

 Page 870

Trade-OFFS For Threshold Implementations Illustrated on AES
Syed Kareem Uddin

M.Tech (VLSI Design),

Department of ECE,

VIF College of Engineering and Technology,

Hyderabad, T.S, India.

Imthiazunnisa Begum

Assistant Professor & HOD,

Department of ECE,

VIF College of Engineering and Technology,

Hyderabad, T.S, India.

Abstract:

Embedded cryptographic devices are vulnerable to

power analysis attacks. Threshold Implementations

provide provable security against first-order power

analysis attacks for hardware and software

implementations. Like masking, the approach relies on

secret sharing but it differs in the implementation of

logic functions. While masking can fail to provide

protection due to glitches in the circuit, Threshold

Implementations rely on few assumptions about the

hardware and are fully compatible with standard

design flows. We investigate two important properties

of Threshold Implementations in detail and point out

interesting trade-offs between circuit area and

randomness requirements. We propose two new

Threshold Implementations of AES that, starting from

a common previously published implementation,

illustrate possible trade-offs. We provide concrete

ASIC implementation results for all three designs

using the same library, and we evaluate the practical

security of all three designs on the same FPGA

platform. Our analysis allows us to directly compare

the security provided by the different trade-offs, and to

quantify the associated hardware cost.

I. INTRODUCTION:

The Advanced Encryption Standard (AES) is an

encryption standard chosen by the National Institute of

Standards and Technology (NIST) in 2001, which has

its origin in the Rijndael block cipher. Several studies

in the area had identified the nonlinear Sub Bytes

transformation as the major bottleneck in achieving

both small area and high speed VLSI AES

implementations. This brief presents a methodology

that is based on a pure combinatorial circuitry.

In which, the Galois inverse of elements in is

computed prior using the composite field arithmetic

(CFA). To date, there are several successful composite

field constructions reported for AES S-box

implementations. Summarizing from the previous

works, the smallest composite field AES S-box is

attributed to can right. However, the issue of critical

path was not addressed in Can right’s work. A short

critical path is highly desirable in VLSI architectures,

as it enables deep sub-pipelining for an increased

performance in the clock frequency. On the other

hand, the works of Zhang and Parham and contributed

an AES S-box with the shortest critical path to date

However, their work requires a larger area compared

to Can right’s. The remainder of this paper is

organized as follows. In some details on the AES

algorithm are discussed. In we explain our approach to

minimize the area of the S-box and compare our new

solution with the S-box of Satoh.

The current work improves on the compact

implementation of in the following ways. Many

choices of representation (isomorphism’s) were

compared, and the most compact turns out to use a

normal basis for each subfield (uses a polynomial basis

for each subfield). And while used the ―greedy

algorithm‖ to reduce the number of gates in the bit

matrices required in changing representations, here

each bit matrix is fully optimized, resulting in the

minimum number of gates. These various refinements

result in an S-box circuit that is 20% smaller, a

significant improvement. The AES algorithm, also

called the Rijndael algorithm, is a symmetric

encryption algorithm; meaning encryption and

decryption are performed by essentially the same

steps.

 Page 871

It is a block cipher, where the data is encrypted /

decrypted in blocks of 128 bits. (The original Randal

algorithm allows other block sizes, but the Standard

only permits 128-bit blocks.) Each data block is

modified by several ―rounds‖ of processing, where

each round involves four steps. Three different key

sizes are allowed: 128 bits, 192 bits, or 256 bits, and

the corresponding number of rounds for each is 10

rounds, 12 rounds, or 14 rounds, respectively. From

the original key, a different ―round key‖ is computed

for each of these rounds. For simplicity, the discussion

below will use a key length of 128 bits and hence 10

rounds. There are several different modes in which

AES can be used. For some of these, such as Cipher

Block Chaining (CBC), the result of encrypting one

block is used in encrypting the next. These are called

feedback modes, and the feedback effectively

precludes pipelining (simultaneous processing of

several blocks in the ―pipeline‖). Other modes, such as

the ―Electronic Code Book‖ mode or ―Counter‖ modes

do not require feedback. These no feedback modes

may be ipelined for greater throughput.

But for hardware implementations of AES, there is one

drawback of the table look-up approach to the S-box

function: each copy of the table requires 256 bytes of

storage, along with the circuitry to address the table

and fetch the results. Each of the 16 bytes in a block

can go through the S-box function independently, the

byte substitution step. This then effectively requires 16

copies of the S-box table for one round. To fully

pipeline the encryption would entail ―unrolling‖ the

loop of 10 rounds into 10 sequential copies of the

round calculation. This would require 160 copies of

the S-box table, a significant allocation of hardware

resources. In contrast, this work describes a direct

calculation of the S-box function using sub-field

arithmetic, similar to while the calculation is

complicated to describe, the advantage is that the

circuitry required to implement this in hardware is

relatively simple, in terms of the number of logic gates

required.

