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Abstract: 

 

ANovel multi-modulus designs are capable of 

performing the desired modulo operation for more than 

one modulus in Residue Number System (RNS) and 

are explored in this paper to lower the hardware 

overhead of residue multiplication. Two multi-

modulus multipliers that reuses the hardware resources 

among the modulo and modulo multipliers by virtue of 

their analogous number theoretic properties are 

proposed. In the proposed radix- Booth encoded multi-

modulus multiplier, the modulo-reduced products for 

the moduli are computed successively. on the basis of 

the radixBooth encoded modulo and modulo multiplier 

architectures the new Booth encoded modulo 

multipliers are proposed to maximally share the 

hardware resources in the multi-modulus architectures. 

Our experimental results  based  on RNS 

multiplication has shown that the proposed radix and 

radix- Booth encoded multi-modulus multipliers has 

save nearly 60% of area over the corresponding single-

modulus multipliers. The proposed  radix  Booth 

encoded multi-modulus multipliers increase the delay 

of the corresponding single-modulus multipliers by 

18% and 13%, respectively in the worst case. 

Compared to the single-modulus multipliers, the 

proposed multi-modulus multipliers incur a minor 

power dissipation penalty of 5%. 
 

Index Terms: 
 

Booth Algorithm, Multi-Modulus Architectures, 

Multiplier, Residue Number System(RNS). 
 

Introduction: 
 

Residue number system (RNS) has been shown tobe 

an advantageous alternative to traditional Two’s 

Complement System (TCS) for accelerating certain 

computations in high dynamic range (DR) applications 

such as signal processing, communication, and  

 

 

 

 

cryptographic algorithms [1]–[3]. RNS is defined by a 

set of N pair-wise co-prime moduli{m1,m2,…mN} 

called the base. For unambiguous representation, the 

DR of the RNS is given by the product of all moduli 

comprising the base, i.e., An integer X within 

the DR is represented by a unique –

tuple{x1,x2…xN},where is a residue defined by 

modulo mi   or |X|mi    . The operation is implemented as

 

where each residue of is independently computed  only 

from  the residues,Xi and Yi, of the operands, X and Y, 

respectively in a modulo channel corresponding to the 

modulus mi [4].  

 

The absence of inter-channel carry propagation and the 

reduced length of intra-channel carry propagation 

chains lead to faster implementation in RNS when 

compared to its TCS counterpart. However, the 

advantages of RNS may not translate well into area 

and power constrained platforms due to the significant 

extra hardware required for the conversion between 

TCS and RNS as well as the concurrent computations 

in several modulo channels.A factor that directly 

influences the hardware complexity of RNS is the 

choice of the moduli that comprise the RNS base. 

Compared to the general moduli, special moduli of 

forms,2n  +1,2n,2n-1that posses good number theoretic 

properties are preferred. By exploiting these 

properties, full-adder based binary-to-residue and 

residue-to-binary converters for special moduli sets 

have been developed [5]–[8]. Hardware efficient 

modulo2 n-1 and modulo2n +1 arithmetic circuits such 

as adders and multipliers have also been designed with 

these properties as the basis [9]–[23].To lower the 

RNS area and power dissipation, system level design 

methodologies like multi-function and multi-modulus 

designs have also been suggested [24], [25]. 

Architectures that perform the same modulo operation  
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for more than one modulus are called multi-modulus 

architectures (MMAs) [24]. MMA is classified into 

two types: fixed multi-modulus architecture (FMA) 

and variable multi-modulus architecture (VMA). The 

modulo operations corresponding to the different 

moduli are performed concurrently in a FMA 

butserially in aVMA.In contrast to the single-modulus 

architecture (SMA), MMA exploits hardware reuse 

amongst the modulo channels of RNS. Hence, both 

FMA and VMA result in considerable savings in area 

as well as power dissipation. MMA is widely used in 

reconfigurable and fault-tolerant RNSs where the 

moduli of the base are selectively used. In 

reconfigurable RNS, the DR of RNS is varied by 

selecting a subset of moduli from the base to fulfill the 

DR requirement of the application. The channels 

corresponding to the unselected moduli are turned off 

there by reducing the system power dissipation [26], 

[27]. Infault-tolerant RNS, additional moduli are 

included in the base such that the DR of RNS far 

exceeds the DR requirement of the application.  

