

A Peer Reviewed Open Access International Journal

Design and Analysis of an Integral Shaft Bearing

A.Nihar

Department of Mechanical Engineering Lords Institute of Engineering and Technology, Hyderabad. S.Suneer Basha Department of Mechanical Engineering Lords Institute of Engineering and Technology

Technology, Hyderabad.

N.Ashwin Siddhartha

Department of Mechanical Engineering Lords Institute of Engineering and Technology, Hyderabad.

M .Ujwal Kumar

Department of Mechanical Engineering Lords Institute of Engineering and Technology, Hyderabad.

Abstract

An integral shaft bearing is popular for higher specific load carrying capacity, preventing misalignment defects and eliminating the risk of undesirable distortion of the bearings, rather than conventional one. Integral shaft bearing is used to reduce rotational friction and support radial and axial loads friction in bearings which cause an increase of the temperature and Stresses inside the bearing. If the heat produced cannot be adequately removed from the bearing, the temperature might exceed a certain limit, and as a result the bearing would fail. To analyze the heat flow, temperature distribution and stresses in a bearing system, a typical integral shaft bearing and its environment has been modeled and analyzed using the famous finite element tool ANSYS. In this study we investigate structural and thermal characteristics performance of integral shaft bearing to Analyze temperature distribution and thermal elongation due to friction also its effect on bearing clearances and vice-versa.

1-INTRODUCTION

The term "rolling bearing" includes all forms of roller and ball bearing which permit rotary motion of a shaft. Normally a whole unit of bearing is sold in the market, which includes inner ring, outer ring, rolling element (balls or rollers) and the cage which separates the rolling element from each other.

V.Siva Ram

Department of Mechanical Engineering Lords Institute of Engineering and Technology, Hyderabad.

Rolling bearings are high precision, low cost but commonly used in all kinds of rotary machine. It takes long time for the human being to develop the bearing from the initial idea to the modern rolling bearing. The reason why bearing is used is that first it can transfer moment or force. Secondly and may be more important is that it can be interchanged easily and conveniently when it's broken. In the mechanical system shown in Figure-1, it is also possible to amount the shaft directly with housing. However, when this mechanism has some problem, the only possibility to recover the function of this system is to replace the housing or the shaft. From the mechanical engineer point of view, both of the mare not only very expensive but also time consuming to manufacture a new housing or shaft with the same parameters.

However when the bearings are used between them, the situation will be different. Normally there is no relative motion between shaft and inner ring or the outer ring with housing. So it has less possibility for

A Peer Reviewed Open Access International Journal

the shaft or housing to be worn out. Usually the bearing first cracks and then the shaft or housing is broken. If the above situation happens it is really easy to figure it out: just buy a new bearing from the market with the same parameter and replace it. That's why bearings are so often used.

2-OBJECTIVEOFRESEARCH

The objective of theResearchProjectisto: ToDesignofIntegralShaftBearingforWaterPump Modeling & Assemblyofbearing componentsfrom2Ddrawingto3Dmodel. Stress analysis andtemperaturedistributionforIntegralShaftBearing ThermalelongationofcomponentsinIntegralShaftBearin gatdifferenttemperature&itseffect onbearing clearances.

3-NEEDOFPROJECT

Theintegralshaftsealsprotectthebearingassemblyfrom bearingexposedtocoolantandabrasive contaminants.Ifprobable

sealfailureisnotdetectedandbearingpresentinpumpisnotr eplacedwill causesuddenfailure andpossiblyleadstocrisissuchassnappedbearingshaft.Se alleakageand bearingfailurecanoccursdue toexcessive thermal stressesbecauseofhightemperatureoperationof engine,vibrationdue

tohighoperationalspeedetc.sodetermination of

bearingfailure shouldbe detected atdesignstageonly beforemanufacturing to reduceextracostand timetomarket. Optimizationofclearancebetweenrolling element andoutersleeve.

4-FEAANALYSISANDRESULTS

4-1-StressAnalysis

Finiteelementmethod(FEM)isanumericalmethod forsolvingadifferentialorintegral Equation.It hasbeenappliedtoanumberof physicalproblems,where thegoverningdifferentialequationsare

available.Themethodessentiallyconsists of assuming thepiecewise continuousfunction for the solution and obtaining the parameters of the functions in am annerthatreducestheerrorinthe solution.Herewehave tofinemaximumstressesineachcomponentofbearing,and tosafe designof components materialMaximum Stress shouldbeless thanAllowablestress. Designallowable, Allowable stressoall=Yield StrengthorUltimate Strength* FactorofSafety,AssumeFactorof Safetyis1,AllowablestressesofMaterialsusedinassembly iscalculatedin followingtable

Table1-Material AllowableStress

Material	Components	Modulus Of	Yieldstrength	Ultimate	
	Shaft,Balls,	Elasticity(GPa)	MPa	StrengthMPa	
SAE52100	Rollers,Sleeve	210	260	460	460
Nylon66	Ball&RollerCage	36	80	NA	80
Aluminium Alloy	Housing	71	280	310	310

4.2. GeometricModel

IntegralShaftBearingproductdetails asshowninTable 4.2asperindustrialrequirements.Figure 4.2 showsthecomplete AssemblyofIntegralShaftbearing.

