

 Page 622

Capability of Encryption in Cloud through KAC
Vajrala Krupa Rani

PG Scholar,

Dept of Computer Science &

Engineering,

SMITW, Tummalapalem,

Guntur (Dt), A.P, India.

Pulipati Swaroop

Assistant Professor,

Dept of Computer Science &

Engineering,

SMITW, Tummalapalem,

Guntur (Dt), A.P, India.

P.G.K Sirisha

Associate Professor & HOD,

Dept of Computer Science &

Engineering,

SMITW, Tummalapalem,

Guntur (Dt), A.P, India.

Abstract:

Cloud storage is an important function in data sharing.

And it is very secure, efficient and flexible compared

to other software‘s. Here it can produce constant-size

encrypted-texts by the description of new public-key

cryptosystems (one type of algorithm used for secure),

such that systematic duplication of description rights

for any set of cipher texts are possible. Here one can

cluster any set of unpublished keys and make them as

a single key by the originality(novelty).But enclosing

the power of all the keys existence collected. In other

form the secret key holders can open a constant-size

cluster key for adjustable option of cipher text set in

cloud storage, but the other encoded files outside the

set remain private. This concerted cluster key can

change and sent to others or be stored in smart card

with very restricted secure storage. We provide formal

security analysis of our schemas in the standard model.

We also derive another application of our schemes. In

important our scheme provides the first public key

patient controlled encryption for flexible hierarchy,

which was identified.

1. INTRODUCTION:

Cloud storage is going rapidly in enterprise. It has

demand for data outsourcing which accesses in the

corporate data. It is also used in many online services

for personal applicants, it is easy to create an account

for email, photo albums and file sharing with storage

space more than 25GB.By using wireless technology

we can access emails, stored photos by a mobile

phones in any corner of the world. Considering data

privacy, a traditional way to ensure it is to rely on the

server to enforce the access control after

authentication.

Suddenly the authorized encapsulations will interpret

the all data. Where the shared-tendency cloud

computing environment will be there, in that things

become placid not so good. Data will be reside in

single physical machine, but the dada from various

clients can be receive on separate Virtual Machine

(VM).Data in objective VM could be sacked by

instantiating separate VM co-resident with the host

one[2].in relation to chance of files ,there are a

consecution of cryptographic structure which spirit as

a good way as acknowledging a third-party accountant

to check the chance of files on favor of the data

builders without divulging anything about the dada[3],

or without adjusting the data builders

inconspicuousness[4]. Similarly, cloud users

apparently will not clasp the able acceptance that the

cloud server is doing proper job in other words

acquaintance.

A solution of cryptographic e.g.,[5],whenever the

client is not confidently satisfy with trusting the safety

of the VM or the bluntness of the technical staff, with

ascertain security confide on number-theoretic

assuming is more attractive. These users are instigated

to encrypt their data along their own keys earlier

uploading to server. The considerable functionality of

cloud computing is data sharing for example if soul let

their friends see a child set of their unpublicized

pictures .Here how we will strong distributed

encrypted data is the declarative problem of course

from the storage clients can download encrypted data.,

decrypted them, then send them to various clients for

sharing., but here it will lose their cloud storage.

User‘s access deputes data from the server, because

clients should be able to depute the access rights of

 Page 623

generosity data to another person. Here in cloud

storage is not niggling, because however we finding an

efficient and secure way to unpublished partial. Here

example for illustration is Drop box. Assume the

Dropbox having the photos of Alice, she don‘t want to

aerate her photos on publish. Due to various data

desolate possibilities; she

Fig:1 Alice shares files with Bob with single

aggregate key

Doesn‘t receive her photos privacy with production

mechanism improvised by Dropbox, so encrypt her

photos with their own keys before uploading her

photos. One day Alice friend Bob ask her photos to

take over all these year which Bob glisten in. Now

Alice can use the share function of Dropbox for

sharing photos, but now the problem is how to depute

the decryption rights to Alice photos to Bob. Now

Alice assume to select appropriate option for sending

photos to Bob is secure is involving secure keys to

send of course there are two ways to encryption

paradigm.

->Alice send encrypted file with single secure key, and

Bob gives the directly by related secrete key.

