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ABSTRACT: 

The most effective way to increase the speed of a 

multiplier is to reduce the number of the partial 

products because multiplication precedes a series of 

additions for the partial products. To reduce the 

number of calculation steps for the partial products, 

MBA algorithm has been applied mostly where CSA 

has taken the role of increasing the speed to add the 

partial products. To increase the speed of the MBA 

algorithm, many parallel multiplication architectures 

have been researched.  A modified booth multiplier has 

been designed which provides a flexible arithmetic 

capacity and a tradeoff between output precision and 

power consumption due to using of SPST architecture. 

Moreover, the ineffective circuitry can be efficiently 

deactivated, thereby reducing power consumption and 

increasing speed of operation. The experimental 

results have shown that the proposed multiplier 

outperforms the conventional multiplier in terms of 

power and speed of operation. In this  paper we used  

Xilinx-ISE  tool  for  logical  verification,  and  further  

synthesizing  it  on  Xilinx -ISE  tool  using  target 

technology and performing placing & routing 

operation for system verification. 
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I. INTRODUCTION 

In   this   paper, we study the various parallel MAC 

architectures and then implement a design of parallel 

MAC based on  some  booth encodings such as radix-2 

booth encoder and some final   adders such as CLA, 

Kogge stone adder and then compare their performance 

characteristics. In general, a multiplier uses Booth 

algorithm and an array of full adders, this multiplier 

mainly consists of three parts Wallace tree, to add partial 

products, booth encoder and final adder. A Digital 

multiplier is the fundamental component in general 

purpose microprocessor and in DSP [1]. Most of the 

DSP methods use discrete cosine transformations in 

discrete wavelet transformations.  Compared  with  

many  other arithmetic  operations  multiplication  is  

time  consuming  and power  hungry.  Thus enhancing   

the performance and reducing the power dissipation are 

the most important design challenges for all applications 

in which multiplier unit dominate the system 

performance and power dissipation. The one most 

effective way to increase the speed of a multiplier is to 

reduce the number of the partial products. Although the 

number of partial products can be reduced with a higher 

radix booth encoder, but the number of hard multiples 

that are expensive to generate also increases 

simultaneously.   To  increase  the  speed  and  

performance, many  parallel  MAC  architectures  have  

been  proposed. Parallelism in obtaining partial products 

is the most common technique used in this architecture. 

There are two common approaches that make use of 

parallelism to enhance the multiplication   performance.  

The  first  one  is  reducing  the number  of  partial  

product  rows  and  second  one  is  the carry-save-tree 

technique to reduce multiple partial product rows as two 

"carry-save" redundant  forms. An architecture was 

proposed in [2] to provide the tact to merge the final 

adder block to the accumulator    register in the MAC 

operator to provide the possibility of using two separate 

N/2-bit adders instead of one N-bit adder    to 

accumulate the N–bit MAC results. The most advanced 

types of MAC has been proposed by Elguibaly  in which  

accumulation   has been combined with the carry save 
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adder (CSA) tree that compresses partial products and 

thus reduces the critical path.  While it has better 

performance as compared to the previous MAC 

architectures. Later on a new architecture for a high-

speed MAC is proposed by Seo and Kim. The difference 

between the two is that the latest one carries out the 

accumulation by feeding back the final CSA output 

rather than the final adder results. 

 

Fast multipliers are essential parts of digital signal 

processing systems. The speed of multiply operation is 

of great importance in digital signal processing as well 

as in the general purpose processors today, especially 

since the media processing took off.  In  the past  

multiplication  was  generally  implemented  via  a  

sequence  of addition,  Subtraction,  and  shift  

operations.  Multiplication can be considered as a series 

of repeated additions. The number to be added is the 

multiplicand, the number of times that it is added is the 

multiplier, and the result is the product. Each step of 

addition generates a partial product. In most computers, 

the operand usually contains the same number of bits. 

When the operands are in terpreted as integers, the 

product is generally twice the length of operands in 

order to preserve the information content. This repeated 

addition method that is suggested by the arithmetic  

definition  is  slow  that  it  is  almost  always  replaced  

by  an  algorithm  that  makes  use  of  positional 

representation. It is possible to decompose multipliers 

into two parts. The first part is dedicated to the 

generation of partial products, and the second one 

collects and adds them. 

