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Abstract: 

In this brief we presents an area-efficient tree 

architecture for finding the first two minima as well as 

the index of the first minimum, which is essential in 

the design of a low-density parity check decoder based 

on the min–sum algorithm. The proposed architecture 

reduces the number of comparators by reusing the 

intermediate comparison results computed for the first 

minimum in order to collect the candidates of the 

second minimum. The synthesis and simulation are 

performed on Xilinx ISE 14.7 using Verilog HDL. As 

a result, the proposed tree architecture improves the 

area–time complexity remarkably.  

 

Index Terms: 

Area-efficient design, digital integrated circuits, low-

density parity-check (LDPC) codes, minimum value 

generation, tree structure. 

 

I. INTRODUCTION: 

DUE to the powerful error-correcting capability, 

lowdensity parity-check (LDPC) codes have widely 

been applied to wireless communication systems [1], 

[2], personal area networks [3], and solid-state drives 

[4], [5]. To eliminate the complicated hyperbolic 

computations required in the sum–product decoding 

algorithm, recent LDPC decoders are implemented 

based on the min–sum (MS) decoding algorithm [4]–

[8]. In the MS algorithm, the check-node (CN) 

operation computes the first two minima and the index 

of the first minimum among many variable-to-check 

messages given as inputs. Generally, the hardware 

block that finds the first two minima, which is called a 

searching module (SM), can be implemented by 

employing the balanced tree structure [9]–[12].  

 

The number of inputs to be compared in selecting the 

first two minima is increasing to achieve strong and 

long LDPC codes [4]–[6]. For example, a recent SM 

developed for storage applications deals with more 

than 100 inputs [4]. The hardware complexity of such 

a complex SM takes a significant portion in the overall 

complexity of an LDPC decoder. Moreover, the area 

taken by multiple SMs becomes more considerable in 

a high-throughput decoder, as massive CN operations 

are performed in parallel to increase the decoding 

throughput [11]. A novel tree structure is proposed in 

this brief to minimize the number of comparators as 

well as the area–time (AT) complexity. Instead of 

finding the exact second minimum after finding the 

first minimum, the proposed algorithm collects the 

candidates of the second minimum while searching for 

the first minimum. The candidate set is easily 

constructed by reusing the comparison results 

performed for the first minimum. Compared to the 

previous SM, the proposed SM reduces the number of 

comparators by more than 40%.  

 

II. PREVIOUS WORKS: 

For a given set of k w-bit inputs, X = {x0, x1,...,xk−1}, 

the SM for k inputs produces three outputs: 1) the first 

minimum value MIN1 = min{X}, 2) the second 

minimum value, MIN2 = min{X − {MIN1}}, and 3) 

the index of the first minimum IDX, which is i if xi is 

MIN1. Two 2-input primitive units, C1M1 and C1M2, 

are widely used to realize an SM. As shown in Fig. 

1(a), the C1M1 unit that selects the smaller value from 

two inputs consists of one comparator and one w-bit 2-

to-1 multiplexor. On the other hand, the C1M2 unit is 

made of one comparator and two w-bit 2-to-1 

multiplexors to determine both the larger and smaller 
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values, as depicted in Fig. 1(b). For the sake of 

simplicity, we focus in this brief on the generation of 

MIN1 and MIN2, as IDX can be obtained using the 

results of comparisons performed for MIN1 [11]. In 

addition, let the number of inputs k be a power of 2, 

i.e., k = 2m. When k is not a power of 2, such an SM 

can be achieved by pruning some leaf nodes of the 

balanced SM built with 2m inputs where 2m > k, as 

described in the previous literatures [9]–[12]. 

Fig. 1. Details of two component units. (a) C1M1 

unit. (b) C1M2 unit 

 

Fig. 2 depicts the conventional sorting-based SM, 

referred to as SMsort, dealing with eight inputs [9], 

[10]. The overall process consists of two steps: 1) 

finding MIN1 with the binary tree structure and 2) 

selecting MIN2 by means of the multiplexing network 

controlled by IDX [9]. As shown in Fig. 3, IDX can 

simply be generated from the comparison results, 

where cij represents the jth comparison result at the ith 

step of the binary tree. The multiplexing network 

generates a candidate set of MIN2, Y = {y0, y1, y2}, 

by employing three 8-to-1 multiplexors. After 

choosing three candidates, two C1M1 units are used to 

determine MIN2. As a result, the SMsort necessitates 

nine comparators, three 8-to-1 multiplexors, and nine 

2-to-1 multiplexors to process eight inputs and 

furthermore suffers from the long critical delay caused 

by the serially connected structure. Due to the 

miscellaneous control at the multiplexing network, the 

critical delay of SMsort is slightly larger than 5TC + 

5TM2 + TM8, where TC , TM2, and TM8 stand for 

the delay of a comparator, a 2-to-1 multiplexor, and an 

8-to-1 multiplexor, respectively [11]. 

Fig. 2. Sorting-based searching module designed for 

eight inputs [9]. 

 

For a high-speed realization, the tree-based SM 

architecture, referred to as SMtree, was proposed in 

[11]. The SMtree designed for eight inputs is 

exemplified in Fig. 4, where the processing times for 

MIN1 and MIN2 are almost the same as they are both 

based on the hierarchical tree structure. To calculate 

exact MIN2 in each subtree, however, SMtree requires 

more comparators than SMsort. Three C1M1 units and 

one 2-to-1 multiplexor are additionally used to 

combine two subtrees, but the serially connected block 

required for finding MIN2 in SMsort is removed so 

that the critical delay of SMtree is reduced to 3TC + 

5TM2. A faster tree-based SM, denoted as SMradix, 

was achieved by adopting the mixed-radix scheme 

[12]. However, realizing the high-radix computation 

increases comparators and multiplexors drastically. As 

the hardware complexity of a comparator is 

considerable, the previous tree-based SM cannot be 

cost effective when the number of inputs is not small, 

particularly for recent strong LDPC codes targeting a 

row degree of more than 100 [4], [5]. Hence, it is 

necessary to develop a new SM that can reduce 

comparators while keeping the critical delay less than 

that of SMsort. 
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Fig. 3. Detailed structure for generating the index 

of the first minimum, i.e., IDX. 