 

These redundant moduli are used to detect and isolate 

faults in computations. Once the faulty residue digit is 

located, the corresponding modulus of the base is 

discarded[28], [29]. Another specific application of 

VMA is high DR RNSs based on imbalanced word-

length moduli sets [5], [8]. In such RNSs, a VMA can 

be employed for the non-critical moduli to 

substantially lower the hardware requirement without 

compromising the system delay.Consequently, MMAs 

for the three special moduli,,2n +1,2n and 2n-1have 

been explored in recent times. In [30], a variable multi-

modulus two-operand parallel-prefix adder that 

computes the sum modulo 2n-1 ,modulo2 n   ,modulo 2n  

+1 in only[log2n]prefix levels was proposed. By 

extending the number of operands, a variable multi-

modulus multi-operand adder for moduli 2 n-1 and 

moduli 2n  +1 and based on regularly structured carry 

save adder (CSA) tree was described in [31].  

 

By making use of the variable multi-modulus multi-

operand adder, a variable multi-modulus multiplier for 

the three special moduli was suggested in [32]. 

Recently, a dual-modulus multiplier based onradix-4 

Booth encoding for the moduli 2n-1 and2n  +1 was 

proposed [33]. For the moduli,2n  +1,2n and 2 n-1 non-

encoded coded fixed and variable multi-modulus 

squares were proposed in [34].  

 

In [35], the VMA for squarer was further improved by 

employing the radix-4 Booth encoding algorithm. In 

this paper, Booth encoding technique is applied to 

multi modulus multiplication. Two new multi-modulus 

multipliers for  the moduli,2n  +1,2n and  2 n-1  are 

proposed. The former uses the radix-2 2 Booth 

encoding scheme while the latter uses the radix- Booth 

encoding scheme. In the radix-2 3 Booth encoded 

multi-modulus multiplier, the FMA approach is 

applicable only to the partial product generation stage 

and not applicable to the bias generation and partial 

product addition stages. While in the radix-22 Booth 

encoded multi-modulus multiplier, the FMA approach 

is relevant only to the encoding of the multiplier bits. 

Owing to the restricted applicability of the FMA in 

encoded multipliers, only VMA is considered in this 

paper.For the proposed radix-2 2 Booth encoded multi-

modulus multiplier, the modulo multiplier of [13] is 

used as the baseline architecture. The preliminary 

modulo multiplier architecture we proposed in [20] is 

shown to be advantageous for sharing resources with 

[13].  

 

Furthermore, a new radix-22Booth encoded modulo 

multiplier that maximally reuses the hard ware blocks 

of [13] and [20] is proposed. The equivalences in the 

radix-2 3 Booth encoded modulo2n+1 and modulo2n-

1multiplier architectures initially presented in [23] 

areexploited to design the proposed radix-2 3  Booth 

encoded multi-modulus multiplier. The structure of the 

modulo hard multiple generator (HMG) is modified to 

employ dual prefix operators for handling the 

complemented and non-com-plemented modified-

generate and modified-propagate signalpair. A new 

radix-2 3 Booth encoded modulo multiplier that is 

analogous to [23] is also introduced. In both the 

proposed Radix- 2 n and radix- 2 2 Booth encoded 

multi-modulus multipliers, an efficient technique to 

include the bias associated with modulo 2 nnegation is 

also proposed.  

 

The suggested modulo 2n bias generation involves only 

hardwiring of the Booth encoder outputs and does not 

incur any additional hardware overhead.This paper is 

organized as follows. The properties of modulo2 n-1, 

modulo 2 n and modulo 2 n -1arithmetic are discussedin 

Section II. In Sections III and IV, the proposed radix-

and radix- Booth encoded multi-modulus multipliers 

aredescribed with emphasis on multi-modulus partial  
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product,hard multiple and bias generations as well as 

multi-moduluspartial product accumulation. In Section 

V, the performancesof the proposed multi-modulus 

multipliers are evaluated andcompared againstbased 

RNS multipliersthat employ the same encoding 

scheme. Conclusions are drawnin Section VI. 

