

 Page 853

Low-Complexity Tree Architecture for Finding the First Two

Minima
Gyara Nirmala (M.Tech)

Embedded Systems and VLSI,

Malla Reddy College of

Engineering.

P.Venkatapathi, M. Tech, (Ph.D),

LMISTE, Assistant Professor,

Malla Reddy College of

Engineering.

M.Shiva Kumar, M.Tech

Professor & HOD,

Malla Reddy College of

Engineering.

Abstract:

In this brief we presents an area-efficient tree

architecture for finding the first two minima as well as

the index of the first minimum, which is essential in

the design of a low-density parity check decoder based

on the min–sum algorithm. The proposed architecture

reduces the number of comparators by reusing the

intermediate comparison results computed for the first

minimum in order to collect the candidates of the

second minimum. The synthesis and simulation are

performed on Xilinx ISE 14.7 using Verilog HDL. As

a result, the proposed tree architecture improves the

area–time complexity remarkably.

Index Terms:

Area-efficient design, digital integrated circuits, low-

density parity-check (LDPC) codes, minimum value

generation, tree structure.

I. INTRODUCTION:

DUE to the powerful error-correcting capability,

lowdensity parity-check (LDPC) codes have widely

been applied to wireless communication systems [1],

[2], personal area networks [3], and solid-state drives

[4], [5]. To eliminate the complicated hyperbolic

computations required in the sum–product decoding

algorithm, recent LDPC decoders are implemented

based on the min–sum (MS) decoding algorithm [4]–

[8]. In the MS algorithm, the check-node (CN)

operation computes the first two minima and the index

of the first minimum among many variable-to-check

messages given as inputs. Generally, the hardware

block that finds the first two minima, which is called a

searching module (SM), can be implemented by

employing the balanced tree structure [9]–[12].

The number of inputs to be compared in selecting the

first two minima is increasing to achieve strong and

long LDPC codes [4]–[6]. For example, a recent SM

developed for storage applications deals with more

than 100 inputs [4]. The hardware complexity of such

a complex SM takes a significant portion in the overall

complexity of an LDPC decoder. Moreover, the area

taken by multiple SMs becomes more considerable in

a high-throughput decoder, as massive CN operations

are performed in parallel to increase the decoding

throughput [11]. A novel tree structure is proposed in

this brief to minimize the number of comparators as

well as the area–time (AT) complexity. Instead of

finding the exact second minimum after finding the

first minimum, the proposed algorithm collects the

candidates of the second minimum while searching for

the first minimum. The candidate set is easily

constructed by reusing the comparison results

performed for the first minimum. Compared to the

previous SM, the proposed SM reduces the number of

comparators by more than 40%.

II. PREVIOUS WORKS:

For a given set of k w-bit inputs, X = {x0, x1,...,xk−1},

the SM for k inputs produces three outputs: 1) the first

minimum value MIN1 = min{X}, 2) the second

minimum value, MIN2 = min{X − {MIN1}}, and 3)

the index of the first minimum IDX, which is i if xi is

MIN1. Two 2-input primitive units, C1M1 and C1M2,

are widely used to realize an SM. As shown in Fig.

1(a), the C1M1 unit that selects the smaller value from

two inputs consists of one comparator and one w-bit 2-

to-1 multiplexor. On the other hand, the C1M2 unit is

made of one comparator and two w-bit 2-to-1

multiplexors to determine both the larger and smaller

 Page 854

values, as depicted in Fig. 1(b). For the sake of

simplicity, we focus in this brief on the generation of

MIN1 and MIN2, as IDX can be obtained using the

results of comparisons performed for MIN1 [11]. In

addition, let the number of inputs k be a power of 2,

i.e., k = 2m. When k is not a power of 2, such an SM

can be achieved by pruning some leaf nodes of the

balanced SM built with 2m inputs where 2m > k, as

described in the previous literatures [9]–[12].

Fig. 1. Details of two component units. (a) C1M1

unit. (b) C1M2 unit

Fig. 2 depicts the conventional sorting-based SM,

referred to as SMsort, dealing with eight inputs [9],

[10]. The overall process consists of two steps: 1)

finding MIN1 with the binary tree structure and 2)

selecting MIN2 by means of the multiplexing network

controlled by IDX [9]. As shown in Fig. 3, IDX can

simply be generated from the comparison results,

where cij represents the jth comparison result at the ith

step of the binary tree. The multiplexing network

generates a candidate set of MIN2, Y = {y0, y1, y2},

by employing three 8-to-1 multiplexors. After

choosing three candidates, two C1M1 units are used to

determine MIN2. As a result, the SMsort necessitates

nine comparators, three 8-to-1 multiplexors, and nine

2-to-1 multiplexors to process eight inputs and

furthermore suffers from the long critical delay caused

by the serially connected structure. Due to the

miscellaneous control at the multiplexing network, the

critical delay of SMsort is slightly larger than 5TC +

5TM2 + TM8, where TC , TM2, and TM8 stand for

the delay of a comparator, a 2-to-1 multiplexor, and an

8-to-1 multiplexor, respectively [11].