->Alice use different keys for sending encrypted file

and Bob also send related secrete keys.

Apparently, the first one is unsatisfied, since may be

all un-select data is public to Bob. And the second one

is partially concentrated on efficiency. And here many

number of shared keys for shared photos will be there,

these encrypted keys intrinsic require a encrypted

channel, and strong these keys requires instead

expensive encrypted storage. Here increasing cost,

complexity because here we are maintain separate keys

for each encrypted file in over words simply it having

heavy wait and costly. The encrypted keys are mainly

two types they are symmetric key and asymmetric key.

When Alice organized her data from third party, the

she use Symmetric encrypted data, apparently this is

not coveted. The encrypted key and decrypted key

different in public-key encryption by framing. The

application can got more flexibility by the use of

public-keys. For example every employee can upload

their encrypted files on cloud storage server without

the knowledge of company master secretes key.

2. KEY-AGGREGATE ENCRYPTION:

First of all we give what is framework and definition

for key-aggregate encryption. After we discuss how to

access KAC in a sequence of its application in cloud

storage.

2.1 Framework:

A key-aggregate encryption system contains 5

polynomial-time algorithms as like. The information

owner finds out the public scheme argument through

Setup and produces a public/master-secret key pair

through KeyGen. Data can be packed via Encrypt by

somebody who also contexts what ciphertext category

is combined with the plaintext data to be encrypted.

The information owner can access the master-secret to

produce an aggregate decryption key for a set of

ciphertext categories Through Extract. The produced

keys are passed to delegates securely (via e-mails or

secure modules).Finally, any user with an aggregate

key can decrypt any ciphertext produced that the

ciphertext‘s category is maintained in the aggregate

key through Decrypt. .Build(1⋌, n):executed by the

information owner to build an account on an untrusted

server.On input a security level argument 1λ and the

number of ciphertext categories n (i.e.,class index

should be an integer bounded by 1 and n),it outputs the

 Page 624

public schedule argument param, which is removed

from the input of the other algorithms for brevity.

Key Gen: executed by the information owner to

randomly produce a public/master-secret key pair (pk,

msk).

 Encrypt (pk, i,m):executed by someone who

wants to packed information. On input a public-

key pk, an index i representing the ciphertext

category, and a data m, it outputs a ciphertext c.

 Extract (msk, S): executed by the information

owner for delegating the decrypting power for a

specific set of ciphertext categories to a delegate.

On input the master-secret key msk and a set S of

indices respective to dissimilar categories, it

outputs the aggregate key for set S represented by

Ks.

 Decrypt (KS, S, i , C):executed by a delegate who

accepted an aggregate key Ks produced by Extract.

On input Ks, the set S, an index i representing the

ciphertext class the ciphertext C related to , and

C,it outputs the decrypted result m if I e S.

There are 2 functional requirements:

 Correctness For any integersλ

andn,anysetS⊆{1,···,n},anyindex i∈S and any

message m, Pr[Decrypt(KS ,S,i,C) = m : param←

Setup(1λ ,n), (pk,msk) ←KeyGen(),C ←

Encrypt(pk,i,m), KS ← Extract(msk,S)] = 1.

 Compactness For any integers λ, n, any set S, any

index i ∈ S and any data m; param← build((1λ ,n),

(pk,msk) ←KeyGen(),KS ← Extract(msk,S) and C

← Encrypt(pk,i,m); |KS | and |C| only depend on

the security argument λ but individual of the

number of categories n.

2.2 Sharing Encrypted Information:

A canonical application of KAC is information

sharing. The key aggregation characteristic is

particularly useful when we want the delegation to be

flexible and efficient. The schedules unseen a data

producer to distribute her information in a secureand

elective path, with a small and fixed ciphertext

expansion, by sharing to every authorized user a small

and single aggregate key. Here we discuss the primary

thought of information distributed in cloud storage

using KAC, shown inFigure2.For example Alice wants

to distribute her data s1,s2,...,sνon the server. She first

calculate build((1λ ,n) to get param and execute

KeyGen to get the public/master-secret key pair

(pk,msk).

