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Abstract: 

To present a survey of existing mini max theorems, To 

give applications to elliptic differential equations in 

bounded domains, To consider the dual variational 

method for problems with continuous and 

discontinuous nonlinearities, To present some 

elements of critical point theory for locally Lipschitz 

functional and give applications to fourth-order 

differential equations with discontinuous 

nonlinearities, To study homoclinic solutions of 

differential equations via the variational methods.  

 

Keywords:  

 

Discontinuous nonlinearities, Lipschitz functional, 

minimax theorems. 

 

Introduction: 

In linear algebra and functional analysis, the min-max 

theorem, or variational theorem, or Courant–Fischer–

Weyl min-max principle, is a result that gives a 

variational characterization of eigenvalues of compact 

Hermitian operators on Hilbert spaces. It can be 

viewed as the starting point of many results of similar 

nature. This article first discusses the finite-

dimensional case and its applications before 

considering compact operators on infinite-dimensional 

Hilbert spaces. We will see that for compact operators, 

the proof of the main theorem uses essentially the 

same idea from the finite-dimensional argument. In the 

case that the operator is non-Hermitian, the theorem 

provides an equivalent characterization of the 

associated singular values.  

 

 

The min-max theorem can be extended to self-adjoint 

operators that are bounded below. 

Min-max Theorem 

Let A be a n × n Hermitian matrix with eigenvalues λ1 

≤ ... ≤ λk ≤ ... ≤ λn then 

 

And

 

in particular, 

 

and these bounds are attained when x is an eigenvector 

of the appropriate eigenvalues.Also note that the 

simpler formulation for the maximal eigenvalue λn is 

given by: 

 

Similarly, the minimal eigenvalue λ1 is given by: 

 

Proof 

Since the matrix A is Hermitian it is diagonalizable 

and we can choose an orthonormal basis of 

eigenvectors {u1, ..., un} that is, ui is an eigenvector for 

the eigenvalue λi and such that (ui, ui) = 1 and (ui, uj) = 

0 for all i ≠ j. 
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If U is a subspace of dimension k then its intersection 

with the subspace span{uk, ..., un} isn't zero (by simply 

checking dimensions) and hence there exists a vector v 

≠ 0 in this intersection that we can write as 

 

and whose Rayleigh quotient is 

 

(as all for i=k,..,n) and hence 

 

Since this is true for all U, we can conclude that 

 

This is one inequality. To establish the other 

inequality, chose the specific k-dimensional space V = 

span{u1, ..., uk} , for which 

 

because is the largest eigenvalue in V. Therefore, 

also

 

In the case where U is a subspace of dimension n-k+1, 

we proceed in a similar fashion: Consider the subspace 

of dimension k, span{u1, ..., uk}. Its intersection with 

the subspace U isn't zero (by simply checking 

dimensions) and hence there exists a vector v in this 

intersection that we can write as 

 

and whose Rayleigh quotient is 

 

and hence 

 

Since this is true for all U, we can conclude that 

 

Again, this is one part of the equation. To get the other 

inequality, note again that the eigenvector u of is 

contained in U = span{uk, ..., un} so that we can 

conclude the equality. 

Counterexample in the non-Hermitian case 

Let N be the nilpotent matrix 

 

Define the Rayleigh quotient exactly as 

above in the Hermitian case. Then it is easy to see that 

the only eigenvalue of N is zero, while the maximum 

value of the Rayleigh ratio is 1/2 That is, the maximum 

value of the Rayleigh quotient is larger the maximum 

eigenvalue. 