  

 

II. Preliminaries 

 

In this section, the fundamental properties of modul 2n 

-1,modulo2 n and modulo2n  +1  arithmetic that will be 

employed in the design of radix 2 2  and radix-2 3 

Booth encoded multi modulus multipliers are reviewed 

[4], [11], [15], [18], [19], [23].All equations are 

assumed to be modulo-reduced by,m E{2n  +1,2n,2 n-

1}unless otherwise specified. 

 

let  

be the -bit multiplicand, multiplier and product, 

respectively of each modulo multiplier of the RNS. 

Specifically, the residues X,Y and Z are in binary 

representation with dual zeros,i.e.,0..0,and 1..1 and for 

the modulo2n  -1 channel and in diminished-1 

representation for the modulo2n  +1channel. 

Conversions to and from these representations will be 

handled by the RNS forward and reverse converters, 

respectively. 

 

Therefore, for the modulo2 n-1 and modulo 2 n 

multiplications, the binary product  Z=X.Y is to be 

computed from the binary represented inputs, X and Y 

, whereas for the modulo 2 n+1 multiplication, the 

diminished-1 product Z  is to be computed directly 

from the diminished-1inputs X and Y. Hence, 

Z=(X+1).(Y+1)-1=X.Y+X+Yfor m=2 m.+1the multi-

modulus multiplication can be expressed as follows. 

 

 
 

In the radix-2 k Booth encoding algorithm, adjacent 

multiplier bits and an overlap 

multiplier bit yki-1are scanned and converted to a 

signed digit di , di E[-2 k-1,2 k-1].Thus, the multiplier bits 

are encoded as[n/k]+1 multiplier digits as follows. 
 

 
 

The translation of yi  to d i as well as the generation and 

the additionof the modulo-reduced partial products can 

be simplifiedfor efficient hardware implementation by 

the following numbertheoretic properties of modulo 

arithmetic. 
 

Property 1: Let x denote the bit complement of .The 

modulo reduction of the binary weight of x in excess 

of the modulus is given by 

 

 
 

Property 2: Let X denote the one’s complement of 

X.by the definition of additive inverse, the modulo 

negation of X is given by 

 

 
 

Property 3: Let LS(x ,j) denote the left shift of by bit 

positions where the resultant j least significant bits 

(lsbs) are zeros. Furthermore, let the circular-left-shift 

CLS(X, j)and complementary-circular-left-shift 

CCLS(x,j) operations denote the circular left shift of X 

by  j bit positions, where the resultant j lsbs are not 

inverted and inverted, respectively. As a corollary of 

Property 1,the modulo multiplication of X by a 

positive power-of-two term 2 j is given by 

 

 
 

Property 4:By Properties 2 and 3, the modulo 

multiplication of  X by -2 j is given by 

 

 
 

Property 5: The modulo addition of two operands, 

X and  Y  is given by 
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Where cout  is the carry-out bit from the -bit addition of 

and the binary weight of is modulo-reduced using 

Property 1. It must be highlighted that in modulo  2 
n+1 addition, the diminished-1 result  S is the sum of 

not only the diminished-1addends, X and Y , but also a 

constant one. Further  modulo 2n -1, modulo 2 n and 

modulo  2 n +1 additions are equivalent to n-bit end-

around-carry (EAC), carry-ignore and complementary-

end-around-carry (CEAC) additions, respectively. 

 

Property 6: The modulo addition of  k operands is 

given by 

 

 
 

III. Radix- Booth Encoded Multi-Modulus     

Multiplier: 

 

A. Multi-Modulus Partial Product Generation: 

 

By substituting k=2 in (2), the radix-2 2  Booth 

encoded multiplier is given by 

 

 

 
 

Fig. 1. (a) Proposed multi-modulus radix- Booth 

encoder. (b) Proposed 3:1Multiplexer (MUX3). 

 

 

 

where is even. The term 2n yn-1 can be modulo-reduced 

using Property 1 as follows. 