 

II. DIFFERENT MULTIPLIERS 

Binary Multiplication 

In the binary number system the digits, called bits, are 

limited to the set. The result of multiplying any binary 

number by a single binary bit is either 0, or the original 

number. This makes forming the intermediate partial-

products simple and efficient.  Summing these partial-

products is the time consuming task for binary 

multipliers.  One  logical  approach  is  to  form  the  

partial-products  one  at  a  time  and  sum  them  as  

they  are generated. Often implemented by software on 

processors that do not have a hardware multiplier, this 

technique works fine, but is slow because at least one 

machine cycle is required to sum each additional partial-

product. For applications where this approach does not 

provide enough performance, multipliers can be 

implemented directly in hardware. 

 

Hardware Multipliers 

Direct hardware implementations of shift and add 

multipliers can increase performance over software 

synthesis, but are still quite slow. The reason is that as 

each additional partial -product is summed a carry must 

be propagated from the least significant bit  (LSB)  to 

the most significant bit  (MSB).  This carry propagation 

is time consuming, and must be repeated for each partial 

product to be summed. One  method  to  increase  

multiplier  performance  is  by  using  encoding  

techniques  to  reduce  the  the number of partial 

products to be summed. Just such a technique was first 

proposed by  Booth [BOO 511. The  original Booth‟s 

algorithm ships over contiguous strings of l‟s by using 

the property that: 2‖ + 2(n-1) + 2(n-2) + . . . + 2hm) = 

2(n+l) - 2(n-m). Although Booth’s algorithm produces at 

most N/2 encoded partial products from  an  N  bit  

operand,  the number  of  partial  products produced  

varies.  This has  caused  designers to  use modified 

versions  of  Booth‟s algorithm  for hardware 

multipliers.  Modified  2-bit  Booth  encoding halves  

the number  of partial products to be summed.Since the 

resulting encoded partial-products can then be summed 

using any suitable method, modified 2 bit Booth 

encoding is used on most modern floating-point chips 

LU 881, MCA 861. A few designers have even turned to 

modified 3 bit Booth encoding, which reduces the 

number of par tial products to be summed by a factor of 

three IBEN 891. The problem with 3 bit encoding is that 

the carry-propagate addition required to form the 3X 

multiples often overshadows the potential gains of 3 bit 

Booth encoding. To achieve even higher performance 

advanced hardware multiplier architectures search for 

faster and more  efficient methods  for  summing  the  

partial-products. Most  increase performance  by  
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eliminating  the  time consuming carry propagate 

additions. To accomplish this, they sum the partial -

products in a redundant number representation.  The  

advantage  of  a  redundant  representation  is  that  two  

numbers,  or  partial -products,  can  be added  together  

without  propagating  a  carry  across  the  entire  width  

of  the  number.  Many redundant number 

representations are possible. One commonly used 

representation is known as carry-save form. In this 

redundant representation two bits, known as the carry 

and sum, are used to represent each bit position. When 

two numbers in carry -save form are added together any 

carries that result are never propagated more than one bit 

position. This makes adding two numbers in carry-save 

form much faster than adding two normal binary 

numbers where a carry may propagate.  One common 

method that has been developed for summing rows of      

partial products using a carry-save representation is the 

array multiplier. 

 

High-Speed Booth Encoded Parallel Multiplier 

Design: 

Fast multipliers are essential parts of digital signal 

processing systems. The speed of multiply operation is 

of great importance  in digital signal processing as well 

as in the general purpose processors today, especially 

since  the media  processing  took  off.  In  the past  

multiplication  was  generally  implemented  via  a  

sequence  of addition,  subtraction,  and  shift  

operations.  Multiplication  can  be  considered as a  

series  of  repeated  additions. The number to be added is 

the multiplicand, the number of times that it is added is 

the multiplier, and the result is the product. Each step of 

addition generates a partial product. In most computers , 

the operand usually contains the same number of bits. 

