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Abstract: 

Embedded cryptographic devices are vulnerable to 

power analysis attacks. Threshold Implementations 

provide provable security against first-order power 

analysis attacks for hardware and software 

implementations. Like masking, the approach relies on 

secret sharing but it differs in the implementation of 

logic functions. While masking can fail to provide 

protection due to glitches in the circuit, Threshold 

Implementations rely on few assumptions about the 

hardware and are fully compatible with standard 

design flows. We investigate two important properties 

of Threshold Implementations in detail and point out 

interesting trade-offs between circuit area and 

randomness requirements. We propose two new 

Threshold Implementations of AES that, starting from 

a common previously published implementation, 

illustrate possible trade-offs. We provide concrete 

ASIC implementation results for all three designs 

using the same library, and we evaluate the practical 

security of all three designs on the same FPGA 

platform. Our analysis allows us to directly compare 

the security provided by the different trade-offs, and to 

quantify the associated hardware cost. 

 

I. INTRODUCTION: 

The Advanced Encryption Standard (AES) is an 

encryption standard chosen by the National Institute of 

Standards and Technology (NIST) in 2001, which has 

its origin in the Rijndael block cipher. Several studies 

in the area had identified the nonlinear Sub Bytes 

transformation as the major bottleneck in achieving 

both small area and high speed VLSI AES 

implementations. This brief presents a methodology 

that is based on a pure combinatorial circuitry.  

 

 

In which, the Galois inverse of elements in is 

computed prior using the composite field arithmetic 

(CFA). To date, there are several successful composite 

field constructions reported for AES S-box 

implementations. Summarizing from the previous 

works, the smallest composite field AES S-box is 

attributed to can right. However, the issue of critical 

path was not addressed in Can right’s work. A short 

critical path is highly desirable in VLSI architectures, 

as it enables deep sub-pipelining for an increased 

performance in the clock frequency. On the other 

hand, the works of Zhang and Parham and contributed 

an AES S-box with the shortest critical path to date 

However, their work requires a larger area compared 

to Can right’s. The remainder of this paper is 

organized as follows. In some details on the AES 

algorithm are discussed. In we explain our approach to 

minimize the area of the S-box and compare our new 

solution with the S-box of Satoh.  

 

The current work improves on the compact 

implementation of in the following ways. Many 

choices of representation (isomorphism’s) were 

compared, and the most compact turns out to use a 

normal basis for each subfield (uses a polynomial basis 

for each subfield). And while used the ―greedy 

algorithm‖ to reduce the number of gates in the bit 

matrices required in changing representations, here 

each bit matrix is fully optimized, resulting in the 

minimum number of gates. These various refinements 

result in an S-box circuit that is 20% smaller, a 

significant improvement. The AES algorithm, also 

called the Rijndael algorithm, is a symmetric 

encryption algorithm; meaning encryption and 

decryption are performed by essentially the same 

steps.  
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It is a block cipher, where the data is encrypted / 

decrypted in blocks of 128 bits. (The original Randal 

algorithm allows other block sizes, but the Standard 

only permits 128-bit blocks.) Each data block is 

modified by several ―rounds‖ of processing, where 

each round involves four steps. Three different key 

sizes are allowed: 128 bits, 192 bits, or 256 bits, and 

the corresponding number of rounds for each is 10 

rounds, 12 rounds, or 14 rounds, respectively. From 

the original key, a different ―round key‖ is computed 

for each of these rounds. For simplicity, the discussion 

below will use a key length of 128 bits and hence 10 

rounds. There are several different modes in which 

AES can be used. For some of these, such as Cipher 

Block Chaining (CBC), the result of encrypting one 

block is used in encrypting the next. These are called 

feedback modes, and the feedback effectively 

precludes pipelining (simultaneous processing of 

several blocks in the ―pipeline‖). Other modes, such as 

the ―Electronic Code Book‖ mode or ―Counter‖ modes 

do not require feedback. These no feedback modes 

may be ipelined for greater throughput.  