 

 
 

Hence, (9) can be simplified to 

 

 
 

encoded digit The radix-2 2 Booth encoded digit is 

formatted using three bits a sign bit s i and one-hot 

encoded magnitude bits,m1i and m2i .The proposed 

multi-modulus radix- 2 2 Booth encoder using n/2 

radix-22 Booth Encoder (BE2) slices and one MUX3 

block is shown in Fig. 1(a) for n=4. To select the 

appropriate y- 1bit corresponding to the modulus 2 n +1, 

2 n  or  2n -1,a custom 3:1 multiplexer (MUX3) with 2-

bit select input (ModSel 1 ModSel 0)depicted in Fig. 

1(b) is used. The input corresponding to the modulus 2 
n +1, 2 n  or  2n -1,  is selected (ModSel 1 ModSel 0 )is 

“00,” “01,” or “10,” respectively.From Fig. 1(b), it can 

be easily shown that c i equals and hence, MUX3 can 

be simplified to an XOR-AND implementation. In 

what follows, all illustrations of MUX3 block are 

assumed to include ModSel inputs. Using the radix-2 2 

Booth encoded multiplier form of (11), the multi-

modulus multiplication of (1) becomes 
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Fig. 2. Proposed Multi-Modulus Partial Product 

Generation For Radix- Booth Encoding. 

 

The radix-22 Booth encoded multi-modulus 

multiplication of (13) can then be reformulated as 

 

 
In the following, the generation of the n/2 PPis for the 

three moduli,2 n +1, 2 n  and  2n -1,, and is described. 

The standard circuit implementation of a bit slice of 

the radix-2 2 Booth Selector (BS2) generates a single 

bit of PPi,pp i.e., , by selecting a bit of either the 

multiplicand or one-bit shifted multiplicand and 

conditionally inverting it. Hence, MUX3 of Fig. 1(b) 

can be used at the output of the BS2 blocks in the least 

significant 2i bit positions to select from ppi.j 0,or ppi,j 

bar.Thus this input to the BS2 block is also selected 

using a MUX3. The proposed multi-modulus 

generation of the n/2 PPiS using BS2 

andMUX3blocksisshowninFig.2for n=4. The number 

of BS2 and MUX3 blocks required in the PPi 

generation is n^2/2 and n^4/2 respectively. 

 

B. Multi-Modulus Bias Generation: 

 

Analogous to the generation of PPi using BS2 blocks, 

the bias Ki can be generated by decoding appropriately. 

Thistechnique while being straightforward has an 

obvious limitation.By considering Ki as an -bit word, 

the n/2 KiS double the number of partial products to be 

added. Hence, the reduction in the number of partial 

products achieved by the radixBooth encoding 

technique is essentially nullified. An efficient 

technique to include Ki with minimal hardware 

circuitry based on the properties of modulo 2n and 

modulo 2n +1 arithmeticis proposed.  

From the three-variable(si,m1i,m2i) Karnaugh map 

withdon’t care minterms “011” and “111,” it can be 

shown that a=si  . Hence, the aggregate bias is given by 

the simplified expression  K 1 and can be generated by 

merely hardwiring the si  output of the BE2 blocks to 

appropriate bit positions. 

 
 

The dynamic bias can be minimized by the three-

variable(si,m1i,m2j)Karnaugh map, which results in, 

a=m1 Iand b=si ,and c=s i where the operator “ ,” 

denotes Boolean AND if its operands are Boolean 

variables. 

 

 
By applying Property 1 to the negatively weighted 

term, (19)becomes 

 

 
 

The next step entails modulo-reduced addition of 

n/2+3 partial products. From Property 6, the modulo 

2n +1 addition of n/2+3 operands inherently increments 

the result by n/2+2.To negate this effect, the constant 

n/2+2 is subtracted from the aggregate bias. The result 

is 

 
Both K1 and K2 can be implemented by hardwiring the 

BE2 outputs,m2i and si  as well as logic one to 

appropriate bit positionsvia at most one level of AND 

gates.For m=2n +1, the aggregate bias is composed of 

two –bit words,k1 and k2 given by (21). For ,m=2n  the 

aggregate bias is composed of one-bit word given by 
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(18).These  three aggregate biases are generalized in 

(23) as a sum of k1 and k2 given by (24) and (25), 

respectively, such that k1 and k2 for m=2n  -1as well 

as for are zero. 

 
 

 

 

 
 

Fig. 3. Proposed multi-modulus bias generation for 

radix- Booth encoding. 

