

 Page 109

Advanced Booth Recoder for Systematic Design of the Operator

A Veera Babu

Assistant Professor,

Department of ECE

Narasimha Reddy Engineering

College.

Kiran Kumar

Assistant Professor,

Department of ECE

Narasimha Reddy Engineering

College.

R Soloman

M.Tect (VLSI)

Department of ECE

Narasimha Reddy Engineering

College.

ABSTRACT:

The most effective way to increase the speed of a

multiplier is to reduce the number of the partial

products because multiplication precedes a series of

additions for the partial products. To reduce the

number of calculation steps for the partial products,

MBA algorithm has been applied mostly where CSA

has taken the role of increasing the speed to add the

partial products. To increase the speed of the MBA

algorithm, many parallel multiplication architectures

have been researched. A modified booth multiplier has

been designed which provides a flexible arithmetic

capacity and a tradeoff between output precision and

power consumption due to using of SPST architecture.

Moreover, the ineffective circuitry can be efficiently

deactivated, thereby reducing power consumption and

increasing speed of operation. The experimental

results have shown that the proposed multiplier

outperforms the conventional multiplier in terms of

power and speed of operation. In this paper we used

Xilinx-ISE tool for logical verification, and further

synthesizing it on Xilinx -ISE tool using target

technology and performing placing & routing

operation for system verification.

Keywords: Computer arithmetic, multiplication by

constants, common sub expressions sharing, Add-

Multiply operation, arithmetic circuits, Modified Booth

recoding, VLSI design.

I. INTRODUCTION

In this paper, we study the various parallel MAC

architectures and then implement a design of parallel

MAC based on some booth encodings such as radix-2

booth encoder and some final adders such as CLA,

Kogge stone adder and then compare their performance

characteristics. In general, a multiplier uses Booth

algorithm and an array of full adders, this multiplier

mainly consists of three parts Wallace tree, to add partial

products, booth encoder and final adder. A Digital

multiplier is the fundamental component in general

purpose microprocessor and in DSP [1]. Most of the

DSP methods use discrete cosine transformations in

discrete wavelet transformations. Compared with

many other arithmetic operations multiplication is

time consuming and power hungry. Thus enhancing

the performance and reducing the power dissipation are

the most important design challenges for all applications

in which multiplier unit dominate the system

performance and power dissipation. The one most

effective way to increase the speed of a multiplier is to

reduce the number of the partial products. Although the

number of partial products can be reduced with a higher

radix booth encoder, but the number of hard multiples

that are expensive to generate also increases

simultaneously. To increase the speed and

performance, many parallel MAC architectures have

been proposed. Parallelism in obtaining partial products

is the most common technique used in this architecture.

There are two common approaches that make use of

parallelism to enhance the multiplication performance.

The first one is reducing the number of partial

product rows and second one is the carry-save-tree

technique to reduce multiple partial product rows as two

"carry-save" redundant forms. An architecture was

proposed in [2] to provide the tact to merge the final

adder block to the accumulator register in the MAC

operator to provide the possibility of using two separate

N/2-bit adders instead of one N-bit adder to

accumulate the N–bit MAC results. The most advanced

types of MAC has been proposed by Elguibaly in which

accumulation has been combined with the carry save

 Page 110

adder (CSA) tree that compresses partial products and

thus reduces the critical path. While it has better

performance as compared to the previous MAC

architectures. Later on a new architecture for a high-

speed MAC is proposed by Seo and Kim. The difference

between the two is that the latest one carries out the

accumulation by feeding back the final CSA output

rather than the final adder results.

Fast multipliers are essential parts of digital signal

processing systems. The speed of multiply operation is

of great importance in digital signal processing as well

as in the general purpose processors today, especially

since the media processing took off. In the past

multiplication was generally implemented via a

sequence of addition, Subtraction, and shift

operations. Multiplication can be considered as a series

of repeated additions. The number to be added is the

multiplicand, the number of times that it is added is the

multiplier, and the result is the product. Each step of

addition generates a partial product. In most computers,

the operand usually contains the same number of bits.

When the operands are in terpreted as integers, the

product is generally twice the length of operands in

order to preserve the information content. This repeated

addition method that is suggested by the arithmetic

definition is slow that it is almost always replaced

by an algorithm that makes use of positional

representation. It is possible to decompose multipliers

into two parts. The first part is dedicated to the

generation of partial products, and the second one

collects and adds them.