 

But for hardware implementations of AES, there is one 

drawback of the table look-up approach to the S-box 

function: each copy of the table requires 256 bytes of 

storage, along with the circuitry to address the table 

and fetch the results. Each of the 16 bytes in a block 

can go through the S-box function independently, the 

byte substitution step. This then effectively requires 16 

copies of the S-box table for one round. To fully 

pipeline the encryption would entail ―unrolling‖ the 

loop of 10 rounds into 10 sequential copies of the 

round calculation. This would require 160 copies of 

the S-box table, a significant allocation of hardware 

resources. In contrast, this work describes a direct 

calculation of the S-box function using sub-field 

arithmetic, similar to while the calculation is 

complicated to describe, the advantage is that the 

circuitry required to implement this in hardware is 

relatively simple, in terms of the number of logic gates 

required.  

This type of S-box implementation is significantly 

smaller (less area) than the table it replaces, especially 

with the optimizations in this work. Furthermore, when 

chip area is limited, this compact implementation may 

allow parallelism in each round and/or unrolling of the 

round loop, for a significant gain in speed. 

 

II. COMPACT HIGH-THROUGHPUT AES S-

BOXES 

Performance on Area: 

Chip area is determined by the logic blocks, 

interconnections and the I/O pads. Routing area, area 

of diffusion, transistor size, and parasitic transistor 

capacitance are some of the important factors that 

affect the area of the device. Routing area is the most 

demanding factor of all, taking up to 30% of the design 

time and a large percentage of the layout area. Using 

the technology mapping approach, the routing area can 

be estimated by using two parameters available at the 

mapping stage; one is the fanout count of a gate, and 

the other is the "overlap of fan in level intervals‖. 

Minimizing switching capacitance can reduce the size 

of the transistors. There are some techniques that can 

reduce the routing area such as the use of more metal 

layers routing interconnects and new technology to 

reduce λ size. Reducing λ can also reduce the area of 

diffusion and transistor size. The area of a circuit has a 

direct influence on the yield of the manufacturing 

process. Yield is defined as the number of chips that 

are defect-free in a batch of manufactured chips. The 

following is the yield formula to calculate the original 

yield of the memory array: 

 

δ is the defect density 

A is the area of the RAM array 

α is some clustering factor of the defects 

From the equation above we know that the smaller the 

chip area, the higher the yield. A low yield would 

mean a high production cost, which in turn would 

increase the selling cost of the chip. 
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Performance on Power: 

There are three sources that cause power dissipation in 

a CMOS circuit: 

• Dynamic power dissipation due to switching current 

• Dynamic power dissipation due to short-circuit 

current 

• Static power dissipation 

 

Switching Current: 

When the p-channel transistor charges the output 

capacitive load, CL, the current through the transistor 

is CL (dV/dt). The power dissipation is thus 

CLV(dV/dt) for one-half the period of the input. The 

power dissipated in the p-channel transistor is thus 

total switching power dissipation PD=CLVDD^2f 

 

Short-Circuit Current: 

Another source of power dissipation is during the 

transition of ―0‖ to ―1‖ or ―1‖ to ―0‖, and both p-

channel and n-channel transistors are on for a short 

period of time. This results in a short current pulse 

from VDD to GND that causes a short-circuit power 

dissipation. The short-circuit power dissipation is 

given by , In general, the transistor size of the p-

channel and the n-channel are not the same to achieve 

the same rising time and falling time. The short-circuit 

current is also typically less than 20% of the switching 

current. 

 

Static Power Dissipation: 

Considering a CMOS gate, as shown in Figure 2.6, 

when the p-channel is biased ―ON,‖ the n-channel will 

be ―OFF‖. On the other hand, when the n-channel is 

―ON,‖ the p-channel will be ―OFF.‖ Since one of the 

transistors is always ―OFF,‖ there should be no DC 

current from VDD to GND. However, there is a small 

leakage current between the diffusion and the substrate 

to cause the static dissipation. 

Is= reverse saturation current 

V = diode voltage 

q= electronic charge (e= 1.6x10^-19 C) 

k= Boltzmann’s constant (1.38X10^-23 J/K) 

T = temperature. 

The static power dissipation is produced by the 

leakage current and the supply voltage. Then the total 

static power dissipation is obtained from n = number 

of devices. Typical static power dissipation due to 

leakage for an inverter operating at 5 volts is between 

1 and 2 nanowatts. The static power dissipation is 

generally negligible due to the low range compared to 

dynamic power dissipation. 

