
 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

 Volume No: 3 (2016), Issue No: 2 (February) February 2016
 www.ijmetmr.com Page 312

Abstract:

Load balancing in the cloud computing environment
has an important impact on the performance. Good load
balancing makes cloud computing more efficient and
improves user satisfaction. This article introduces a bet-
ter load balance model for the public cloud based on the
cloud partitioning concept with a switch mechanism to
choose different strategies for different situations. To pro-
vide fairness to all the jobs in the system, we use a coop-
erative game to model the load balancing problem. Our
solution is based on the Nash Bargaining Solution (NBS)
which provides a Pareto optimal solution for the distrib-
uted system and is also a fair solution. An algorithm for
computing the NBS is derived for the proposed coopera-
tive load balancing game. To provide fairness to all the
users in the system, the load balancing problem is formu-
lated as a non-cooperative game among the users who try
to minimize the expected response time of their own jobs.
We use the concept of Nash equilibrium as the solution of
our non-cooperative game and derive a distributed algo-
rithm for computing it.

Key words:
Game theory; public cloud; switching mechanism; Nash
bargaining solution.

1.Introduction:
Cloud computing is an attracting technology in the field
of computer science. In Gartner’s report[1], it says that
the cloud will bring changes to the IT industry. The cloud
is changing our life by providing users with new types
of services . A static load balancing problem for both
single-class jobs and multi-user jobs in a distributed com-
puter system that consists of heterogeneous host comput-
ers (nodes) interconnected by a communication network.
Jobs arrive at each computer according to a time-invariant
exponential process.

Prakash Krishna Shinde
M.Tech Student,

Department of Computer Science Engineering,
Marri Laxman Reddy Institute of Technology &

Management.

Mr G.Prabhakara Reddy
Associate Professor,

Department of Computer Science Engineering,
Marri Laxman Reddy Institute of Technology &

Management.

Load balancing is achieved by transferring some jobs
from nodes that are heavily loaded to those that are idle or
lightly loaded[2].

1.1. Load balancing for single-class jobs:

This load balancing problem is formulated as a coopera-
tive game among the computers and the communication
subsystem. The several decision makers (e.g., computers
and the communication subsystem) cooperate in making
decisions such that each of them will operate at its op-
timum. The decision makers have complete freedom of
pre-play communication to make joint agreements about
their operating points. Based on the Nash Bargaining So-
lution (NBS) which provides a Pareto optimal and fair
solution, we provide an algorithm (CCOOP) for comput-
ing the NBS for our cooperative load balancing game.
The objective of this cooperative load balancing scheme
is to provide fairness to all the jobs, i.e. all the jobs (of
approximately the same size) should experience approxi-
mately the same expected response time independent of
the computers allocated for their execution.

1.2. Load balancing for multi-user jobs:

This problem is formulated, taking into account the users’
mean node delays and the mean communication delays,
as a non-cooperative game among the users. Each user
minimizes her/his own response time independently of
the others and they all eventually reach an equilibrium.
We use the concept of Nash equilibrium as the solution of
our non-cooperative game and derive a distributed algo-
rithm (NCOOPC) for computing it. The objective of this
non-cooperative load balancing scheme is to provide fair-
ness to all the users i.e. all the users should have approxi-
mately the same expected response time independent of
the computers allocated for the execution of their jobs (of
approximately the same size).

A Load Balancing Model Based on Cloud Partitioning
for Public Cloud Using Game Theory

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

 Volume No: 3 (2016), Issue No: 2 (February) February 2016
 www.ijmetmr.com Page 313

1.3.Game Theory:

Game theory is the formal study of conflict and coopera-
tion. Game theoretic concepts apply whenever the actions
of several agents are interdependent. The game theoretic
algorithms help to obtain a user optimal load balancing
which ultimately improves overall performance of cloud
computing.Lets discuss some load balancing technique
for both the partition having either load status=idle or
load status=normal. In this section mainly we will discuss
about the load balancing technique for the cloud partition
having load status=normal using game theory.

