilibrium behavior of an aligned assembly with 

dipolar interaction with behavior of an aligned 

assembly of uniaxially anisotropic particles, can be 

written as: 

 

 



0

d)
kT
Eexp(sin2Z  

 




0

d)sincoscosexp(sin2 22

Simple manipulation Eq(2-48) reduces to: 

 

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0

22 d)cosexp()sinsin1(sin2Z  

Straightforward evaluation of yields: 
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The magnetic entropy )H(S of the system can then 

be found from the thermodynamic relation in, so we 

find: 

]
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When 0H   this expression for the entropy of the 

magnetic moments has a value of: 

)]
)23(

22
))

3

2
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11(4[ln(Nk)0(S









 By 

increasing the field from 0  to H , the entropy changes 

S is given by: 
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In any real system there is bound to be a distribution of 

particle volume, which plays an important role in it is 

magnetic and magnetocaloric behavior. 

For uniform size particles without interaction and 

spherically shaped we can derive S as follow: Since 

S  is an extensive quantity, the total entropy change is 

given by: 

S...SSSS N321T    





N

1i
Si But for 1N  we can replace the 

summation by integration i.e., 
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 Or equivalently; 


V

V

dV)V(F)V(SS
max

min

iT   

                   

Thus, the S  as given by equations,  were used, to 

evaluate ST , for superparamagnetic systems. 

5. The different distribution functions for particle 

sizes used in this work: 

The distribution functions for particle sizes are given 

by: 

(a) Uniform distribution function (DD or UD) (Dirac): 

dV)VV(dV)V(F1


  

 

 Where dV)V(F1 defines the probability of a 

particle having a volume in the range V  to dVV  , 


V  is the mean volume, V  is the particle volume 

(b) Constant (Rectangular) distribution function (CD 

or RD):   

VVVfordV
VV

1dV)V(F minmax
minmax

2 


   

Where V max and V min  are the maximum and 

minimum volume of particle respectively. 

(c) Normal (Gaussian) distribution function (ND or 

GD):

dV
σ2

VV

exp
π2σ

1(V)dVF 2

2

3













 


  

Where   is the standard deviation. 

(d) Log-Normal distribution function (LD): 

dV
2

V

Vln

exp
2V

1dV)V(F 2

2

4





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
















 

  

Where   is the standard deviation of lnV. 

Fig 2.2 Shows F(V) Vs the volume of 

particle V for CD, GD and LD distribution 

with a mean diameter of 80 Å,   σ3=7×10-

26, σ4=0.6, and a diameter range (20-

200Å). Fig 2.3 Shows F(V) Vs V for the 

same distribution functions with a mean 

diameter of 50 Å, σ3=1×10-26, σ4=0.1, and 

a diameter range (20-80Å).  

 

Fig 2.2 Shows F(V) Vs V for all 

distribution with a mean diameter of 80Å, 

σ3=7×10-26, σ4=0.6, and diameter range 

(20-200Å).
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Fig 2.3 Shows F(V) Vs V for all 

distributions with a mean diameter of 50 

Å, σ3=1×10-26, σ4=0.1, and a diameter 

range (20-80Å). 

2.5 Method of calculations: 

The numerical calculations of the entropy change S  

were performed using the MathCad computer package 

by the following procedure: First: the independent 

M sb , 



V , K , and   were introduced together with 

the values of the magnetic parameters for a system of 

Fe3O4-fine particles. The moments are assumed for a 

non-interacting system and with (K=0). The values of 

H were varied between 500 and 8000 Oe in steps of 

500 Oe, for T  values ranging from 20 to 360K in 

steps of 20K. The values of V ranging from 2.5×10-27 

to 40×10-27m3 in steps of 2.5×10-27m3. For non-

interacting and spherically symmetric particles for H  

values ranging from 500 to 8000 Oe in steps of 500 

Oe, for T  values ranging from 200 to 360K in steps of 

10K, for K values ranging from 500 to 20000J/gm.K in 

steps of 500 J/gm.K.. But for general 

superparamagnetic system with magnetic dipolar 

interaction for H  values ranging from 500 to 8000 Oe 

in steps of 500 Oe, for T  values ranging from 20 to 

360K in steps of 20K  

The following expressions were used in the 

calculations: 

For a non-interacting system: 

From Equations S i  is given by; 
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mHsinh(
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V
1k

Si

max

min

i
0




For 

superparamagnetic behavior with magnetic dipolar 

interactions: 

From Equations S i  is given by; 
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For superparamagnetic behavior with uniaxial 

anisotropy and with magnetic dipolar interactions: 

From equations S i  is given by; 
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Where )V(F i  is given by Equations respectively.  

IV CONCLUSION: 

The presented paper provides the thesis work which 

deals with the effects of different particle size 

distribution functions on the magnetic entropy change 

S  for fine magnetic particle systems within the 

context of superparamagnetic theory. It provides the 

theoretical background of the magnetic and magneto-

caloric properties of superparamagnetic systems. The 

model is taken of superparamagnetic fine particle with 

particle size distribution in magnetic media. Finally the 

method used in numerical calculations of the entropy 

change is presented on ideal superparamagnetic 

particles without interaction, then general 

superparamagnetic behavior of an aligned assembly of 

uniaxially anisotropic particles, then the effect of 

magnetic dipolar interaction is considered, finally the 

effect of both magnetic dipolar interaction an 

anisotropy constant is considered.  
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