 

 
Fig. 4. (a) Proposed multi-modulus partial product 

addition for radix- Booth encoding.  

(b) Implementation of parallel-prefix adder 

components. 

 

 
 

Fig. 5. Proposed  multi-modulus radix- Booth 

encoder. 

 
 

 

Equations (23)–(25) are implemented as shown in Fig. 

3 for n=4,k2 0and k2 2 are simply hardwired to Modsel 

1 andhence, are not illustrated in Fig. 3. 

 

C. Multi-Modulus Partial Product Addition: 

 

By replacing  in (17) with (23), the 

radix-22Boothencodedmulti-modulus multiplication is 

given by (26). In (26), an n-bit all-zeros partial product 

is included for the moduli 2 n -1 and 2 n so that the 

number of partial products to be added is n/2+3 for all 

three moduli. 

 
From Property 5, a multi-modulus addition can be 

implemented using a MUX3 in the carry feedback path 

that selects from cout,0 or cbarout . The multi-modulus 

addition of n/2+3 partial products in a CSA tree and a 

parallel-prefix two-operand adder is illustratedinFig. 

4(a) for n=4 .InFig.4(a),theparallel-prefix adder is 

constructed from the pre-processing (PP),prefix and 

post-processing blocks and the implementation of 

these blocks is shown in Fig. 4(b). The number of 

MUX3 blocks needed for multi-modulus partial 

product addition is n/2+2. 
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IV. RADIX- BOOTH ENCODED MULTI-

MODULUS MULTIPLIER 

A. Multi-Modulus Partial Product Generation: 

 

By substituting k=3 in (2), the radix-2 3 Booth encoded 

multiplier is given by 

 

 
 

Where  

 

The radix-2 3 Booth encoded multiplier digit is 

formatted using five bits: a sign bit s I and four one-hot 

encoded magnitude bits,m1i,m2i,m3iand m4i . n/2+3 

radix-2 3booth Encoder (BE3) blocks are used to 

encode the n-bit multiplier As shown in Fig.5 for n-

4.Using the radix-23Booth encoded multiplier form of 

(27),the multi-modulus multiplication of (1) becomes 

 
The radix-2 3 Booth encoded multi-modulus 

multiplication of (28) can then be reformulated as 

 
 

Fig. 6 shows the generation of n/3+1 PPisusing 

n([n/3]+1)radix-23 Booth Selector (BS3) blocks for 

n=4,where each bit slice of BS3 selects a bit from the 

multiplicand,the one-bit shifted multiplicand, the hard 

multiple or the two-bit 

 
 

 

Fig.6. Proposed multi-modulus partial product 

generation for radix- Booth encoding. 

 

B. Multi-Modulus Hard Multiple Generation: 

 

Application-specific adders known as HMGs that 

computeonly the sum of  Xand |2X|mto generate the 

hard multiple |+3X|mwere proposed in [23] for the 

moduli  2n -1and 2n +1 .The HMGs were designed by 

reformulating the carry equationsof modulo 2n -1 and  

modulo2n +1  additions using the bitcorrelation 

between the addends,X and |2X|m. The carry 

equationsfor modulo 2n -1and modulo  2n +1  HMGs 

are givenby (30) and (31) for even and odd cases ofi, 

respectively. 
 

 
 

Where (gi ,pi ) (gj ,pj )=(gi +pi ).(gi ,pi  )(gj ,pj )and the 

modified-generate and modified-propagate pair 

(g*
i ,p*

i)defined asfollows. 
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As modulo 2 n addition is equivalent to carry-ignore 

addition,the carry equation for modulo 2n HMG 

becomes 

 

Where (g*
i ,p*

i) is defined as 

 

 
From (30), (31), and (33), the parallel-prefix 

implementation of multi-modulus HMG is illustrated 

for n=8 in Fig. 7. It consists of three stages: pre-

processing, prefix computation and post-processing. In 

the preprocessing stage, each operator “ ” computes 

using AND-OR and OR-AND gates. The t I bit is also 

computed by the XOR operation on the i-th bits of the 

two addends. Two MUX3 blocks are required at the 

input of the pre-processing operator to select from x n-

1,0,x n-1or and From x n-2 ,0,xn-2 for computing(g0*,p0*) 

and (g1*,p1*) the prefix-computation stage,ciis 

computed using the” ” prefix operators in only [log2 

n]-1 levels. 