 

III. ALGORITHM DESIGN: 

The Rijndael Algorithm: 

The Rijndael AES is a secret-key (symmetric) block 

cipher crypto-system which encrypts (or decrypts) one 

block of data at a time. The encryption algorithm 

accepts one data block (or plain text) and the key and 

produces the encrypted data block (the input and 

output data blocks are of identical size). The 

decryption algorithm accepts one encrypted data block 

and the key and outputs the plain text. Both encryption 

and decryption use the same secret key. Internally, the 

AES encryption algorithm can be partitioned into two 

processes, performed in parallel: encryption and key 

schedule. In the case where the AES encryption 

process is executed by a dedicated device (or crypto 

processor), these two processes can be viewed as the 

data path and the ntrol-path of the complete AES 

crypto processor. The decryption algorithm is similarly 

partitioned into the decryption and inverse key 

schedule processes. Encryption and decryption are 

mathematically inverse, as are key schedule and 

inverse key schedule. 

 

AES Algorithm: 

The AES is a symmetric block cipher, which encrypts 

128-bit input blocks (internally stored in a 4 X 4 byte 

state matrix) and accepts key length of 128, 192, and 

256 bits. It has an iterative structure: the operations 

computed at each round are fixed and predetermined, 

whereas the number of iterations depends on the key 

length (e.g., 10 rounds for a 128-bit key). All 

operations are byte-oriented, which makes AES a good 

choice for 8-bit architectures, although it can be also 

implemented in wider designs with higher 
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performance. A generic round is made of the following 

operations: 1. a nonlinear byte substitution (Sub Bytes) 

by means of substitution tables (S-Boxes) or online 

computations; 2. a data shuffling phase (Shift Rows) 

operating on rows; 3. linear multiplication in binary 

extension fields operating on the columns of the state 

(Mix Columns); 4. the addition with a round-

dependent key. All rounds are identical, except for the 

last one, which lacks the linear multiplication for sake 

of symmetry, thus simplifying the decryption process. 

The specifications of the algorithm and of each 

component of the cipher are well known and fully 

detailed in the literature. The interested reader is 

invited to refer to for further details. The AES consists 

of two parts, the data procedure and the key schedule. 

The data procedure is the main body of the encryption 

(decryption) and consists of four operations, (Inv)Sub 

Bytes, (Inv)Shift Rows, (Inv)Mix Columns, and 

(Inv)Add Round Key. During encryption, these four 

operations are executed in a specific order—Add 

Round Key, a number of rounds, and then the final 

round.  

 

The number of rounds is 10, 12, or 14, respectively, 

for a key size of 128 bits, 192 bits, or 256 bits. Each 

round is comprised of the four operations and the final 

round has Sub Bytes, Shift Rows, and Add Round 

Key. The decryption flow is simply the reverse of the 

encryption, and each operation is the inverse of the 

corresponding one in encryption. In the data 

procedure, the 16-byte (128-bit) data block is 

rearranged as a 4 X 4 matrix, called state S, where si 

denotes the ith byte of the data block. In this context, S 

denotes the input of an operation and T denotes the 

output. AES is operated in two fields, GF(2) and 

GF(2^8). In GF(2^8), addition is denoted by , and 

multiplication is denoted by EX-OR operation. 

Similarly, the two symbols, + and x, denote addition 

and multiplication in GF(2^8). 

 

Sub byte and Inv sub byte Transformation: 

The Sub Byte transformation is computed by taking 

the multiplicative inverse in GF (28) followed by an 

affine transformation. For its reverse, the Inv Sub Byte 

transformation, the inverse affine transformation is 

applied first prior to computing the multiplicative 

inverse. The step Involved for both transformations is 

shown below. 

 

Sub Byte: 

1. Multiplicative Inversion in GF (28) 

2. Affine Transformation 

 

Inv Sub Byte: 

1. Inverse Affine Transformation 

2. Multiplicative Inversion in GF(28) 

The AT and AT-1 are the Affine Transformation and 

its inverse while the vector a is the multiplicative 

inverse of the input byte from the state array. From 

here, it is observed that both the Sub Byte and the Inv 

Sub Byte transformation involve a multiplicative 

inversion operation. Thus, both transformations may 

actually share the same multiplicative inversion 

module in a combined architecture. Switching between 

Sub Byte and Inv Sub Byte is just a matter of changing 

the value of INV. INV is set to 0 for Sub Byte while 1 

is set when Inv Sub Byte operation is desired. 