When the operands are interpreted as integers, the 

product is generally twice the length of operands in 

order to preserve the information content. This repeated 

addition method that is suggested by the arithmetic  

definition  is  slow  that  it  is  almost  always  replaced  

by  an  algorithm  that  makes  use  of  positional 

representation. It is possible to decompose multipliers 

into two parts. The first part is dedicated to the 

generation of partial products, and the second one 

collects and adds them. The basic multiplication 

principle is two fold i.e. evaluation of partial products 

and accumulation of the shifted partial products. It is 

performed by the successive additions of the columns of 

the shifted partial product matrix. The „multiplier‟ is 

successfully shifted and gates the appropriate bit of the 

„multiplicand‟. The delayed, gated instance of the 

multiplicand must all be in the same column of the 

shifted partial product matrix. They are then added to 

form the product bit for the particular form. 

Multiplication is therefore a multi operand operation. To 

extend the multiplication to both signed and unsigned. 

 

III. Motivation and fused AM Implementation 

A. Motivation 

In this paper, we focus on AM units which implement 

the operation Z=X. (A+B). The conventional design of 

the AM operator (Fig. 1(a)) requires that its inputs A and 

B are first driven to an adder and then the input X and 

the sum Y=A+B are driven to a multiplier in order to get 

Z. The drawback of using an adder is that it inserts a 

significant delay in the critical path of the AM. As there 

are carry signals to be propagated inside the adder, the 

critical path depends on the bit-width of the inputs. In 

order to decrease this delay, a Carry-Look-Ahead (CLA) 

adder can be used which, however, increases the area 

occupation and power dissipation. An optimized design 

of the AM operator is based on the fusion of the adder 

and the MB encoding unit into a single data path block 

(Fig. 1(b)) by direct recoding of the sum Y=A+B to its 

MB representation. The fused Add-Multiply (FAM) 

component contains only one adder at the end (final 

adder of the parallel multiplier). As a result, significant 

area savings are observed and the critical path delay of 

the recoding process is reduced and decoupled from the 

bit-width of its inputs. In this work, we present a new 

technique for direct recoding of two numbers in the MB 

representation of their sum. 

 

B. Review of the Modified Booth Form 

Modified Booth (MB) is a prevalent form used in 

multiplication [15], [20], [24]. It is a redundant signed-
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digit radix-4 encoding technique. Its main advantage is 

that it reduces by half the number of partial products in 

multiplication comparing to any other radix-2 

representation. 

 
Fig. 1. AM operator based on the (a) conventional 

design and (b) fused design with direct recoding of the 

sum of  A and B in its MB representation. The multiplier 

is a basic parallel multiplier based on the MB algorithm. 

The terms CT,CSA Tree and CLA Adder are referred to 

the Correction Term, the Carry-Save Adder Tree and the 

final Carry-Look-Ahead Adder of the multiplier. 

 

Let us consider the multiplication of 2’s complement 

numbers X and Y with each number consisting of 

.The multiplicand Y can be 

represented in MB form as: 

 
 

C. FAM Implementation: 

In the FAM design presented in Fig. 1(b), the multiplier 

is a parallel one based on the MB algorithm. Let us 

consider the product X.Y. The term 

 is encoded based 

on the MB algorithm (Section II.B) and multiplied with 

.Both X and Y 

consist of n=2k bits and are in 2’s complement form. 

Equation (4) describes the generation of the k partial 

products: 

 
The generation of the i-th bit of the Pj,i partial product PP 

j is based on the next logical expression while Fig. 3 

illustrates its implementation at gate level 

 

 
For the computation of the least and the most significant 

bits of the partial product we consider and respectively. 

Note that in case that , the number of the resulting 
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partial products is and the most significant MB digit is 

formed based on sign extension of the initial 2’s 

complement number. 

 

After the partial products are generated, they are added, 

properly weighted, through a Wallace Carry-Save Adder 

(CSA) tree along with the Correction Term (CT) which 

is given by the following equations: 

 

 
 

Finally, the carry-save output of the Wallace CSA tree is 

leaded to a fast Carry Look Ahead (CLA) adder to form 

the final result  Z = X . Y as shown in Fig.1 (b). 

 

IV. SUM TO MODIFIED BOOTHR ECODING 

TECHNIQUE(S-MB) 

A. Defining Signed-Bit Full Adders and Half Adders 

for Structured Signed Arithmetic 

In S-MB recoding technique, we recode the sum of two 

consecutive bits of the input A(a2j,a2j+1) with two 

consecutive bits of the input B(b2j,b2j+1 into one MB 

digit YJ
MB

. As we observe from (2), three bits are 

included in forming a MB digit. The most significant of 

them is negatively weighted while the two least 

significant of them have positive weight. Consequently, 

in order to transform the two aforementioned pairs of 

bits in MB form we need to use signed-bit arithmetic. 