Fig:2 Using KAC for data sharing Cloud

The system argument param and public-key pk can be

made public and master-secret key msk should be

place secret by Alice. someone (including Alice

herself) can then encrypt each mi by Ci =

Encrypt(pk,i,mi). The encrypted information are

updated to the server. With param and pk, public who

coordinate with Alice can upload Alice‘s information

on the server. Once Alice is ready to share a set S of

her information with a friend Dob, she can calculate

the aggregate key KS for dob by performing

Extract(msk, S). Since KS is now a fixed size key, it is

easy to be sent to Dob through a secure email. After

obtaining the aggregate key, Dob can download the

information he is authorized to access. That is, for

every i ∈ S, Dob downloads Ci (and some required

values in param) from the server. With the aggregate

key KS, Dob can decrypt everyCi by

Decrypt(KS,S,i,Ci) for every i ∈ S

 Page 625

3. RELATED WORK:

In this session has we can compare our inferior KAC

plan with other possible solutions on sharing in

unpublished cloud storage. We can optimize our

differences in Table 1.

Table 1: Comparison between KAC and other

Schemes

3.1 Cryptographic key for a Predefined Hierarchy’

Here we can begin by the exanimation the most related

research in the literature of cryptography/security.

Cryptographic key is a value to it a binding which will

be visible scheme program outside of that blocks scope

decrees the money in storing an controlling secrete

keys for general cryptographic use. Using a tree

diagram a key for a given node can be used to explain

the keys of its big too small. Just permitting the super

key implements permissions all the keys of its big to

small nodes. Sandhu [15] a method to generate a tree

hierarchy of symmetric keys by using more than one

time estimation of pseudorandom functions/ block-

cipher on a permanent secret. The concept can be

generalized from a tree to a graph. More advanced

pictographic is a value to its which will be a binding

which will be visible scheme program outside of block

code to promote policy that can be changed by an

acyclic graph or a cyclic graph [16],[17],[7] most of

the block outside produce keys for symmetric keys

cryptosystem‘s, even though key equation may require

modular arithmetic as used in public key cryptosystem,

which are generally more costly than ―symmetric key

operation‖ such as pseudorandom function. We take

the tree structure as an example. Alice can first classify

the cipher-text classes according to their subjects like

fig three. Each node in the tree represent secrete key,

while the external nodes represents the keys for

individual cipher-text classes.

All the nodes are invited to fill the circles represents

the keys for the classes to be delivering by the persons

and circles curcuma vented by dotted lines represents

the key to be accepted. Note that every key of the non-

leaf node can equate the keys of its big to small nodes.

In fig-3(a) if Alice want to distribute all the files in the

―personal category‖ she only needs to grant the key for

the node ―personal‖, which suddenly grants the deliver

by the person the keys of all the big to small nodes

(―photo‖, ‖music‖). This is the same case, where most

classes to be distributed belonging in to the same

branch and the say super key of them is comfortable.

Fig 3 : Compact is not always possible for fixed

hierarchy

However it is difficult for general cases as shown in

fig:3(a), if Alice shares her demo music at work

(―work‖->‖casual‖->‖demo‖ and ―work‖-

>‖confidential‖->‖demo‖) with a partner who also has

the rights to see some of her personal data, she can do

to give more keys. Which raises an increasing the total

key size one can see that this achieved is not

comfortable when the classifications are more difficult

and she wants to share different sets of files to

different peoples for this the person to be deliver in our

example the number of permitted secrete keys

becomes the same as the number of classes. In general,

hierarchical achieve can derive the problem

individually if one estimate to share all files under a

particular branch the hierarchy on aggregate, the

number of keys increases the number of branches. It is

not likely to come up with a hierarchy that can save the

number of total keys to permitted for all individuals

(which can admittance a different set of leaf nodes)

alternate.

 Page 626

3.2 Compact key is Symmetric Key Encryption:

Encasing by the same problem of supporting

comfortable hierarchy in decryption power deliver by

the person (but in symmetric key setting), Benaloh

et.al. [8] Presented an encryption program outside of

the block schema which is originally proposed for

concisely transmitting from one place to another place

like large number of keys in broad cast scenario [18].