 

IV. IMPLEMENTATIONS OF THE S-BOX 

One of the most common and straight forward 

implementation of the S-Box for the Sub Byte 

operation which was done in previous work was to 

have the pre-computed values stored in a ROM based 

lookup table. In this implementation, all 256 values are 

stored in a ROM and the input byte would be wired to 

the ROM’s address bus. However, this method suffers 

from an unbreakable delay since ROMs have a fixed 

access time for its read and write operation. 

Furthermore, such implementation is expensive in 

terms of hardware. A more refined way of 

implementing the S-Box is to use combinational logic. 

This S-Box has the advantage of having small area 

occupancy, in addition to be capable of being pipelined 

for increased performance in clock frequency. The S-

Box architecture discussed in this paper is based on the 

combinational logic implementation. 
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S-BOX CONSTRUCTION METHODOLOGY: 

This section illustrates the steps involved in 

constructing the multiplicative inverse module for the 

S-Box using composite field arithmetic. Since both the 

Sub Byte and Inv Sub Byte Transformation are similar 

other than their operations which involve the Affine 

Transformation and its inverse, therefore only the 

implementation of the Sub Byte operation will be 

discussed in this paper. The multiplicative inverse 

computation will first be covered and the affine 

transformation will then follow to complete the 

methodology involved for constructing the S-Box for 

the Sub Byte operation. For the Inv Sub Byte 

operation, the reader can reuse multiplicative inversion 

module and combine it with the Inverse Affine 

Transformation, as shown. The individual bits in a 

byte representing a GF (28) element can be viewed as 

coefficients to each power term in the GF(28) 

polynomial. For instance, {10001011}2 is representing 

the polynomial. 

q7 + q3 + q + 1 in GF(28). 

From it is stated that any arbitrary polynomial can be 

represented as bx + c, given an irreducible polynomial 

of x 2 + Ax + B. 

 

SIMULATION IMPLEMENTATION 

GENERAL 

Snapshot is nothing but every moment of the 

application while running. It gives the clear elaborated 

of application. It will be useful for the new user to 

understand for the future steps. 

 

VARIOUS SNAPSHOTS 

2 BIT ADDERS: 

 
 

 

 

 

 

4 BIT ADDERS: 

 
 

AFFINE TRANSFORM: 

 
 

BLACKXBLOCK: 

 
 

DEL INVERSE: 

 
 

DEL: 

 
 

X2 SECTION: 
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X INVERSE: 

 
 

XLAMBADA: 

 
 

XA: 

 
 

RAW IMPLEMETATION: 

 
 

ADJUSTED IMPLEMETATION 2: 

 
 

 

 

 

 

 

NIMBLE IMPLEMETATION: 

 
 

AES ENCRYPTION: 

 
 

SYSTHESIS REPORT: 

RAW IMPLEMETATION: 

 
 

ADJUSTED IMPLEMETATION: 

 
 

NIMBLE IMPLEMETATION: 
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V. FUTURE SCOPE: 

The detailed study on composite field construction for 

the S-box function in AES was presented. The major 

contribution of our work was the derivation of a new 

composite field AES S-box that achieves an optimally 

balanced construction in terms of area of 

implementation and critical path, compared to the 

previous studies. Furthermore, we had explored all of 

the possible isomorphic mapping for each of the 

composite field construction and employed a new CSE 

algorithm to derive the most optimum isomorphic and 

inverse isomorphic mapping with affine 

transformation. The best architecture obtained (i.e., 

Case III) possesses a total of 36 AND gates and 96 

XOR gates with critical path of 4 AND gates and 20 

XORs. Furthermore, we have found that there is a 

substantial gain in our CFAAES S-box in achieving a 

high throughput FPGA implementation. 

 

VI. CONCLUSION: 

The detailed study on composite field construction for 

the S-box function in AES was presented. The major 

contribution of our work was the derivation of a new 

composite field AES S-box that achieves an optimally 

balanced construction in terms of area of 

implementation and critical path, compared to the 

previous studies. Furthermore, we had explored all of 

the possible isomorphic mapping for each of the 

composite field construction and employed a new CSE 

algorithm to derive the most optimum isomorphic and 

inverse isomorphic mapping with affine 

transformation. The best architecture obtained (i.e., 

Case III) possesses a total of 36 AND gates and 96 

XOR gates with critical path of 4 AND gates and 20 

XORs. Furthermore, we have found that there is a 

substantial gain in our CFAAES S-box in achieving a 

high throughput FPGA implementation. 
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