II. DIFFERENT MULTIPLIERS

Binary Multiplication

In the binary number system the digits, called bits, are

limited to the set. The result of multiplying any binary

number by a single binary bit is either 0, or the original

number. This makes forming the intermediate partial-

products simple and efficient. Summing these partial-

products is the time consuming task for binary

multipliers. One logical approach is to form the

partial-products one at a time and sum them as

they are generated. Often implemented by software on

processors that do not have a hardware multiplier, this

technique works fine, but is slow because at least one

machine cycle is required to sum each additional partial-

product. For applications where this approach does not

provide enough performance, multipliers can be

implemented directly in hardware.

Hardware Multipliers

Direct hardware implementations of shift and add

multipliers can increase performance over software

synthesis, but are still quite slow. The reason is that as

each additional partial -product is summed a carry must

be propagated from the least significant bit (LSB) to

the most significant bit (MSB). This carry propagation

is time consuming, and must be repeated for each partial

product to be summed. One method to increase

multiplier performance is by using encoding

techniques to reduce the the number of partial

products to be summed. Just such a technique was first

proposed by Booth [BOO 511. The original Booth‟s

algorithm ships over contiguous strings of l‟s by using

the property that: 2‖ + 2(n-1) + 2(n-2) + . . . + 2hm) =

2(n+l) - 2(n-m). Although Booth’s algorithm produces at

most N/2 encoded partial products from an N bit

operand, the number of partial products produced

varies. This has caused designers to use modified

versions of Booth‟s algorithm for hardware

multipliers. Modified 2-bit Booth encoding halves

the number of partial products to be summed.Since the

resulting encoded partial-products can then be summed

using any suitable method, modified 2 bit Booth

encoding is used on most modern floating-point chips

LU 881, MCA 861. A few designers have even turned to

modified 3 bit Booth encoding, which reduces the

number of par tial products to be summed by a factor of

three IBEN 891. The problem with 3 bit encoding is that

the carry-propagate addition required to form the 3X

multiples often overshadows the potential gains of 3 bit

Booth encoding. To achieve even higher performance

advanced hardware multiplier architectures search for

faster and more efficient methods for summing the

partial-products. Most increase performance by

 Page 111

eliminating the time consuming carry propagate

additions. To accomplish this, they sum the partial -

products in a redundant number representation. The

advantage of a redundant representation is that two

numbers, or partial -products, can be added together

without propagating a carry across the entire width

of the number. Many redundant number

representations are possible. One commonly used

representation is known as carry-save form. In this

redundant representation two bits, known as the carry

and sum, are used to represent each bit position. When

two numbers in carry -save form are added together any

carries that result are never propagated more than one bit

position. This makes adding two numbers in carry-save

form much faster than adding two normal binary

numbers where a carry may propagate. One common

method that has been developed for summing rows of

partial products using a carry-save representation is the

array multiplier.

High-Speed Booth Encoded Parallel Multiplier

Design:

Fast multipliers are essential parts of digital signal

processing systems. The speed of multiply operation is

of great importance in digital signal processing as well

as in the general purpose processors today, especially

since the media processing took off. In the past

multiplication was generally implemented via a

sequence of addition, subtraction, and shift

operations. Multiplication can be considered as a

series of repeated additions. The number to be added is

the multiplicand, the number of times that it is added is

the multiplier, and the result is the product. Each step of

addition generates a partial product. In most computers ,

the operand usually contains the same number of bits.

When the operands are interpreted as integers, the

product is generally twice the length of operands in

order to preserve the information content. This repeated

addition method that is suggested by the arithmetic

definition is slow that it is almost always replaced

by an algorithm that makes use of positional

representation. It is possible to decompose multipliers

into two parts. The first part is dedicated to the

generation of partial products, and the second one

collects and adds them. The basic multiplication

principle is two fold i.e. evaluation of partial products

and accumulation of the shifted partial products. It is

performed by the successive additions of the columns of

the shifted partial product matrix. The „multiplier‟ is

successfully shifted and gates the appropriate bit of the

„multiplicand‟. The delayed, gated instance of the

multiplicand must all be in the same column of the

shifted partial product matrix. They are then added to

form the product bit for the particular form.

Multiplication is therefore a multi operand operation. To

extend the multiplication to both signed and unsigned.