A. For cloud partition having idle status:

In this situation, this cloud partition has the ability to
process jobs as quickly as possible so a simple load bal-
ancing method can be used . There are lots of works has
been done for load balance algorithm such as the Random
algorithm,the Weight Round Robin, and the Dynamic
Round Robin.

The Round Robin (RR) is used here because it is very
simple method for load balancing. The Round Robin al-
gorithm does not record the status of each connection so it
has no status information. In a public cloud, the configu-
ration and the performance of each node will be not the
same; thus, this method may overload some nodes. Thus,
an improved Round Robin algorithm is used, which called
“Round Robin based on the load degree evaluation”.

Before the Round Robin step, the nodes in the load bal-
ancing table are ordered based on the load degree from
the lowest to the highest. The system builds a circular
queue and walks through the queue again and again. Jobs
will then be assigned to nodes with low load degrees. The
node order will be changed when the balancer refreshes
the Load Status Table. However, there may be read and
write inconsistency at the refresh period T.

When the balance table is refreshed, at this moment, if a
job arrives at the cloud partition, it will bring the inconsis-
tent problem. The system status will have changed but the
information will still be old. This may lead to an errone-
ous load strategy choice and an erroneous nodes order.

B. For cloud partition having Normal status:

This situation is more complex than the idle status situa-
tion, because in these situations jobs are dispatched faster
by the cloud Load Balancer Manager (LBM) and each
user wants to execute his job at shortest response time
so the public cloud needs an optimal approach to com-
plete the job execution at minimum response time. To
solve such problem Penmatsa and Chronopoulos [2] has
proposed “static load balancing strategy based on game
theory for distributed systems”. This paper is the base of
our review work and we consider that the implementation
of distributed system, the public cloud load balancing can
be viewed as a game. The purpose of load balancing is
to improve the performance of a system through an ap-
propriate distribution of the application load. A general
formulation of this problem is as follows: given a large
number of jobs, find the allocation of jobs to computers
optimizing a given objective.

C.Mathematical Model:

Study of this mathematical model is based on . In the
game of load balancing for the public cloud the players
would be nodes in each cloud partition and the user jobs
dispatched by the Load Balancer Manager (LBM). We
assume that there are n nodes in each partition and p jobs
dispatched by the LBM. Now the Load Balancer (LB)
has to decide on how to distribute user jobs to available
nodes such that they will operate optimally. In the follow-
ing, we present the notations we use and then define the
non-cooperative load balancing game.
µ
-Average Processing Time (APT), where i=1, 2, 3…… n
Øj-Job’s Average Throughput where j=1, 2, 3…………..
n
 m
Ф-∑ Ø
i
, is the Total Job Arrival Time (TJAT) J=1

Thus user j (j=1, 2, 3,……m) must find the fraction Sji
of all its jobs that are assi gned to the node i such that
expected execution time of this job is minimized. Let us
assume that Sji is the fraction of job j is assigned to node
i. The vector Sj=(Sj1, Sj2, …….. Sjn) is called the load
balancing strategy of user job j. And the vector S= (S1,
S2, …….. Sn) is called the strategy profile of load balanc-
ing game.

2.Related Work:

Several studies have been made on load balancing strater-
gy for single class and multi-class job strategy the Load
balancing in cloud computing was described in a white
paper written by Adler[3] who introduced the tools and
techniques commonly used for load balancing for public
cloud. There are many load balancing algorithms, such as
Round Robin, Equally Spread Current Execution Algo-
rithm, and Ant Colony algorithm.Randles et al.[4] gave a
compared analysis of some algorithms in cloud comput-
ing by checking the performance time and cost. Some of
the classical load balancing methods are similar to the al-
location method in the operating system, for example, the
Round Robin algorithm and the First Come First Served
(FCFS) rules. Game theory approach algorithm is used
here because it is fair[2].