Min-max principle for singular values 

The singular values {σk} of a square matrix M are the 

square roots of eigenvalues of M*M (equivalently 

MM*). An immediate consequence of the first equality 

from min-max theorem is 

Similarly, 
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Cauchy interlacing theorem 

Let A be a symmetric n × n matrix. The m × m matrix 

B, where m ≤ n, is called a compression of A if there 

exists an orthogonal projection P onto a subspace of 

dimension m such that P*AP = B. The Cauchy 

interlacing theorem states: 

Theorem. If the eigenvalues of A are α1 ≤ ... ≤ αn, and 

those of B are β1 ≤ ... ≤ βj ≤ ... ≤ βm, then for all j < m + 

1,  

 

This can be proven using the min-max principle. Let βi 

have corresponding eigenvector bi and Sj be the j 

dimensional subspace Sj = span{b1, ..., bj}, then 

 

According to first part of min-max, αj ≤ βj. On the 

other hand, if we define Sm−j+1 = span{bj, ..., bm}, then 

 

where the last inequality is given by the second part of 

min-max. 

Notice that, when n − m = 1, we have αj ≤ βj ≤ αj+1, 

hence the name interlacing theorem. 

The von Neumann minimax theorem will be 

introduced, but the main focus will be on its 

application, rather than rigorous proof.  Some general 

properties of the expected payoff function will be 

described along with selective propositions which 

follow from the minimax theorem.  We will then show 

how these ideas can be applied to find mixed strategy 

solutions and the value of mx2 and 2xn matrix games. 

 


max

34

min

2

1

241

31

1

col

row

x

x

yy













 

The game has no saddle point, so we assume the game 

to be played with mixed strategies: 
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From this expression, it is clear that player 1 can 

ensure his expectation is at least 5/2 (by choosing 

x=0.5).  And he cannot be sure of more than 5/2 for by 

taking y=1/4, player 2 can ensure that player 1’s 

expectation id exactly 5/2.  Thus player 1 may as well 

settle for 5/2 and play x=1/2, so as to gain this amount.  

Similarly, player 2 may as well reconcile himself to 

get -5/2 and play y=1/4 so as to gain it. 

Now we observe that 

),5.0()25.0,5.0()25.0,( yEExE 
 

and so (0.5,0.25) is a saddle point of the game.  The 

value of the game is 5/2. For the game with payoff 

matrix A=(aij) where i=1,…,m and j=1,…,n, the 

expected payoff function E is defined on SmxSn by 
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where mm Sxxxx  ),,,(~
21   and 

nn Syyyy  ),,,(~
21  . 

It turns out (proof omitted) that 

)~,~(maxmin)~,~(minmax yxEyxE
mmnm SxSySySx 

  

for every matrix game and so there always exist 

optimal mixed strategies.  This is the content of the 

famous von Neumann minimax theorem.   
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From this it will follow that there exist  

nm SySx  *~,*~  such that  

nm SySxyxEyxEyxE  ~,~)~*,~(*)~*,~(*)~,~(

Consider the matrix game with payoff matrix (aij) of 

order mxn.  Sets of mixed strategies for players 1,2 are 

respectively Sm, Sn where 
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A mixed strategy for a player having at least two non 

zero components is called a proper mixed strategy.The 

expected payoff function is the real valued function 

defined on SmxSn by 
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The object of player 1 is to choose x to maximize

),( yxE .  The object of player 2 is to choose y to 

minimize ),( yxE .  If player 1 chooses mSx , the 

payoff to player 1 will be at least ),(min yxE
nSy

, hence 

player 1 can expect a payoff of at least 

),(minmax yxE
nm SySx 

.  If player 2 uses nSy then the 

expected payoff to player 1 is at most ),(max yxE
mSx

 

and so player 2 can ensure the expected payoff to 

player 1 is at most ),(maxmin yxE
mn SxSy 

.  The principal 

aim is to determine if ),(maxmin yxE
mn SxSy 

=

),(minmax yxE
nm SySx 

.   

Let i be a pure strategy for player 1 and let nSy  be 

a mixed strategy for player 2.  Then 
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Now let mSx be a mixed strategy for player 1. Then 
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Similarly, let j be a pure strategy for player 2 and let 

mSx be a mixed strategy for player 1.  Then  
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Now let nSy be a mixed strategy for player 2, then 
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