The arrangement is simple and we briefly to open its

key equation process here for a concrete description of

what are the comfortable property we want to

approach. The equation of the key for a set of classes

(which is a sub set of all possible cipher-text classes) is

as follows a composite terms N = p. q is chosen at

alternate primes. A master secrete key Y is chosen at

alternate from ZN
∗ each class is linked with a distinct

prime.

3.3 Compact Key in Identity-Based Encryption:

Identity-based encryption (IBE) (e.g., [20], [21], [22])

is a type of public-key encryption in which the public-

key of a user can be used as an identity-string of the

user (e.g., an email address). There is a belived party

called private key generator (PKG) in IBE which hs a

master-secret key and publishing a secret key to each

user with respect to the user identity. The encryptor

can take the public parameter and a user identity to

encrypt a message. The receiver can decrypt this

ciphertext by hi/her secret key. Guo et al. [23], [9]

strived to build IBE with key aggregation. One of their

schemes [23] assumes random oracles but another [9]

does not. In their project, key aggregation is coerced in

the sense that all keys to be aggregated must come

from typical ―identity divisions‖. While there are an

exponential number of identities and thus secret keys,

only a polynomial number of them can be aggregated.

More importantly, their key-aggregation [23], [9]

comes at the more cost of O(n) sizes for both Encoded

text and the public parameter, where n is the number of

secret keys which can be aggregated into a sustained

size one. This increases more the costs of storing and

transferring Encoded text, which is unsuitable in many

situations such as shared cloud storage.

As we mentioned, our operations feature persistent

ciphertext size, and their security holds in the

persistent model. In fuzzy IBE [21], one single

compact secret key can decrypt encoded texts

encrypted under many identities which are close in a

certain metric space, but not for an random set of

identities and therefore it does not match with our idea

of key aggregation.

3.4 Other Encryption Schemes:

Attribute-based encryption (ABE) [10], [24] allows

each ciphertext to be joined with an attribute, and the

master-secret key holder can remove a secret key for a

guidelines of these characteristics so that a ciphertext

can be decrypted by this key if its joined assign

conforms to the guidelines. For example, with the

secret key for the guidelines (2 ∨ 3 ∨ 6 ∨ 8), one can

decrypt ciphertext attached with class 2, 3, 6 or 8.

However, the major treat in ABE is connivance-

hostility but not the compactness of secret keys. As

expected, the size of the key frequently increases

linearly with the number of attributes it encloses, or

the ciphertext-size is not constant (e.g., [25]). To

represent the decryption power of some ciphertexts

without sending the secret key to the delegate, a useful

unaffected is proxy re-encryption (PRE) (e.g., [26],

[27],[28], [29]).

A PRE scheme allows Alice to unaffected to the server

(proxy) the ability to convert the ciphertexts encrypted

under her public-key into ones for Bob. PRE is well

known to have numerous requisitions including

cryptographic file system [30]. However, Alice has to

believe the representative that it only converts

ciphertexts according to her instruction, which is what

we want to avoid at the first place. That also means

that the transformation key of proxy should be well

protected. Using PRE just moves the secure key

storage requirement from the delegate to the attorney.

It is thus undesirable to let the attorney occupy in the

storage server. That will also be inefficient since every

decryption requires separate interaction with the

deputy.

 Page 627

4. Concrete Constructions of KAC:

4.1 The Basic Construction:

The basic scheme is designed from the ―collusion-

resistant broadcast encryption scheme ‖ which was

proposed by Boneh et al. This schema supports the

constant size secret keys where each key only has the

power to decrypt the cipher texts associated to

particular index. For this, we utilize a new Extract

algorithm & the corresponding Decrypt algorithm.

1. Setup(𝟏𝛌, n): Randomly pick a bilinear group G of

prime order p where2λ ≤ p ≤ 2λ+1, a generator g ∈ G

and a ∈R Zp . Compute gi = gα
i
 ∈ G for i=1,. . . ,n,

n+2, . . . , 2n. Output the system parameter as param =

(g, g1 , … , gn , gn+2, … , g2n) (α will be deleted after

Setup). Note that each ciphertext class is represented

by an index in the integer set {1, 2, . . . , n}, where n is

the maximum number of ciphertext classes.