III. Motivation and fused AM Implementation

A. Motivation

In this paper, we focus on AM units which implement

the operation Z=X. (A+B). The conventional design of

the AM operator (Fig. 1(a)) requires that its inputs A and

B are first driven to an adder and then the input X and

the sum Y=A+B are driven to a multiplier in order to get

Z. The drawback of using an adder is that it inserts a

significant delay in the critical path of the AM. As there

are carry signals to be propagated inside the adder, the

critical path depends on the bit-width of the inputs. In

order to decrease this delay, a Carry-Look-Ahead (CLA)

adder can be used which, however, increases the area

occupation and power dissipation. An optimized design

of the AM operator is based on the fusion of the adder

and the MB encoding unit into a single data path block

(Fig. 1(b)) by direct recoding of the sum Y=A+B to its

MB representation. The fused Add-Multiply (FAM)

component contains only one adder at the end (final

adder of the parallel multiplier). As a result, significant

area savings are observed and the critical path delay of

the recoding process is reduced and decoupled from the

bit-width of its inputs. In this work, we present a new

technique for direct recoding of two numbers in the MB

representation of their sum.

B. Review of the Modified Booth Form

Modified Booth (MB) is a prevalent form used in

multiplication [15], [20], [24]. It is a redundant signed-

 Page 112

digit radix-4 encoding technique. Its main advantage is

that it reduces by half the number of partial products in

multiplication comparing to any other radix-2

representation.

Fig. 1. AM operator based on the (a) conventional

design and (b) fused design with direct recoding of the

sum of A and B in its MB representation. The multiplier

is a basic parallel multiplier based on the MB algorithm.

The terms CT,CSA Tree and CLA Adder are referred to

the Correction Term, the Carry-Save Adder Tree and the

final Carry-Look-Ahead Adder of the multiplier.

Let us consider the multiplication of 2’s complement

numbers X and Y with each number consisting of

.The multiplicand Y can be

represented in MB form as:

C. FAM Implementation:

In the FAM design presented in Fig. 1(b), the multiplier

is a parallel one based on the MB algorithm. Let us

consider the product X.Y. The term

 is encoded based

on the MB algorithm (Section II.B) and multiplied with

.Both X and Y

consist of n=2k bits and are in 2’s complement form.

Equation (4) describes the generation of the k partial

products:

The generation of the i-th bit of the Pj,i partial product PP

j is based on the next logical expression while Fig. 3

illustrates its implementation at gate level

For the computation of the least and the most significant

bits of the partial product we consider and respectively.

Note that in case that , the number of the resulting

 Page 113

partial products is and the most significant MB digit is

formed based on sign extension of the initial 2’s

complement number.

After the partial products are generated, they are added,

properly weighted, through a Wallace Carry-Save Adder

(CSA) tree along with the Correction Term (CT) which

is given by the following equations:

Finally, the carry-save output of the Wallace CSA tree is

leaded to a fast Carry Look Ahead (CLA) adder to form

the final result Z = X . Y as shown in Fig.1 (b).

IV. SUM TO MODIFIED BOOTHR ECODING

TECHNIQUE(S-MB)

A. Defining Signed-Bit Full Adders and Half Adders

for Structured Signed Arithmetic

In S-MB recoding technique, we recode the sum of two

consecutive bits of the input A(a2j,a2j+1) with two

consecutive bits of the input B(b2j,b2j+1 into one MB

digit YJ
MB

. As we observe from (2), three bits are

included in forming a MB digit. The most significant of

them is negatively weighted while the two least

significant of them have positive weight. Consequently,

in order to transform the two aforementioned pairs of

bits in MB form we need to use signed-bit arithmetic.

For this purpose, we develop a set of bit-level signed

Half Adders (HA) and Full Adders (FA) considering

their inputs and outputs to be signed.

More specifically, in this work, we use two types of

signed HAs which are referred as HA* and HA**.

Tables II - IV are their truth tables and in Fig. 4 we

present their corresponding Boolean equations.

Considering that p,q are the binary inputs C and S , are

the outputs (carry and sum respectively) of a HA* which

implements the relation 2.C-S = p + q. where the sum is

considered negatively signed (Table II, Fig. 4(a)), the

output takes one of the values {0,+1,+2} In Table III, we

also describe the dual implementation of HA* where we

inversed the signs of all inputs and outputs and,

consequently, changed the output values to {-2,-1,0}.

Table IV and Fig. 4(b) show the operation and

schematic of HA** which implements the relation2.C-S

= -p+q and manipulates a negative (p)and a positive (q)

input resulting in the output value{-1,0,+1}.

Also, we design two types of signed FAs which are

presented in Table V and VI and Fig. 5. The schematics

drawn in Fig. 5(a) and (b) show the relation of FA* and

FA** with the conventional FA.

Fig.5.Boolean equations and schematics for signed (a)

FA* and (b) FA**.

 Page 114

B. Proposed S-MB Recoding Techniques

We use both conventional and signed HAs and FAs of

Section III.A in order to design and explore three new

alternative schemes of the S-MB recoding technique.