Table2.Integral Shaft BearingCharacteristic

Bearing	IntegralShaftBearing		
Typeofrolling Element	Roller/Ball		
No.ofRolling element	15		
ComponentsDetailsforAssembly	Shaft,BallCage, Balls,RollerCage,Rollers,Sleeve		
SleeveDiameter	30mm		
ShaftDiameter	15.918mm		

Fig3.Integral Shaft Bearing

February 2017

A Peer Reviewed Open Access International Journal

4-3-MeshGeneration

In

thisanalysismeshgenerationisautomesh	generationwithe
lementsizeis20.Thiselementsizeis	usedforallthe
bodyofIntegralShaftBearing.Hex-	
dominantmethodisusedforallthe	partsof
IntegralShaftBearing.	

Fig4.Mesh Generation of WholeAssembly

4-4-Loadingand BoundaryConditions

Loadingandboundaryconditionsbasicallyconsistoftwost eps firstissupport andsecondis applying loads.FollowingFigureShowstheSupports andForces

Fig5.LoadingandBoundaryConditions

Table3.Loadingandboundary conditions

speed (rpm)	Hu b Ioa d (N)	% Us e	Water Pump Temperature	Fit Conditions	Housin g diamet er	Sleeve OD	Radial clearan ce (Roller)	Radial clearan ce (Ball)
1500	591	19.7	-30°C	Max. Interferen ce condition	Max. Interferen 29.92	ce 30	Minimum 0.02	clearance 0.02

Fig6.Thermal Conditions

Afterrunningthe

solutionofabovemodelwegetdifferentvaluesofsolutions suchas,Maximum principle stress, Equivalent Stress, Total deformation and equivalent strain. All theresults are describedbelow.

EquivalentStress:399.08Mpa(max)

Fig7.EquivalentStress Plot

EquivalentStressforhousing:MaxStress252.25<310Mp a(Allowablestress)

Fig8.EquivalentStressforhousing Total Deformationsforhousing: 0.001194mm(Max)

Volume No: 4 (2017), Issue No: 2 (February) www.ijmetmr.com

February 2017

A Peer Reviewed Open Access International Journal

Fig9.TotalDeformation forhousin

Fig10.EquivalentStressesforShaft

Directional Deformations for Shaft (Y-axis): Max. Deformation 0.00335mm

Fig11.DeformationsforShaft (Y-Direction)

EquivalentStressforRollers:MaxStress47.757<460Mpa

(Allowablestress)

Fig12.EquivalentStressesforRollers

Directional Deformations for Rollers (Y-axis): Max. Deformation 0.003086mm

Fig13.DeformationPlot forRollers(Y-Direction)

Fig14.EquivalentStressesforBall

DirectionalDeformationsforBall(Y-axis): Deformation0.00939mm

Max.

Fig15.DirectionalDeformationsforBalls(Y-axis)

EquivalentStressforSleeve: MaxStress329<460Mpa(Allowablestress)

Fig16.EquivalentStressesforSleeve

Volume No: 4 (2017), Issue No: 2 (February) www.ijmetmr.com

February 2017

A Peer Reviewed Open Access International Journal

EquivalentStresses atinnerareaofsleeve

5-ANALYTICALCALCULATIONS

5-1-Life ofBearings

Thelife of thebearingdecreases with an increase in the load.

$$\frac{\mathbf{L}_{\mathbf{d}}}{\mathbf{L}_{\mathbf{c}}} = \left(\frac{\mathbf{C}_{\mathbf{d}}}{\mathbf{P}_{\mathbf{d}}}\right)^{\mathbf{k}}$$

k=3forballbearings

=10/3forrollerbearings Lc =lifefromthetable(manufacturerscatalog) Cd=dynamic rating frommanufacturer Pd=designload

The equationscanberewrittenasdependinguponthe variabletobecalculated.