2. KeyGen(): Pick γ ∈R Zp , output the public and

master-secret key pair: (pk = v = gγ , msk = γ).

3.Encrypt(pk, i, m): For a message m ∈ GT and an

index i ∈ {1,2,. . . .,n}, randomly pick t ∈R Zpand

compute the ciphertext as

C = (gt , vgi
t , m. e g1 , gn

t)

4.Extract(msk =ˠ , S): For the set S of indices j‘s, the

aggregate key is computed as Ks = gn+1−j
ᵞ

j∈S Since

S does not include 0, = gn+1−j
 = gαn +1−j

 can always

be retrieved from param.

5. Decrypt(𝐊𝐬, S, i, C = {c1, c2, c3}): If i S, output ⊥.

Otherwise, return the message:

m = c3. e(KS . gn1−j+i , c1)/e(gn+1−j , c2)j∈S

 For the data owner, with the knowledge of ᵞ, the term

e(g1 , gn)tcan be easily recovered

by e(c1, gn)ᵧ= e(gt , gn)ᵧ = e(g1 , gn)t

For correctness, we can see that

c3 . e(KS . gn+1−j+i , c1)/j∈S,j≠i e(gn+1−j , gi
t

j∈S

=c3.
e(gn +1−j

ᵞ
j∈S , gn +1−j ,gt)j∈S

e(gn +1−j ,(vgi)t
j∈S)

= c3 . e(gn+1−j+i , gt)/j∈S,j≠i e(gn+1−j , gi
t

j∈S)

=c3.
e(gn +1−j+i ,gt)j∈S , e(gn +1 ,gt)

e(gn +1−j+i ,gt
j∈S)

= m. e g1 , gn
t/e(gn+1, gt) = m

4.1 Performance:

To do the encryption, the value e(g1,gn) is pre-

computed and placed in the system parameter. From

the other side, we observe that decryption takes only

two pairings but only one of them is used in the

aggregate key. Here we only use one pairing

computation within the security chip storing the i.e, the

aggregate key. This helps to compute the pairing fast

in these present days, though the usage of resource

constrained devices. The more flexible software

implantations are also there for sensor nodes also.

Fig: 4 Key Assignment in our Approch

4.2 Public-Key Extension:

To classify the cipher texts for more than one class(n),

we need to register for additional key pairs i.e;

(pk2 , msk2),. . . , (pkl , mskl). Each class must be

indexed by a 2-level index {(i,j)|1<=i<=l,1<=j<=n}

where the number of classes ids increased by n when

any key is added. Now the new public-key is treated as

a new user, which have the concern i.e, the key

aggregation is not possible for two independent users.

If we face the problem of hierarchical solution as

mentioned in Section 1, we can achieve still by using

shorter key size and can gain flexibility as illustrated in

Figure 4.It shows the flexibility for our approach. We

can get the local aggregation, in which the secret keys

from the same branch can be aggregated. For better

explanation for our distinctive feature we use the

‗quaternary tree‘ for the last level. In hierarchical

approach when compared with quaternary trees the

main advantage is preserved in which the delegates of

the decryption power for all the 4 classes(if we choose

https://en.wikipedia.org/wiki/%E2%8A%A5
https://en.wikipedia.org/wiki/%E2%88%88
https://en.wikipedia.org/wiki/%E2%89%A0
https://en.wikipedia.org/wiki/%E2%88%88
https://en.wikipedia.org/wiki/%E2%88%88
https://en.wikipedia.org/wiki/%E2%88%88
https://en.wikipedia.org/wiki/%E2%88%88
https://en.wikipedia.org/wiki/%E2%88%88
https://en.wikipedia.org/wiki/%E2%89%A0
https://en.wikipedia.org/wiki/%E2%88%88
https://en.wikipedia.org/wiki/%E2%88%88
https://en.wikipedia.org/wiki/%E2%88%88

 Page 628

key for their parent class is delegated) or the number

of keys will be same as the number of classes. Here in

our approach at most 2 aggregate keys are needed to

explain our example.

The details on how the encryption and decryption

work when the public-key is extended is given below,

which is somewhat similar to " n − approach".

- Setup and KeyGen: Same as the basic

construction.