Each of the three schemes can be easily applied in either

signed (2’s complement representation) or unsigned

numbers which consist of odd or even number of bits

In all schemes we consider that both inputs A and B are

in 2’s complement form and consist of 2k bits in case of

even or 2k+1 bits in case of odd bit-width. Targeting to

transform the sum of A and B (Y = A + B) in its MB

representation, we consider the bits a2j,a2j+1 and

b2j,b2j+1, as the inputs of the j recoding cell in order to

get at its output the three bits that we need to form the

MB digit yj
MB

 according to (2).

1) S-MB1 Recoding Scheme: The first scheme of the

proposed recoding technique is referred asS-MB1 and is

illustrated in detail in Fig. 6 for both even (Fig. 6(a)) and

odd (Fig. 6(b)) bit-width of input numbers. As can be

seen in

Fig. 6, the sum of A and B is given by the next relation:

 Page 115

Fig. 7. S-MB2 recoding scheme for (a) even and (b) odd

number of bits.

V. SIMULATION RESULTS

The simulation of the program is done using Model

Sim tool and Xilinx ISE Design Suite 14.2. The results

for the multiplication of 4x4 and 8x8 using Modified

Booth Multiplier is shown in this section. The

simulation results of 4x4 bit Modified Booth

Multiplier in terms of number of occupied slices,

number of 4 inputs LUT and IOBs are shown in Table

III. The simulation results of 8x8 bit Modified

Booth Multiplier in terms of number of occupied slices,

number of 4 inputs LUT and IOBs are shown in Table

IV.

A. Using ModelSim

1) 4x4 bit

Figure8.4x4 bit Modified Booth Multiplication using

ModelSim

2) 8x8 bit

Figure 9. 8x8 bit Modified Booth Multiplication using

ModelSim

 Page 116

VI. CONCLUSION

This paper focuses on optimizing the design of the

Fused-Add Multiply (FAM) operator. We propose a

structured technique for the direct recoding of the sum

of two numbers to its MB form. We explore three

alternative designs of the proposed S-MB recoder and

compare them to the existing ones [12], [13] and

[23].The proposed recoding schemes, when they are

incorporated in FAM designs, yield considerable

performance improvements incomparison with the most

efficient recoding schemes found in literature.

REFERENCES

[1] D.J. Magenheimer, L. Peters, K.W. Pettis, and D.

Zuras, ―Integer Multiplication and Division on the HP

Precision Architecture,‖IEEE Trans. Computers,vol. 37,

no. 8, pp. 980-990, Aug. 1988.

[2] A.D. Booth, ―A Signed Binary Multiplication

Technique,‖Quarterly J. Mechanical Applications of

Math.,vol. IV, no. 2, pp. 236-240,1951.

[3] R. Bernstein, ―Multiplication by Integer

Constants,‖Software—Practice and Experience,vol. 16,

no. 7, pp. 641-652, July 1986.

[4] N. Boullis and A. Tisserand, ―Some Optimizations of

Hardware Multiplication by Constant Matrices,‖Proc.

16th IEEE Symp.Computer Arithmetic (ARITH 16),J. -

C. Bajard and M. Schulte, eds.,pp. 20-27, June 2003.

[5] M. Potkonjak, M.B. Srivastava, and A.P.

Chandrakasan, ―Multiple Constant Multiplications:

Efficient and Versatile Framework and Algorithms for

Exploring Common Subexpression Elimination,‖ IEEE

Trans. Computer-Aided Design of Integrated Circuits

and Systems,vol. 15, no. 2, pp. 151-165, Feb. 1996.

[6] M.D. Ercegovac and T. Lang,Digital

Arithmetic.Morgan Kaufmann, 2003.

[7] M.J. Flynn and S.F. Oberman,Advanced Computer

Arithmetic Design.Wiley-Interscience, 2001.

[8] R.I. Hartley, ―Subexpression Sharing in Filters Using

Canonic Signed Digit Multipliers,‖ IEEE Trans. Circuits

and Systems II:Analog and Digital Signal

Processing,vol. 43, no. 10, pp. 677-688,Oct. 1996.

[9] K.D. Chapman, ―Fast Integer Multipliers Fit in

FPGAs,‖EDN Magazine,May 1994.

[10] S. Yu and E.E. Swartzlander, ―DCT

Implementation with Distributed Arithmetic,‖IEEE

Trans. Computers, vol. 50, no. 9, pp. 985-991, Sept.

2001.

[11] P. Boonyanant and S. Tantaratana, ―FIR Filters

with Punctured Radix-8 Symmetric Coefficients: Design

and Multiplier-Free Realizations,‖Circuits Systems

Signal Processing,vol. 21, no. 4, pp. 345-367, 2002.

