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Abstract:

To present a survey of existing mini max theorems, To
give applications to elliptic differential equations in
bounded domains, To consider the dual variational
method for problems with continuous and
discontinuous  nonlinearities, To present some
elements of critical point theory for locally Lipschitz
functional and give applications to fourth-order
differential equations with discontinuous
nonlinearities, To study homoclinic solutions of
differential equations via the variational methods.
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Introduction:

In linear algebra and functional analysis, the min-max
theorem, or variational theorem, or Courant—Fischer—
Weyl min-max principle, is a result that gives a
variational characterization of eigenvalues of compact
Hermitian operators on Hilbert spaces. It can be
viewed as the starting point of many results of similar
nature. This article first discusses the finite-
dimensional case and its applications before
considering compact operators on infinite-dimensional
Hilbert spaces. We will see that for compact operators,
the proof of the main theorem uses essentially the
same idea from the finite-dimensional argument. In the
case that the operator is non-Hermitian, the theorem
provides an equivalent characterization of the
associated singular values.
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The min-max theorem can be extended to self-adjoint
operators that are bounded below.

Min-max Theorem

Let A be a n x n Hermitian matrix with eigenvalues A1
<. << ... <Aknthen

M. = min{max{R(x) | x € U and = # 0} | dim(U) =k}

And
A =max{min{R4(z) |z € Uand z # 0} | dim(U) =n — k + 1}

in particular,
A < Ra(z) < A, ¥z € C\{0}

and these bounds are attained when x is an eigenvector
of the appropriate eigenvalues.Also note that the
simpler formulation for the maximal eigenvalue X, is
given by:

A = max{R4(x) :x # 0}.
Similarly, the minimal eigenvalue A1 is given by:

A =min{R4(x) : x # 0}.
Proof

Since the matrix A is Hermitian it is diagonalizable
and we can choose an orthonormal basis of
eigenvectors {u, ..., U} that is, u; is an eigenvector for
the eigenvalue A; and such that (ui, ui) = 1 and (ui, u;) =
0 forall i #j.
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If U is a subspace of dimension k then its intersection
with the subspace span{ux, ..., Un} isn't zero (by simply
checking dimensions) and hence there exists a vector v
#+ 0 in this intersection that we can write as

n
V=) it
ik

and whose Rayleigh guotient is
i e}
Ralv) =Tz 2 M
(as all )t; = )lkfor i=k,..,n) and hence
max{Rs(z) |z € U} = A
Since this is true for all U, we can conclude that
min{max{Ra(z) | z € U and z # 0} | dim(U) = k} > A,

This is one inequality. To establish the other
inequality, chose the specific k-dimensional space V =
span{us, ..., U} , for which

max{Ra(z) |z €V and z # 0} < A

because Akis the largest eigenvalue in V. Therefore,
also
min{max{R4(z) | x € U and x # 0} | dim(U) = k} < A4

In the case where U is a subspace of dimension n-k+1,
we proceed in a similar fashion: Consider the subspace
of dimension k, span{us, ..., u}. Its intersection with
the subspace U isnt zero (by simply checking
dimensions) and hence there exists a vector v in this
intersection that we can write as

iz
v =) g
=1
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and whose Rayleigh quotient is

k& 2
YA
—q O
and hence

min{Ry(x) |z € U} < A
Since this is true for all U, we can conclude that
max{min{R4(x) |z €U and x #0} | dim(U) =n—k+ 1} < A,

Again, this is one part of the equation. To get the other

inequality, note again that the eigenvector u of Akis
contained in U = span{uk, ..., Un} so that we can
conclude the equality.

Counterexample in the non-Hermitian case

Let N be the nilpotent matrix

0 1

0 0f
Define the Rayleigh quotient Ry (x)exactly as
above in the Hermitian case. Then it is easy to see that
the only eigenvalue of N is zero, while the maximum
value of the Rayleigh ratio is 1/2 That is, the maximum

value of the Rayleigh quotient is larger the maximum
eigenvalue.

Min-max principle for singular values

The singular values {ok} of a square matrix M are the
square roots of eigenvalues of M*M (equivalently
MM*). An immediate consequence of the first equality
from min-max theorem is

(M*Mz,z)? = Mz

min max min max
Sidim(S )=k z£8,||z||=1 Sidim(S )=k z£8,||z||=1

Similarly,
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= max min  ||[Mz]|.
S:dim(8)=n—Fk+1 x5, ||z||=1

Cauchy interlacing theorem

Let A be a symmetric n x n matrix. The m x m matrix
B, where m < n, is called a compression of A if there
exists an orthogonal projection P onto a subspace of
dimension m such that P*AP = B. The Cauchy
interlacing theorem states:

Theorem. If the eigenvalues of A are o1 < ... < an, and
those of Bare f1 <...<Bj<...<PBm, thenforall j<m+
1,

a; < 5 < Op_myje

This can be proven using the min-max principle. Let
have corresponding eigenvector b; and S; be the j
dimensional subspace S; = span{by, ..., b}, then

A; = Ieggﬁic”:l(Bx,x) = Ieggmzl(P*AP:c,:c) > r%jf:esfﬁﬁzl

According to first part of min-max, a; < ;. On the
other hand, if we define Sm-j+1 = span{bj, ..., bm}, then

ﬂ(‘ — M y < _ .
(P*APz,1) zéSmH\\z||=1(4I’I) <

4 (Br,z) =

= min mmn
2€8m 41, [lel|=1 2€8m -1, e =1

where the last inequality is given by the second part of
min-max.

Notice that, when n — m = 1, we have o < Bj < 0j+1,
hence the name interlacing theorem.

The von Neumann minimax theorem will be
introduced, but the main focus will be on its
application, rather than rigorous proof. Some general
properties of the expected payoff function will be
described along with selective propositions which
follow from the minimax theorem. We will then show
how these ideas can be applied to find mixed strategy
solutions and the value of mx2 and 2xn matrix games.
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(Az,2) = o;.

|y 1-y
x |1 3 lirowmin
1-x |4 2 2

4 3

—
col max

The game has no saddle point, so we assume the game
to be played with mixed strategies:

E(X,y) =xy*1+3x(1-y) - 1-Xx)4y + 2(L— X)(L-y) = —4Xy+ X+ 2y + 2 =

1 1, 5
—4(X—§)(y—z)+§

From this expression, it is clear that player 1 can
ensure his expectation is at least 5/2 (by choosing
x=0.5). And he cannot be sure of more than 5/2 for by
taking y=1/4, player 2 can ensure that player 1’s
expectation id exactly 5/2. Thus player 1 may as well
settle for 5/2 and play x=1/2, so as to gain this amount.
Similarly, player 2 may as well reconcile himself to
get -5/2 and play y=1/4 so as to gain it.

Now we observe that

E(x,0.25) < E(0.5,0.25) < E(0.5,y)

and so (0.5,0.25) is a saddle point of the game. The
value of the game is 5/2. For the game with payoff
matrix A=(a;) where i=l,...,m and j=1,...,n, the
expected payoff function E is defined on SywxSn by

E(.¥) =22 3%,
i=1 j=1
where X = (X, Xy, X ) €S, and
y: (y1’ y2!""yn) € Sn-
It turns out (proof omitted) that

max min E(X, y) = min max E(X, Y)
xeS,, YeS, yeS,, XxeS,

for every matrix game and so there always exist
optimal mixed strategies. This is the content of the
famous von Neumann minimax theorem.
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From this it will follow that there exist

X*eS,,y*e S, such that

E(X,¥*) < E(X*,¥*) <E(X*.V)

Consider the matrix game with payoff matrix (a;) of
order mxn. Sets of mixed strategies for players 1,2 are
respectively Sm, Shwhere

k
Sk :{(211221"',Zk GSRK ZI ZO’ZZI :1}
i=1

A mixed strategy for a player having at least two non
zero components is called a proper mixed strategy.The
expected payoff function is the real valued function
defined on SmxSn by

E(x.y) =iiauxayj

i=1 j=1

The object of player 1 is to choose X to maximize
E(X,y). The object of player 2 is to choose yto

minimize E(X,y). If player 1 choosesx eSS, the

payoff to player 1 will be at least migl E(X,y), hence
Yeo,

player 1 can expect a payoff of at least

max miy E(x,y). If player 2 uses y €S, then the
Xeoy YeEo,

expected payoff to player 1 is at most max E(X,y)

and so player 2 can ensure the expected payoff to
player 1 is at mostmin max E(X,y). The principal

yeS, xeS,,

aim is to determine if min max E(x,y)=

yeS, xeS,
max min E(X,y).
xeS, YeS,

Let i be a pure strategy for player 1 and let y € S, be
a mixed strategy for player 2. Then

E(iiy):zaijyj
=

Now let X € S, be a mixed strategy for player 1. Then
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VX eS, ,yeSs,

E(x,y) = izn:aijxiyj = ixiiaijyj :iXiE(L y)

i-1 j=1

Similarly, let j be a pure strategy for player 2 and let
X € S, be a mixed strategy for player 1. Then

E(x,])= Zm:aijxi

Now let y € S, be a mixed strategy for player 2, then

E(x,y) :Zzaijxiyj :Zyjzaijxi :Zij(X' ),
Y i

i=1 j=1
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