- Extend(pkl , mskl): Execute KeyGen() to

get vl+1 , γl+1 ϵG X Zp , output the extended

public and master-secret keys as pkl+1 =

 pkl , vl+1 , mskl+1 = (mskl , γl+1)

_ Encrypt(pkl , a, b , m): Let pkl = v1, … vl .For an

index (a, b), 1 ≤ a ≤ l, 1 ≤ b ≤ n,pickt ∈R Zp , output

the ciphertext as C = (gt , vagb
t , m. e g1gn

t)

_ Extract(mskl; Sl): Let mskl = {γ1, γ2 , … , γl}. For a

setSl of indices i, j , 1 ≤ i ≤ l, 1 ≤ j ≤ n, get gn+1−j =

gα
n +1−j

from param, output:

KS l

= gn+1−j
γ1

(1,j)∈Sl

, gn+1−j
γ2

(2,j)∈Sl

, … , gn+1−j
γl

(l,j)∈S l

 .

_ Decrypt KS l
, Sl , a, b , C : If a, b ∉ Sl , output ⊥.

Otherwise, let KS l
= d1 , … , dl and C =

 c1 , c2 , c3 Output the message:

m =
c3 .e(da . gn +1−j+b ,c1 a ,j ∈S l ,j≠b)

e(gn +1−j ,c2 a ,j ∈S l
)

Just like the basic construction, the decryption can be

done more efficiently with the knowledge of i‘s.

Correctness is not much more difficult to see:

c3 . e(da . gn+1−j+b , c1

 a,j ∈Sl ,j≠b

)/e(gn+1−j , c2

 a,j ∈Sl

)

= c3. e(gn+1−j
γa

 a,j ∈S l

. gn+1−j+b , gt

 a,j ∈Sl ,j≠b

)

/e(gn+1−j+b , (vagb)t

 a,j ∈Sl

)

= c3. e(gn+1−j+b , gt

 a,j ∈S l ,j≠b

)/e(gn+1−j , gb
t

 a,j ∈S l

)

= m. e g1 , gn
t/e(gn+1, gt) = m

We can also prove the semantic security of this

extended scheme. The proof is very similar to that for

the basic scheme and therefore is omitted. The public-

key of our CCA construction to be presented below

can also be extended using the same Extend algorithm.

4.2 Implication:

The extension approach can also be used for an update

process as a key. If a secret value is occurred we can

replace the occurred pk1 with a new key pk2.This

small aggregate key size minimizes the

communication over head in transferring the new key.

5 Performance Analysis:

5.1 Compression Factors:

When we have concrete comparison, we investigate

about the requirements of space for the tree based key

assignment approach as we discussed in Section 3.1.

We use this in Complete Subtree scheme, which is a

representative answer for the broadcast encryption

problem which is also known as Subset-Cover

framework. It involves a static-logical key hierarchy,

which is madeup with a full binary key tree of height

h(fig 3), and thus supports up to 2h cipher text classes

that is selected as a part of which is belonging to an

authorized delegate. For any kind of ideal case as

shown in figure 3(a), the Delegate is accessed to 2h

classes contain only one key, where hs is the height of

a subtree .

To decrypt cipher texts of a set of classes, it may have

to hold large number of keys as depicted. So we

concentrate in na where the number of symmetric keys

to be assigned in this hierarchical key approach, in an

average sense. Let us assume that there are exactly 2h

cipher text classes where the delegate of concern is

entitled to ‗r‘ of them i.e, r is the delegation ratio

where it means the ratio of the delegated cipher text

classes to the total classes.If r=0,na should also be

0,means no access to any of the classes ;if r=100%,na

should be as low as 1, which means that the possession

of only the root key in the hierarchy can grant the

access to all the 2h classes.

https://en.wikipedia.org/wiki/%E2%88%89
https://en.wikipedia.org/wiki/%E2%8A%A5

 Page 629

Consequently, one may expect that na may first

increase with r, and may decrease later. We set r =

10%; 20%; _ _ _; 90%, and choose the portion in a

random manner to model an arbitrary ―delegation

pattern‖ for different delegates. For each combination

of r and h, we randomly generate 104 different

combinations of classes to be delegated, and the output

key set size na is the average over random delegations.