3.System Model:

Several cloud computing strategies are focused with pub-
lic cloud. A public cloud is based on the standard cloud
computing model, with service provided by a service pro-
vider . There are 3 parts in the design pattern.ViewThe
user interface is created using java scripts which is used
for a effective front end and application. When user click
on the submit button. A job request is sent to controller.
ControllerThe business logic is implemented in this mod-
ule using servelets.ModelThe whole application is con-
nected to the database in this part using Java Database
Connection driverFig 1:

3.1 Main controller:

The main controller first assigns jobs to the suitable cloud
partition and then communicates with the balancers in
each partition to refresh this status information. Since
the main controller deals with information for each parti-
tion, smaller 1data sets will lead to the higher processing
rates.

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

 Volume No: 3 (2016), Issue No: 2 (February) February 2016
 www.ijmetmr.com Page 314

In order to determine a solution for our load balancing
game we consider an alternative definition of the Nash
equilibrium. Nash equilibrium can be defined as a strat-
egy profile for which every user’s load balancing strategy
is a best reply to the other users’ strategies. This best reply
for a user will provide a minimum expected response time
for that= user’s jobs given the other users’ strategies. This
definition gives us a method to determine the structure of
the Nash equilibrium for our load balancing game.

The computation of Nash equilibrium may require some
coordination between the users. Here this is necessary in
the sense that users need to coordinate in order to obtain
the load information from each computer. From the practi-
cal point of view we need decentralization and this can be
obtained by using greedy best reply algorithms . In these
algorithms each user updates from time to time its load
balancing strategy by computingthe best reply against the
existing load balancing strategies of the other users.

1.4. Switching Mechanism:

End users from different locations submit their jobs to the
Cloud Environment. All these jobs are received by a Main
Controller which is a single node to manage all the parti-
tions. Nodes under each partition are managed by a Load
Balancer. Main Controller distributes the jobs to the Load
Balancer by checking its partition status.

The partition may be in 3 states as Idle, Normal and Over-
load states. The partition status is set by the Load Bal-
ancer based on the parameters as Number of CPUs, the
CPU processing speeds, the available memory size, the
memory utilization ratio, the CPU utilization ratio and
network bandwidth etc.,

The jobs are received by the Load Balancers and the Load
Balancing algorithms are applied to the partitions. Here
the Switching Mechanism is applied. Switching Mecha-
nism is the process of switching over to the 2 different
algorithms according to the 2 different situations. Switch-
ing Mechanism contains two different algorithms,

one simple algorithm for Idle state partitions and another
one effective algorithm for Normal state partitions. Round
Robin is a simple and cheap algorithm that can be used
for Idle state partitions. An effective algorithm for Nor-
mal state partition should prevent the partitions becoming
overloaded state.

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

 Volume No: 3 (2016), Issue No: 2 (February) February 2016
 www.ijmetmr.com Page 315

3.1.1 Psuedo Code:

STEP 1: START

STEP 2: JOBS ARRIVE AT MAIN CONTROLLER

STEP 3: ASSIGN JOB TO BALANCER
(JOB,BALANCER i)

STEP 4: IF (STATUS== OVERLOADED)

STEP 5:ASSIGN JOB TO BALANCER i+1

STEP 6: ELSE

STEP 7:ASSIGN JOB TO BALANCER I

STEP 8:ELSE

STEP 9:RETURN

3.2 Balancer :

The balancers in each partition gather the status informa-
tion from every node and then choose the right strategy to
distribute the jobs. The relationship between the balancers
and the main controller is shown in Fig.2..()

3.2.1. Psuedo Code:

STEP 1:CHECK STATUS OF EVERY PARTITION

STEP 2:GET STATUS FROM LOAD STATUS TABLE

STEP 3:IF (STATUS CODE==IDLE||STATUS
CODE==NORMAL)

STEP 4:ASSIGN JOB TO PARTITION

STEP 5:ELSE IF(STATUS CODE==OVERLOADED)

STEP 6:GOTO OTHER PARTITION

STEP 7:ELSE

STEP 8:RETURN TO MAIN CONTROLLER

STEP 9:STOP

4.Nash Bargaining Solution:

(NBS) for cooperative games. The Nash Bargaining So-
lution is different from the Nash Equilibrium for nonco-
operative games. In a cooperative game the performance
of each player may be made better than the performance
achieved in a noncooperative game at the Nash Equilib-
rium.Assume that there are M players. Player 1….M has
fi(x)_ as objective function. Each fi is a function from X
_ to R where X__ (_ a positive integer) is a nonempty,
closed and convex set, and _ is bounded above. We
want to maximize simultaneously all fi(x)_ Let U_ be
the minimal performance required by the players without
cooperation to enter the game.In other words,Ui__ repre-
sents a minimum performance guarantee that the system
must provide to the player i.is called the initial agreement
point.The main goal of our work is to provide fairness to
the users and the users’ jobs i.e., all the users and their
jobs should experience approximately equal expected re-
sponse time (expected queuing delay + processing time
+ any communication time) or be charged approximately
equal price for their execution independent of the comput-
ers allocated, and we will show that game theory provides
a suitable framework for characterizing such schemes.
Most of the previous work on load balancing did not take
the fairness of allocation into account or considered fair-
ness in a system without any communication costs.For
distributed systems in which all the jobs belong to a single
user (single-class), we use a cooperative game to model
the load balancing problem which takes the average sys-
tem information into account (static load balancing). Our
solution is based on the Nash Bargaining Solution which
provides a Pareto optimal solution for the distributed sys-
tem and is also a fair solution. We then extend the system
model Solution space and solution trajectories for NBS-
based and symmetric decentralized algorithms. Arrows
indicate direction of convergence of algorithm.

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

 Volume No: 3 (2016), Issue No: 2 (February) February 2016
 www.ijmetmr.com Page 316

to include jobs from various users (multi- user/multi-class
job distributed system) and include pricing to model a
Grid system. For a grid system, we propose three static
price-based job allocation schemes whose objective is
to minimize the expected price for the grid users. One
scheme provides a system optimal solution and is formu-
lated as a constraint minimization problem and the other
two schemes provide a fair solution and are formulated
as non-cooperative games among the users. We use the
concept of Nash equilibrium as the solution of our non-
cooperative games and derive distributed algorithms for
computing it. We also extend the proposed static load
balancing schemes for multi-user jobs and formulate two
schemes that take the current state of the system into ac-
count (dynamic load balancing). One dynamic scheme
tries to minimize the expected response time of the entire
system and the other tries to minimize the expected re-
sponse time of the individual users to provide a fair solu-
tion.

Axiomatic Foundation. Based on 4 axioms first defined
by John Nash in 1950 [Nash, 1950], a unique optimal bar-
gaining solution be-tween two agents can be found if the
set of feasible solutions is com-pact and convex. Let us de-
fine such a two-agent bargaining problem by B = (V1(x),
V2(x), d, S), where x F = [x1, x2], is as above with p =
2, Vi : Rni R are the agents’ Von Neumann-Morgenstern
utility functions [von Neumann and Morgenstern, 1944],
d = (d1, d2) R2 is the disagreement point which defines
the cost incurred by each agent if no agreement is reached
and S R2 is the compact, convex set of all feasible utility
pairs that improve on d. We define xB F to be the opti-
mal bargaining solution with optimal utility sB S.Nash
showed that a unique optimal solution exists which maxi-
mizes the product of the utility functions of both players if
the following four axioms are satisfied. It was Nash who
first chose to use the product of utilities to determine the
Nash Bargaining Solution, and although there is no clear
interpretation of this construct in relation to the bargain-
ing problem, its simplicity has allowed for its wide adop-
tion and varied uses (see [Osborne and Rubinstein, 1994]
for an alternative formulation).

Axiom 4.1 Axiom of Rationality: Each agent prefers the
locally optimal solution.

Axiom 4.2 Axiom of Symmetry: If S is symmetric about
the line V1 = V2, then the optimal bargaining utility lies
on that line.