This type of S-box implementation is significantly

smaller (less area) than the table it replaces, especially

with the optimizations in this work. Furthermore, when

chip area is limited, this compact implementation may

allow parallelism in each round and/or unrolling of the

round loop, for a significant gain in speed.

II. COMPACT HIGH-THROUGHPUT AES S-

BOXES

Performance on Area:

Chip area is determined by the logic blocks,

interconnections and the I/O pads. Routing area, area

of diffusion, transistor size, and parasitic transistor

capacitance are some of the important factors that

affect the area of the device. Routing area is the most

demanding factor of all, taking up to 30% of the design

time and a large percentage of the layout area. Using

the technology mapping approach, the routing area can

be estimated by using two parameters available at the

mapping stage; one is the fanout count of a gate, and

the other is the "overlap of fan in level intervals‖.

Minimizing switching capacitance can reduce the size

of the transistors. There are some techniques that can

reduce the routing area such as the use of more metal

layers routing interconnects and new technology to

reduce λ size. Reducing λ can also reduce the area of

diffusion and transistor size. The area of a circuit has a

direct influence on the yield of the manufacturing

process. Yield is defined as the number of chips that

are defect-free in a batch of manufactured chips. The

following is the yield formula to calculate the original

yield of the memory array:

δ is the defect density

A is the area of the RAM array

α is some clustering factor of the defects

From the equation above we know that the smaller the

chip area, the higher the yield. A low yield would

mean a high production cost, which in turn would

increase the selling cost of the chip.

 Page 872

Performance on Power:

There are three sources that cause power dissipation in

a CMOS circuit:

• Dynamic power dissipation due to switching current

• Dynamic power dissipation due to short-circuit

current

• Static power dissipation

Switching Current:

When the p-channel transistor charges the output

capacitive load, CL, the current through the transistor

is CL (dV/dt). The power dissipation is thus

CLV(dV/dt) for one-half the period of the input. The

power dissipated in the p-channel transistor is thus

total switching power dissipation PD=CLVDD^2f

Short-Circuit Current:

Another source of power dissipation is during the

transition of ―0‖ to ―1‖ or ―1‖ to ―0‖, and both p-

channel and n-channel transistors are on for a short

period of time. This results in a short current pulse

from VDD to GND that causes a short-circuit power

dissipation. The short-circuit power dissipation is

given by , In general, the transistor size of the p-

channel and the n-channel are not the same to achieve

the same rising time and falling time. The short-circuit

current is also typically less than 20% of the switching

current.

Static Power Dissipation:

Considering a CMOS gate, as shown in Figure 2.6,

when the p-channel is biased ―ON,‖ the n-channel will

be ―OFF‖. On the other hand, when the n-channel is

―ON,‖ the p-channel will be ―OFF.‖ Since one of the

transistors is always ―OFF,‖ there should be no DC

current from VDD to GND. However, there is a small

leakage current between the diffusion and the substrate

to cause the static dissipation.

Is= reverse saturation current

V = diode voltage

q= electronic charge (e= 1.6x10^-19 C)

k= Boltzmann’s constant (1.38X10^-23 J/K)

T = temperature.

The static power dissipation is produced by the

leakage current and the supply voltage. Then the total

static power dissipation is obtained from n = number

of devices. Typical static power dissipation due to

leakage for an inverter operating at 5 volts is between

1 and 2 nanowatts. The static power dissipation is

generally negligible due to the low range compared to

dynamic power dissipation.

III. ALGORITHM DESIGN:

The Rijndael Algorithm:

The Rijndael AES is a secret-key (symmetric) block

cipher crypto-system which encrypts (or decrypts) one

block of data at a time. The encryption algorithm

accepts one data block (or plain text) and the key and

produces the encrypted data block (the input and

output data blocks are of identical size). The

decryption algorithm accepts one encrypted data block

and the key and outputs the plain text. Both encryption

and decryption use the same secret key. Internally, the

AES encryption algorithm can be partitioned into two

processes, performed in parallel: encryption and key

schedule. In the case where the AES encryption

process is executed by a dedicated device (or crypto

processor), these two processes can be viewed as the

data path and the ntrol-path of the complete AES

crypto processor. The decryption algorithm is similarly

partitioned into the decryption and inverse key

schedule processes. Encryption and decryption are

mathematically inverse, as are key schedule and

inverse key schedule.