Fig. 2. Sorting-based searching module designed for

eight inputs [9].

For a high-speed realization, the tree-based SM

architecture, referred to as SMtree, was proposed in

[11]. The SMtree designed for eight inputs is

exemplified in Fig. 4, where the processing times for

MIN1 and MIN2 are almost the same as they are both

based on the hierarchical tree structure. To calculate

exact MIN2 in each subtree, however, SMtree requires

more comparators than SMsort. Three C1M1 units and

one 2-to-1 multiplexor are additionally used to

combine two subtrees, but the serially connected block

required for finding MIN2 in SMsort is removed so

that the critical delay of SMtree is reduced to 3TC +

5TM2. A faster tree-based SM, denoted as SMradix,

was achieved by adopting the mixed-radix scheme

[12]. However, realizing the high-radix computation

increases comparators and multiplexors drastically. As

the hardware complexity of a comparator is

considerable, the previous tree-based SM cannot be

cost effective when the number of inputs is not small,

particularly for recent strong LDPC codes targeting a

row degree of more than 100 [4], [5]. Hence, it is

necessary to develop a new SM that can reduce

comparators while keeping the critical delay less than

that of SMsort.

 Page 855

Fig. 3. Detailed structure for generating the index

of the first minimum, i.e., IDX.

Fig. 4. Tree-based searching module for eight

inputs [11].

III.PROPOSED ARCHITECTURE:

It is possible to reduce the number of comparators

needed for the second minimum by reusing the

comparison results performed for the first minimum.

In the proposed architecture, a candidate set Y for

MIN2 is first constructed by using the prior

comparison results, and then a comparison network is

additionally constructed to select MIN2. This two-step

approach is conceptually similar to SMsort [9], but the

second step is much faster in the proposed architecture.

As previously discussed, SMsort requires complex

multiplexing networks to construct the candidate set

and thus suffers from the long critical delay resulting

from k-to-1 multiplexors. To eliminate the complex k-

to-1 multiplexors, the proposed architecture introduces

a basic unit, i.e., PROk, which produces the first

minimum of k inputs and m (= log2 k) candidates for

the second minimum, as depicted in Fig. 5(a). Similar

to SMtree, a PROk unit can be recursively designed

with two smaller PROk/2 units, as shown in Fig. 5(b).

The first minimum of k inputs, i.e., MIN1, is simply

selected by comparing two minima, i.e., MIN(L) 1 and

MIN(R) 1 , produced in PRO(L) k/2 and PRO(R) k/2

units, respectively. Depending on the comparison

result of the C1M2, the PROk decides m − 1

candidates for the second minimum by selecting either

the candidate set of PRO(L) k/2 or that of PRO(R) k/2.

If MIN(L) 1 is smaller than MIN(R) 1 , all the m − 1

candidates of PRO(R) k/2 cannot be the second

minimum, because MIN(R) 1 is the smallest value

among the 2m−1 inputs on the right side. Therefore, m

candidates for the second minimum are simply formed

by including one of MIN(L) 1 and MIN(R) 1 to the m

− 1 candidates selected by the result of the C1M2, as

shown in Fig. 5(b). In short, a PROk unit can be

realized with two PROk/2 units, one comparator and m

+ 1 2-to-1 multiplexors. It is apparent that a PRO2 unit

processing two inputs is identical to the C1M2 unit

shown in Fig. 1(b).

Fig. 5. (a) Proposed PROk unit. (b) Its recursive

structure.

 Page 856

The major point of the PROk is that the candidate set

for the second minimum is constructed in parallel with

the searching for the first minimum. After finding the

first minimum, another tree structure that can be built

with m − 1 C1M1 units is used to find MIN2 among m

candidates.

Fig. 6. Proposed searching module for eight inputs.

Fig. 6 shows how the proposed SM, referred to as

SMpro, is constructed to process eight inputs, where a

PRO8 unit is followed by a tree structure composed of

two C1M1 units to find MIN2 among the three

candidates produced in the PRO8 unit. The SMpro in

Fig. 6 requires 9 comparators and 20 2-to-1

multiplexors to process eight inputs, whereas the

SMtree in Fig. 4 necessitates 13 comparators and 20 2-

to-1 multiplexors for the same number of inputs. The

critical delay of SMpro is 5TC + 5TM2, which is much

smaller than that of SMsort.

TABLE I COMPARISONS OF SEARCHING

MODULES FOR 2m INPUTS

Table I compares the hardware complexities and

critical delays of three different SM architectures,

where the number of inputs is assumed to be a power

of 2, k = 2m. As there are m final candidates for

MIN2, SMsort and SMpro require 2m + m − 2

comparators in determining two minima, which is

much smaller than that of SMtree. As the proposed

architecture completely removes the 2m-to-1

multiplexors that are inevitable in SMsort, the critical

delay of SMpro is much smaller than that of SMsort.