Axiom 4.3 Axiom of Linear Invariance: Neither scaling
nor o set of either utility function a ects the resulting bar-
gaining solution.

Axiom 4.4 Axiom of Independence of Irrelevant Alterna-
tives:

Proof Outline (After Nash, [Nash, 1950]). To show exis-
tence and uniqueness of an optimal bargaining solution,
we invoke properties of compactness and uniqueness of
S, respectively. To show that the optimal solution maxi-
mizes the product of the utilities of both agents, the fol-
lowing elegant set of arguments was developed based on
the fouraxioms. If both agents are rational they will try to
maximize their local utility, Vi. If both utility functions
are linearly invariant, then both can be scaled and offset
such that d = (0, 0) and sB = (1, 1). Let B = (V1(x), V2(x),
d, S), where S is augmented to include all points such that
the sum of the two utilities is less than 2 (ie. let S be the
triangle formed by the points {(0, 0), (2, 0), (0, 2)}). Since
S is symmetric, by Axiom 4.2, sB _ must be on the line
V1 = V2, and thus sB_ = (1, 1). By Axiom 4.4, we see that
sB_ S, and so is also the optimal solution to the original
problem. The final step is to see that sB is the point of
maximum product of utility improvements (V1(x)−d1),
(V2(x)−d2), and hence that maximizing the product of
utility improvements determines the unique optimal bar-
gaining solution.

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

 Volume No: 3 (2016), Issue No: 2 (February) February 2016
 www.ijmetmr.com Page 317

CONCLUSION:

It is important to evaluate solutions for cloud balancing
implementations with an eye toward support for the needs
of an actual IT department. The global and local appli-
cation delivery solution chosen to drive a cloud balanc-
ing implementation should be extensible, automated, and
flexible, and the vendors involved need to look favorably
upon standards. There are challenges associated with the
implementation of such a strategy, some of which might
take years to address. But the core capabilities of global
and local application delivery solutions today make it
possible to build a strong,

flexible foundation that will enable organizations to meet
current technical and business goals and to extend that
foundation to include a more comprehensive cloud bal-
ancing strategy in the future.

Acknowledgment:
I would like to thank Prof. ……………………., for ac-
cepting me to work under his valuable guidance. He
closely supervises the work over the past few months and
advised many innovative ideas, helpful suggestion, valu-
able advice and support.

REFERENCES:

[1]Xu, Gaochao, Junjie Pang, and Xiaodong Fu. “A load
balancing model based on cloud partitioning for the pub-
lic cloud.” IEEE Tsinghua Science and Technology, Vol.
18, no. 1, pp. 34-39, 2013.

[2]P. Mell and T. Grance, ―The NIST definition of cloud
Computing, online available at: http://csrc.nist.gov/publi-
cations/nistpubs/800-145/SP800-145.pdf, 2012.

[3]N. G. Shivaratri, P. Krueger, and M. Singhal, ―Load
distributing .

[4]Zhu, Yan, Huaixi Wang, Zexing Hu, Gail-Joon Ahn,
Hongxin Hu, and Stephen S. Yau. “Efficient provable data
possession for hybrid clouds.” In Proceedings of the 17th
ACM conference on Computer and communications se-
curity, pp. 756-758. ACM, 2010.

[5]A. Rouse, ―Public cloud, available at: http://search-
cloudcomputing.techtarget.com/definition/public-cloud.

[6]Lori MacVittie, ―Cloud Balancing: The Evolution of
Global Server Load Balancing, F5 white paper, online
available at: http://www.f5.com/pdf/white-papers/cloud-
balancing-white-paper.pdf, 2013.

[7]D. MacVittie, “Intro to load balancing for develop-
ers — The algorithms, https://devcentral.f5.com/blogs/
us/introto-load-balancing-for-developers-ndash-the-algo-
rithms, 2012.

[8]Doddini Probhuling L. ―Load Balancing Algo-
rithms In Cloud Computing, International Journal of
Advanced Computer and Mathematical Sciences, ISSN
2230-9624. Vol. 4, Issue 3, pp. 229-233, 2013.