AES Algorithm:

The AES is a symmetric block cipher, which encrypts

128-bit input blocks (internally stored in a 4 X 4 byte

state matrix) and accepts key length of 128, 192, and

256 bits. It has an iterative structure: the operations

computed at each round are fixed and predetermined,

whereas the number of iterations depends on the key

length (e.g., 10 rounds for a 128-bit key). All

operations are byte-oriented, which makes AES a good

choice for 8-bit architectures, although it can be also

implemented in wider designs with higher

 Page 873

performance. A generic round is made of the following

operations: 1. a nonlinear byte substitution (Sub Bytes)

by means of substitution tables (S-Boxes) or online

computations; 2. a data shuffling phase (Shift Rows)

operating on rows; 3. linear multiplication in binary

extension fields operating on the columns of the state

(Mix Columns); 4. the addition with a round-

dependent key. All rounds are identical, except for the

last one, which lacks the linear multiplication for sake

of symmetry, thus simplifying the decryption process.

The specifications of the algorithm and of each

component of the cipher are well known and fully

detailed in the literature. The interested reader is

invited to refer to for further details. The AES consists

of two parts, the data procedure and the key schedule.

The data procedure is the main body of the encryption

(decryption) and consists of four operations, (Inv)Sub

Bytes, (Inv)Shift Rows, (Inv)Mix Columns, and

(Inv)Add Round Key. During encryption, these four

operations are executed in a specific order—Add

Round Key, a number of rounds, and then the final

round.

The number of rounds is 10, 12, or 14, respectively,

for a key size of 128 bits, 192 bits, or 256 bits. Each

round is comprised of the four operations and the final

round has Sub Bytes, Shift Rows, and Add Round

Key. The decryption flow is simply the reverse of the

encryption, and each operation is the inverse of the

corresponding one in encryption. In the data

procedure, the 16-byte (128-bit) data block is

rearranged as a 4 X 4 matrix, called state S, where si

denotes the ith byte of the data block. In this context, S

denotes the input of an operation and T denotes the

output. AES is operated in two fields, GF(2) and

GF(2^8). In GF(2^8), addition is denoted by , and

multiplication is denoted by EX-OR operation.

Similarly, the two symbols, + and x, denote addition

and multiplication in GF(2^8).

Sub byte and Inv sub byte Transformation:

The Sub Byte transformation is computed by taking

the multiplicative inverse in GF (28) followed by an

affine transformation. For its reverse, the Inv Sub Byte

transformation, the inverse affine transformation is

applied first prior to computing the multiplicative

inverse. The step Involved for both transformations is

shown below.

Sub Byte:

1. Multiplicative Inversion in GF (28)

2. Affine Transformation

Inv Sub Byte:

1. Inverse Affine Transformation

2. Multiplicative Inversion in GF(28)

The AT and AT-1 are the Affine Transformation and

its inverse while the vector a is the multiplicative

inverse of the input byte from the state array. From

here, it is observed that both the Sub Byte and the Inv

Sub Byte transformation involve a multiplicative

inversion operation. Thus, both transformations may

actually share the same multiplicative inversion

module in a combined architecture. Switching between

Sub Byte and Inv Sub Byte is just a matter of changing

the value of INV. INV is set to 0 for Sub Byte while 1

is set when Inv Sub Byte operation is desired.

IV. IMPLEMENTATIONS OF THE S-BOX

One of the most common and straight forward

implementation of the S-Box for the Sub Byte

operation which was done in previous work was to

have the pre-computed values stored in a ROM based

lookup table. In this implementation, all 256 values are

stored in a ROM and the input byte would be wired to

the ROM’s address bus. However, this method suffers

from an unbreakable delay since ROMs have a fixed

access time for its read and write operation.

Furthermore, such implementation is expensive in

terms of hardware. A more refined way of

implementing the S-Box is to use combinational logic.

This S-Box has the advantage of having small area

occupancy, in addition to be capable of being pipelined

for increased performance in clock frequency. The S-

Box architecture discussed in this paper is based on the

combinational logic implementation.

 Page 874

S-BOX CONSTRUCTION METHODOLOGY:

This section illustrates the steps involved in

constructing the multiplicative inverse module for the

S-Box using composite field arithmetic. Since both the

Sub Byte and Inv Sub Byte Transformation are similar

other than their operations which involve the Affine

Transformation and its inverse, therefore only the

implementation of the Sub Byte operation will be

discussed in this paper. The multiplicative inverse

computation will first be covered and the affine

transformation will then follow to complete the

methodology involved for constructing the S-Box for

the Sub Byte operation. For the Inv Sub Byte

operation, the reader can reuse multiplicative inversion

module and combine it with the Inverse Affine

Transformation, as shown. The individual bits in a

byte representing a GF (28) element can be viewed as

coefficients to each power term in the GF(28)

polynomial. For instance, {10001011}2 is representing

the polynomial.

q7 + q3 + q + 1 in GF(28).