 

To implement the multi-modulus carry generation,dual 

prefix operators are used in the first level such that the 

input to one prefix operator is(g1*,p1*)while the input 

to the other to other prefix operator is selected from 

(gi*,pi*),(0,0)or (pi*,gi*) using MUX3blocks.The 

number of MUX3 blocks required is n-2 and the 

number of dual prefix operators in each prefix level l is 

n-2l+1 ,where [log2 n]-1,In the post-processing 

stage,each operator “  ” computes a bit of the hard 

multiple hi by when i=0,a MUX3 is 

employed at the ci-1 ,0 or cn-1 to implement EAC,carry-

ignore,and CEAC additions,respectively. 

 

C. Multi-Modulus Bias Generation: 

 

Using a five-variable(si,m1i,m2i,m3i,m4i) Karnaugh 

map, the aggregate of the static bias, the dynamic bias 

and the constant[n/3]-5 that negates the constant 

incurred from the modulo 2n +1 addition [n/3]+6 of 

partial products, is reduced to 

 

 

 
 

The operators “+” and “.” Denote Boolean OR and A 

respectively when their operands are Boolean 

variables.m=2n +1,the aggregate bias is composed of  

three n-bit words,K1,K2,and K3 given by (36).for 

m=2n ,the aggregate bias is composed of one n-bit 

word K1 given by(35).They can be generalized in(38) 

as a sum of K1,K2, and K3 given by (39),(40),and 

(41),respectively,such that K1,K2, and K3 for m=2n -1 

as well as K2 and K3 for m=2n  are zero.(see equation 

at bottom of page.) 

 

 
 

Fig. 8. Proposed multi-modulus bias generation for 

radix- Booth encoding. 
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Equations (38)–(41) are implemented as shown in Fig. 

8 for n=4.K12,K20 and K23 are hardwired to logic “0” 

andhence, are not illustrated in Fig. 8. 

 

D. Multi-Modulus Partial Product Addition: 

 

By replacing in (29) with (38), the radix-

23Boothencodedmulti-modulus multiplication is given 

by (42).Two n-bit all-zeros partial products are 

included for the moduli 2n -1 and 2n  so that the number 

of partial products to be added is [n/3]+6 for all three 

moduli. (See equation at bottom of page.) The multi-

modulus addition of [n/3]+6 partial products in a CSA 

tree and a two-operand adder with MUX3 blocks in 

 

 
 

 
 

 

Fig. 9. Proposed multi-modulus partial product 

addition for radix- Booth encoding. 

 

the carry feedback paths is illustrated in Fig. 9 for n-

4.The number of MUX3 blocks needed is[n/3]+5. 

 

 

V.SIMULATION RESULTS: 

 

 
Fig:RTL of 4-4bit 

 

 
Fig:RTL of 4-32 bit 

 

 
Fig:RTL of 8-4bit 
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Fig:RTL of 8-32 bit 

 

 

 

 
Fig:waveform of 4-4bit 

 

 
Fig:waveform of 4-32bit 

 

 

 
Fig:waveform of 8-4bit 

 

 
Fig:waveform of 8-32 bit 

 

VI. Conclusion: 

 

The equivalences in operations central to modulo 

multiplication i.e. modulo negation, modulo reduction 

of binary weight and modulo multiplication by 

powers-of-two and two-operand modulo addition for 

the three special moduli,2n -1,2nand2n+1 were 

demonstrated.New radix-22 and radix-23 Boothencoded 

modulo multipliers with architectures comparable to 

those of the corresponding modulo 2n -1 and modulo 2n 

+1 multipliers were introduced. With the correlation 

among modulo 2n -1, modulo 2n and modulo 2n +1 

operations as the basis, radix-22 and radix- 23 Booth 

encoded multi-modulus multipliers that perform 

modulo multiplication for the three special moduli 

successively were developed. The proposed multi-

modulus multipliers were compared against RNS 

multipliers employing Booth encoding of the same 

radix. 
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