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

 Volume No: 3 (2016), Issue No: 2 (February) February 2016
 www.ijmetmr.com Page 318

[9]Naimesh D. Naik and Ashilkumar R. Patel ―Load
Balancing Under Bursty Environment for Cloud Com-
puting, International Journal of Engineering Research &
Technology (IJERT) ISSN: 2278-0181, Vol. 2, Issue 6,
pp. 17 – 26, June – 2013.

[10]Kaviani, Nima, Eric Wohlstadter, and Rodger Lea.
“MANTICORE: A framework for partitioning software
services for hybrid cloud.” In Cloud Computing Technol-
ogy and Science (CloudCom), 2012 IEEE 4th Interna-
tional Conference on, pp. 333-340, 2012.

[11]Patel, Parveen, Deepak Bansal, Lihua Yuan, Ashwin
Murthy, Albert Greenberg, David A. Maltz, Randy Kern
et al. “Ananta: cloud scale load balancing.” In Proceed-
ings of the ACM SIGCOMM 2013 conference on SIG-
COMM, pp. 207-218. ACM, 2013.

[12]P. Jamuna and R.Anand Kumar ― Optimized Cloud
Partitioning Technique to Simplify Load Balancing, In-
ternational Journal of Advanced Research in Computer
Science and Software Engineering, ISSN: 2277 128X,
Volume 3, Issue 11, pp. 820 – 822, November 2013.

[13]S. Chong, J. Liu, A. Myers, X. Qi, K. Vikram, L.
Zheng, and X. Zheng, ―Building secure web applica-
tions with automatic partitioning, in Proceedings of the
Symposium on Operating Systems Principles (SOSP),
2009.

[14]G. Hunt and M. Scott, ―The Coign automatic distrib-
uted partitioning system, in Proc. of the Symposium on
Operating Systems Design and Implementation (OSDI),
1999.

[15]R. Newton, S. Toledo, L. Girod, H. Balakrishnan, and
S. Madden, ―Wishbone: Profile-based Partitioning for
Sensornet Applications, in Proc. of the NSDI, 2009.

[16]S. Agarwal, J. Dunagan, N. Jain, S. Saroiu, and A.
Wolman, ―Volley: Automated data placement for geo-
distributed cloud services. in NSDI, 2010.

[17]A. Wieder, P. Bhatotia, A. Post, and R. Rodrigues,
―Orchestrating the deployment of computations in the
cloud conductor, in NSDI, 2012.

[18]S. Y. Ko, K. Jeon, and R. Morales, ―The HybrEx
model for confidentiality and privacy in cloud computing,
in Proc. of HotCloud, 2011.

[19]A. Li, X. Yang, S. Kandula, and M. Zhang, ―CloudC-
mp: Shopping for a Cloud Made Easy, HotCloud, 2010.

[20]P. Teregowda, B. Urgaonkar, and C. Giles, ―CiteSe-
erx: a Cloud Perspective, in Proc. of the HotCloud Work-
shop, 2010.

[21]H. L. Truong and S. Dustdar, ―Composable cost es-
timation and monitoring for computational applications
in cloud computing environments, Procedia CS, vol. 1,
no. 1, pp. 2175–2184, 2010.

[22]B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and
A. Patti, ―Clonecloud: elastic execution between mobile
device and cloud. in Proc. of the European Symposium on
Operating Sytems (EuroSys), 2011.

[23]M. Hajjat, X. Sun, Y.-W. E. Sung, D. Maltz, S.
Rao, K. Sripanidkulchai, and M. Tawarmalani, ―Cloud-
ward bound: planning for beneficial migration of enter-
prise applications to the cloud, in SIGCOMM, 2010.

[24]C. Liu, B. T. Loo, and Y. Mao, ―Declarative auto-
mated cloud resource orchestration, in Proc. of the Sym-
posium on Cloud
Computing, 2011.