 

 
Fig. 4. Tree-based searching module for eight 

inputs [11]. 

 

III.PROPOSED ARCHITECTURE:  

It is possible to reduce the number of comparators 

needed for the second minimum by reusing the 

comparison results performed for the first minimum. 

In the proposed architecture, a candidate set Y for 

MIN2 is first constructed by using the prior 

comparison results, and then a comparison network is 

additionally constructed to select MIN2. This two-step 

approach is conceptually similar to SMsort [9], but the 

second step is much faster in the proposed architecture. 

As previously discussed, SMsort requires complex 

multiplexing networks to construct the candidate set 

and thus suffers from the long critical delay resulting 

from k-to-1 multiplexors. To eliminate the complex k-

to-1 multiplexors, the proposed architecture introduces 

a basic unit, i.e., PROk, which produces the first 

minimum of k inputs and m (= log2 k) candidates for 

the second minimum, as depicted in Fig. 5(a). Similar 

to SMtree, a PROk unit can be recursively designed 

with two smaller PROk/2 units, as shown in Fig. 5(b). 

The first minimum of k inputs, i.e., MIN1, is simply 

selected by comparing two minima, i.e., MIN(L) 1 and 

MIN(R) 1 , produced in PRO(L) k/2 and PRO(R) k/2 

units, respectively. Depending on the comparison 

result of the C1M2, the PROk decides m − 1 

candidates for the second minimum by selecting either 

the candidate set of PRO(L) k/2 or that of PRO(R) k/2. 

If MIN(L) 1 is smaller than MIN(R) 1 , all the m − 1 

candidates of PRO(R) k/2 cannot be the second 

minimum, because MIN(R) 1 is the smallest value 

among the 2m−1 inputs on the right side. Therefore, m 

candidates for the second minimum are simply formed 

by including one of MIN(L) 1 and MIN(R) 1 to the m 

− 1 candidates selected by the result of the C1M2, as 

shown in Fig. 5(b). In short, a PROk unit can be 

realized with two PROk/2 units, one comparator and m 

+ 1 2-to-1 multiplexors. It is apparent that a PRO2 unit 

processing two inputs is identical to the C1M2 unit 

shown in Fig. 1(b). 

 
Fig. 5. (a) Proposed PROk unit. (b) Its recursive 

structure. 
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The major point of the PROk is that the candidate set 

for the second minimum is constructed in parallel with 

the searching for the first minimum. After finding the 

first minimum, another tree structure that can be built 

with m − 1 C1M1 units is used to find MIN2 among m 

candidates. 

 
Fig. 6. Proposed searching module for eight inputs. 

 

Fig. 6 shows how the proposed SM, referred to as 

SMpro, is constructed to process eight inputs, where a 

PRO8 unit is followed by a tree structure composed of 

two C1M1 units to find MIN2 among the three 

candidates produced in the PRO8 unit. The SMpro in 

Fig. 6 requires 9 comparators and 20 2-to-1 

multiplexors to process eight inputs, whereas the 

SMtree in Fig. 4 necessitates 13 comparators and 20 2-

to-1 multiplexors for the same number of inputs. The 

critical delay of SMpro is 5TC + 5TM2, which is much 

smaller than that of SMsort. 

 

TABLE I COMPARISONS OF SEARCHING  

MODULES FOR 2m INPUTS 

 

Table I compares the hardware complexities and 

critical delays of three different SM architectures, 

where the number of inputs is assumed to be a power 

of 2, k = 2m. As there are m final candidates for 

MIN2, SMsort and SMpro require 2m + m − 2 

comparators in determining two minima, which is 

much smaller than that of SMtree. As the proposed 

architecture completely removes the 2m-to-1 

multiplexors that are inevitable in SMsort, the critical 

delay of SMpro is much smaller than that of SMsort. 

Note that the delay of SMpro is quite comparable with 

that of SMtree, as indicated in Table I. As the number 

of inputs increases, in addition, the proposed structure 

becomes more area efficient. If the number of inputs is 

increased to 64, for example, the proposed architecture 

eliminates 40% comparators of SMtree, remarkably 

reducing the hardware complexity. 

 

IV. SIMULATION RESULTS: 

All the synthesis and simulation results are performed 

using Verilog HDL. The synthesis and simulation are 

performed on Xilinx ISE 14.7. The simulation results 

are shown below figures. 

 
Fig 7.RTL schematic of Proposed Searching 

Method 

 
Fig 8.RTL sub schematic of Proposed Searching 

Method 
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Fig 9.Technology schematic of Proposed Searching 

Method 

 

 
Fig 10.Simulation of Proposed Searching Method 

 

V.CONCLUSION: 

We have coded Verilog code for the designed and 

implemented this project on Xilinx ISE 14.7. We have 

presented a novel tree structure that finds the first two 

minima among many inputs. In the proposed structure, 

the candidates of the second minimum are collected by 

utilizing the results of comparisons performed for the 

first minimum. Hence, the proposed structure 

minimizes the number of comparators, leading to a 

low-complexity realization. In addition, the second 

minimum is selected from the candidates by carrying 

out a few comparison steps. As the proposed structure 

eliminates the large-sized multiplexing networks, it 

improves the AT complexity significantly compared to 

those of the previous state-of-theart SMs. 
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