5-2-EquivalentCombined Radial load

Forcombined	radialandthrustloads		
P=equivalent	radialload		
R=actualradia	alload		
Ft=actualthru	stload		
X=	radialfactor(usually0.56)	V=1.0	
forinnerracerotating			
=1.2 forouter	racerotating		

GivenData:

P=VXR+Y I	Ft	
Dynamic	Rating	fromManufacturer:12800N
RadialLoadH	Fr=591N	
AxialLoadFa	a=170N	
RadialFactor	r=0.56	

Therefor,equivalent =0.56*1.2*591+2*170 P =737.152N 5-4-BearingLife inHoursL10h L10=

L10=5235.50millionrev

6-DISCUSSIONANDCOMPARISONOFRESULTS

NowwehavetocomparetheresultsofGeometryafterdefor mation.Forthecomparisonpurposewe havecalculatedstresses,deformation,andmostimportantl ife of Bearing.

6-1-BearingClearancesEffects

Clearance betweenrollingelementlike rollers/ballsandsleeveismostcritical areaofIntegralShaft bearing.Frictionoccursbetweenrollingelementandsleeve there ischancesoffailureof bearing.Asper bearingdesignclearance is0.02mmwe havetocomparethis clearanceafterthermalexpansionof bearingcomponents.

Table4.DimensionsComparisonafterdeformationatBall Side

Components	Diameter	Deformation	Diameterafterdeformation
Shaft	14.212	0.003086	14.21508
Balls	6.34	0.00939	6.34939
Sleev	26.924	0.00315	26.9271

Clearancebetweenballandsleeve afterdeformation:26.92715-[14.215086+ (6.34939*2)] Clearance=0.013284mm<0.02mm

6.1.2.AtRollerSideClearance (Alldimensionsareinmm)

inY

Before

radialload,P

andafterthermalexpansioneffectondimensionsinY-DirectionofShaft,Rollersand Sleeve giveninTable5

Table5.DimensionsComparisonafterdeformationatRollerSide

Components	Diameter	Deformation	Diameterafterdeformation
Shaft	15.905	0.003086	15.9067
Rollers	4.763	0.003086	4.76608
Sleev	25.455	0.00315	25.4516

Clearancebetweenrollerandsleeveafterdeformation:25. 45165-[15.9067+ (4.766086*2)] Clearance=0.012778mm<0.02mm

A Peer Reviewed Open Access International Journal

Table5.1DimensionsComparisonafterdeformationat RollerSide

ľ	Components	Diameter	Deformation	Diameterafterdeformation
	Shaft	15.905	0.003086	15.9067
ſ	Rollers	4.763	0.003086	4.76608
ſ	Sleev	25.455	0.00315	25.4516

Table5.2

DimensionsComparisonafterdeformationatRollerSi de

Components	Diameter	Deformation	Diameterafterdeformation
Shaft	15.905	0.003086	15.9067
Rollers	4.763	0.003086	4.76608
Sleev	25.455	0.00315	25.4516

7-CONCLUSIONS

It is observed that Equivalent (Von-Mises) Stress Maximumat Shaft which is 189.1 Mpaand allowablestressofShaftmaterialis208MPa,alsoAfterDef ormationBearingClearances areinlimit, fromthisweconcludethatdesignissafe.

CoupledanalysisofThermalandStructuralbothareequall yimportanttoanalyzetheStressand DeformationofIntegral ShaftBearing.

ByusingtheAnalyticalMethodBearingLifeis58172.302hr, whichis alsosatisfiesthedesign.

FEManalysisisveryefficientmethodforachievingstresse satdifferentloadingconditionaccording toForces&temperatureappliedtothecomponentfrom thestaticanalysis.Theuseofnumerical

methodsuchasFinite

ElementMethodnowadaycommonlyusedtogivesdetailin formationabout structureorcomponent.

ACKNOWLEDGEMENT

Igratefully

acknowledgeDepartmentofMechanicalEngineeringofL ords Institute Engineering andTechnology ,Hyderabadfortechnicalsupportandprovidingtheresearc hfacilities. Iwouldalsolike tothankto Azam Pasha H.O.D.,A.Nihar

for

theirhelpanddedicationtowardmyresearchandrelatedres earch,alsomyfriends fortheirdirectly&indirectlyhelp,supportandexcellent co-operation.

REFERENCES

[1] PangChunjun, "StaticAnalysisofRollingBearings UsingFiniteElementMethod", masterthesissubmittedinUniversityofStuttgart, May2009.

[2]

RingPlusAquaLtd, "ShaftBearingDivision", Manufactur eCatalog

[3]

Ambeprasad.S.Kushwaha,AtulBWankhade,DineshEM ahajan,DarshanKThakur,"AnalysisoftheBall Bearing consideringtheThermal(Temperature)andFrictionEffect s", National Conference onEmergingTrendsinEngineering&Technology(VNCE T-30Mar'12).

[4]

TakeoKoyama, "ApplyingFEMtotheDesignofAutomotiveBearings", AutomotiveBearingTechnologyDepartment.