Note that the delay of SMpro is quite comparable with

that of SMtree, as indicated in Table I. As the number

of inputs increases, in addition, the proposed structure

becomes more area efficient. If the number of inputs is

increased to 64, for example, the proposed architecture

eliminates 40% comparators of SMtree, remarkably

reducing the hardware complexity.

IV. SIMULATION RESULTS:

All the synthesis and simulation results are performed

using Verilog HDL. The synthesis and simulation are

performed on Xilinx ISE 14.7. The simulation results

are shown below figures.

Fig 7.RTL schematic of Proposed Searching

Method

Fig 8.RTL sub schematic of Proposed Searching

Method

 Page 857

Fig 9.Technology schematic of Proposed Searching

Method

Fig 10.Simulation of Proposed Searching Method

V.CONCLUSION:

We have coded Verilog code for the designed and

implemented this project on Xilinx ISE 14.7. We have

presented a novel tree structure that finds the first two

minima among many inputs. In the proposed structure,

the candidates of the second minimum are collected by

utilizing the results of comparisons performed for the

first minimum. Hence, the proposed structure

minimizes the number of comparators, leading to a

low-complexity realization. In addition, the second

minimum is selected from the candidates by carrying

out a few comparison steps. As the proposed structure

eliminates the large-sized multiplexing networks, it

improves the AT complexity significantly compared to

those of the previous state-of-theart SMs.

REFERENCES:

[1] IEEE Standard for Local and Metropolitan Area

Networks Part 11: Wireless LAN Medium Access

Control (MAC) and Physical Layer (PHY)

Specifications, IEEE Std. 802.11n-2009, Oct. 2009.

[2] IEEE Standard for Local and Metropolitan Area

Networks Part 16: Air Interface for Broadband

Wireless Access Systems, IEEE Std. 802.16-2009,

May 2009.

[3] IEEE Standard for Local and Metropolitan Area

Networks Part 15.3: Wireless Medium Access Control

(MAC) and Physical Layer (PHY) Specifications for

High Rate Wireless Personal Area Networks

(WPANs), IEEE Std. 802.15.3c-2009, Oct. 2009.

[4] J. Kim and W. Sung, “Rate-0.96 LDPC decoding

VLSI for soft-decision error correction of NAND

Flash memory,” IEEE Trans. Very Large Scale Integr.

(VLSI) Syst., vol. 22, no. 5, pp. 1004–1015, May

2014.

[5] J. Kim, D. Lee, and W. Sung, “Performance of rate

0.96 (68254, 65536) EG-LDPC code for NAND Flash

memory error correction,” in Proc. IEEE ICC, 2012,

pp. 7029–7033.

[6] Y. Sun and J. R. Cavallaro, “VLSI architecture for

layered decoding of QC-LDPC codes with high

circulant weight,” IEEE Trans. Very Large Scale

Integr. (VLSI) Syst., vol. 21, no. 10, pp. 1960–1964,

Oct. 2013.

[7] F. Angarita, J. Valls, V. Almenar, and V. Torres,

“Reduced-complexity min–sum decoding algorithm

for decoding LDPC codes with low error- floor,” IEEE

Trans. Circuits Syst. I, Reg. Papers, vol. 61, no. 7, pp.

2150– 2158, Jul. 2014.

[8] Y.-L. Ueng, B.-J. Yang, C.-J. Yang, H.-C. Lee, and

J.-D. Yang, “An efficient multi-standard LDPC

decoder design using hardware-friendly shuffle

decoding,” IEEE Trans. Circuits Syst. I, Reg. Papers,

vol. 60, no. 3, pp. 743–756, Mar. 2013.

[9] D.E. Knuth, The Art of Computer Programming,

2nd ed. New York, NY, USA: Addison-Wesley, 1998.

 Page 858

[10] Q. Xie, Z. Chen, X. Peng, and S. Goto, “A

sorting-based architecture of finding the first two

minimum values for LDPC decoding,” in Proc. IEEE

CSPA, 2011, pp. 95–98.

[11] C.-L. Wey, M.-D. Shieh, and S.-Y. Lin,

“Algorithms of finding the first two minimum values

and their hardware implementation,” IEEE Trans.

Circuits Syst. I, Reg. Papers, vol. 55, no. 11, pp. 3430–

3437, Dec. 2008.

[12] L. G. Amaru, M. Martina, and G. Masera, “High

speed architectures for finding the first two

maximum/minimum values,” IEEE Trans. Very Large

Scale Integr. (VLSI) Syst., vol. 20, no. 12, pp. 2342–

2346, Dec. 2012.