For this purpose, we develop a set of bit-level signed 

Half Adders (HA) and Full Adders (FA) considering 

their inputs and outputs to be signed. 

 

More specifically, in this work, we use two types of 

signed HAs which are referred as HA* and HA**. 

Tables II - IV are their truth tables and in Fig. 4 we 

present their corresponding Boolean equations. 

Considering that p,q are the binary inputs C and S , are 

the outputs (carry and sum respectively) of a HA* which 

implements the relation 2.C-S = p + q. where the sum is 

considered negatively signed (Table II, Fig. 4(a)), the 

output takes one of the values {0,+1,+2} In Table III, we 

also describe the dual implementation of HA* where we 

inversed the signs of all inputs and outputs and, 

consequently, changed the output values to {-2,-1,0}. 

Table IV and Fig. 4(b) show the operation and 

schematic of HA** which implements the relation2.C-S 

= -p+q and manipulates a negative ( p )and a positive (q) 

input resulting in the output value{-1,0,+1}. 

 

Also, we design two types of signed FAs which are 

presented in Table V and VI and Fig. 5. The schematics 

drawn in Fig. 5(a) and (b) show the relation of FA* and 

FA** with the conventional FA. 

 
Fig.5.Boolean equations and schematics for signed (a) 

FA* and (b) FA**. 
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B. Proposed S-MB Recoding Techniques 

We use both conventional and signed HAs and FAs of 

Section III.A in order to design and explore three new 

alternative schemes of the S-MB recoding technique. 

Each of the three schemes can be easily applied in either 

signed (2’s complement representation) or unsigned 

numbers which consist of odd or even number of bits 

 

In all schemes we consider that both inputs A and B are 

in 2’s complement form and consist of 2k bits in case of 

even or 2k+1 bits in case of odd bit-width. Targeting to 

transform the sum of A and B (Y = A + B) in its MB 

representation, we consider the bits a2j,a2j+1 and 

b2j,b2j+1, as the inputs of the  j recoding cell in order to 

get at its output the three bits that we need to form the 

MB digit yj
MB

 according to (2). 

 

1) S-MB1 Recoding Scheme:  The first scheme of the 

proposed recoding technique is referred asS-MB1 and is 

illustrated in detail in Fig. 6 for both even (Fig. 6(a)) and 

odd (Fig. 6(b)) bit-width of input numbers. As can be 

seen in 

 

Fig. 6, the sum of A and B is given by the next relation: 
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Fig. 7. S-MB2 recoding scheme for (a) even and (b) odd 

number of bits. 

 

V.  SIMULATION RESULTS 

The simulation  of  the  program  is  done  using  Model 

Sim tool and Xilinx ISE Design Suite 14.2. The results 

for the multiplication of  4x4  and  8x8  using  Modified  

Booth Multiplier is shown in this section. The  

simulation  results  of  4x4  bit  Modified  Booth 

Multiplier in terms of number of occupied slices, 

number of 4 inputs LUT and IOBs are shown in Table 

III. The  simulation  results  of  8x8  bit  Modified  

Booth Multiplier in terms of number of occupied slices, 

number of 4 inputs LUT and IOBs are shown in Table 

IV. 

 

A.  Using ModelSim  

1)  4x4 bit  

Figure8.4x4 bit Modified Booth Multiplication using 

ModelSim  

 
 

2)  8x8 bit  

Figure 9. 8x8 bit Modified Booth Multiplication using 

ModelSim 
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VI. CONCLUSION 

This paper focuses on optimizing the design of the 

Fused-Add Multiply (FAM) operator. We propose a 

structured technique for the direct recoding of the sum 

of two numbers to its MB form. We explore three 

alternative designs of the proposed S-MB recoder and 

compare them to the existing ones [12], [13] and 

[23].The proposed recoding schemes, when they are 

incorporated in FAM designs, yield considerable 

performance improvements incomparison with the most 

efficient recoding schemes found in literature. 
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