From it is stated that any arbitrary polynomial can be

represented as bx + c, given an irreducible polynomial

of x 2 + Ax + B.

SIMULATION IMPLEMENTATION

GENERAL

Snapshot is nothing but every moment of the

application while running. It gives the clear elaborated

of application. It will be useful for the new user to

understand for the future steps.

VARIOUS SNAPSHOTS

2 BIT ADDERS:

4 BIT ADDERS:

AFFINE TRANSFORM:

BLACKXBLOCK:

DEL INVERSE:

DEL:

X2 SECTION:

 Page 875

X INVERSE:

XLAMBADA:

XA:

RAW IMPLEMETATION:

ADJUSTED IMPLEMETATION 2:

NIMBLE IMPLEMETATION:

AES ENCRYPTION:

SYSTHESIS REPORT:

RAW IMPLEMETATION:

ADJUSTED IMPLEMETATION:

NIMBLE IMPLEMETATION:

 Page 876

V. FUTURE SCOPE:

The detailed study on composite field construction for

the S-box function in AES was presented. The major

contribution of our work was the derivation of a new

composite field AES S-box that achieves an optimally

balanced construction in terms of area of

implementation and critical path, compared to the

previous studies. Furthermore, we had explored all of

the possible isomorphic mapping for each of the

composite field construction and employed a new CSE

algorithm to derive the most optimum isomorphic and

inverse isomorphic mapping with affine

transformation. The best architecture obtained (i.e.,

Case III) possesses a total of 36 AND gates and 96

XOR gates with critical path of 4 AND gates and 20

XORs. Furthermore, we have found that there is a

substantial gain in our CFAAES S-box in achieving a

high throughput FPGA implementation.

VI. CONCLUSION:

The detailed study on composite field construction for

the S-box function in AES was presented. The major

contribution of our work was the derivation of a new

composite field AES S-box that achieves an optimally

balanced construction in terms of area of

implementation and critical path, compared to the

previous studies. Furthermore, we had explored all of

the possible isomorphic mapping for each of the

composite field construction and employed a new CSE

algorithm to derive the most optimum isomorphic and

inverse isomorphic mapping with affine

transformation. The best architecture obtained (i.e.,

Case III) possesses a total of 36 AND gates and 96

XOR gates with critical path of 4 AND gates and 20

XORs. Furthermore, we have found that there is a

substantial gain in our CFAAES S-box in achieving a

high throughput FPGA implementation.

REFERENCES:

[1] S. Mathew, F. Sheikh, A. Agarwal, M. Kounavis,

S. Hsu, H. Kaul, M. Anders, and R. Krishnamurthy,

―53 Gbps native GF (24)2 composite- field AES-

encrypt/decrypt accelerator for content-protection in

45 nm high-performance microprocessors,‖ in Proc.

IEEE Symp. VLSI Circuits (VLSIC), 2010, pp. 169–

170.

[2] V. Rijmen, ―Efficient implementation of the

Rijndael S-box,‖ 2000. [Online]. Available:

http://ftp.comms.scitech.susx.ac.uk/fft/crypto/rijndael-

sbox.pdf

[3] A. Rudra, P. K. Dubey, C. S. Jutla, V. Kumar, J. R.

Rao, and P. Rohatgi, ―Efficient rijndael encryption

implementation with composite field arithmetic,‖ in

Proc. CHES, 2001, pp. 171–184.

[4] J.Wolkerstorfer, E. Oswald, and M. Limburger,

―An ASIC implementation of the AES S-boxes,‖ in

Proc. RSA Conf., 2002, pp. 67–78.

[5] A. Satoh, S. Morioka, K. Takano, and S. Munetoh,

―A compact Rijndael hardware architecture with S-box

optimization,‖ in Proc. ASIACRYPT, Dec. 2000, pp.

239–245.

[6] N. Men tens, L. Bateman, B. Greenland, and I.

Verbauwhede, ―A systematic evaluation of compact

hardware implementations for the Rijndael S-box,‖ in

Proc. Topics Cryptology (CT-RSA), 2005, vol. 3376/

2005, pp. 323–333.

[7] D. Canright, ―A very compact Rijndael S-box,‖

Naval Postgraduate School, Monterey, CA, Tech. Rep.

NPS-MA-04-001, 2005.

[8] X. Zhang and K. K. Parhi, ―On the optimum

constructions of composite field for the AES

algorithm,‖ IEEE Trans. Circuits Syst. II, Exp. Briefs,

vol. 53, no. 10, pp. 1153–1157, Oct. 2006.