We tabulate the results in Table 2, where h = 16; 18;

20 respectively. For a given h, na increases with the

delegation ratio r until r reaches _ 70%. An amazing

fact is that, the ratio of na to N(= 2h+1 − 1), the total

number of keys in the hierarchy (e.g., N = 15 in Figure

3), appears to be only determined by r but irrelevant of

h. This is because when the number of ciphertext

classes (2h) is large and the delegation ratio (r) is

fixed, this kind of random delegation achieves roughly

the same key.

Table 2: Comparison ratio for different delegation

ratios and heights

Fig 5: (a)Compression achieved by the tree-based

approach for delegating different ratio of the

classes (b) Number of granted keys (na) required

for different approaches in the case of 65536 classes

of data

5.2 Performance of Our Proposed Schemes:

Our attitude allow the consolidate factor F (F =n in our

schemes) to be a adjustable framework, at the cost of

O(n)-sized system framework. Encryption can be done

in constant time, while decryption can be done in

O(|S|) group multiplications (or point addition on

elliptic curves) with 2 pairing operations, In which S is

the set of cipher text(data that had been encrypted)

classes decrypt table by the granted aggregate key and

|S| ≤ n. As we assumed, key extraction requires O(|S|)

group multiplications as well which seems to be not

avoidable. However, as determined by the experiment

results, we do not need to set a very high n to have

better reduction than the tree-based proposal. Note that

group multiplication is a very quick operation. Again,

we confirm experimentally that our testing is true. We

executed the basic KAC system in C with the Pairing-

Based Cryptography (PBC) Library 8 version 0.4.18

for the underlying elliptic-curve group and pairing

functioning.

Since the permitted key can be as small as one G

element, and the ciphertext only contains G and one

GT elements, we used (symmetric) pairings over

Type-A (super singular) curves as proposed in the

PBC library which contains the highest coherence

among all types of curves, even though Type-A curves

do not provide the shortest depiction for group

elements. In our application, p is a 160-bit stepladder

prime, which offers 1024-bit of discrete-logarithm

security. With this Type-A curves setting in PBC,

elements of groups G and GT take 512 and 1024 bits

to represent, respectively. The test machine is a Sun

UltraSparc IIIi system with dual CPU (1002 MHz)

running Solaris, each with 2GB RAM. The timings

reported below are averaged over 100 irregular runs. In

our test, we take the number of ciphertext classes n =

 Page 630

216 = 65536. The Setup algorithm, while outputting

(2n + 1) elements by doing (2n − 2) exponentiations,

can be made logical by preprocessing functionality by

PBC, which reduces time for exponentiation the same

element (g) in the long run. This is the only ―low-

level‖ minimization trick we have used. All other

operations are executed in direct order. In particular,

we did not take advantage of the fact that ˆ e(g1, gn)

will be exponented many times across different

encryptions. However, we pre-calculated its value in

the setup stage, such that the encryption can be done

without computing any pairing. Our test results are

shown in Table 3. The execution times of Setup,

KeyGen, Encrypt are independent of the entrusting

ratio r. In our tests, KeyGen takes 3.3 milliseconds and

Encrypt takes 6.8 milliseconds. As we assumed, the

running time complexities of Extract and Decrypt

increase linearly with the delegation ratio r(which

determines the size of the delegated set S). Our timing

results also depend on what can be seen from the

expression in Extract and Decrypt — two pairing

operations take negligible time, the running time of

Decrypt is approximately a double of Extract.

Note that our experiments deal with up to 65536

number of classes (which is also the compression

factor), and should be large sufficient for fine-grained

data transferring in most situations. Finally, we remark

that for applications where the number of ciphertext

classes is large but the non confidential storage is

limited, one should employ our schemes using the

Type-D pairing bundled with the PBC, which only

requires 170-bit to represent an element in G. For n =

216, the system limit requires approximately 2.6

megabytes, which is as large as a lower feature MP3

file or a higher-determination JPEG file that a typical

cellphone can store more than a dozen of them.But we

saved cost secure storage without the argument of

managing a hierarchy of entrusting classes.

6. New Patient-Controlled Encryption:

Stimulated by the nationwide effort to computerize

America‘s medical records, the concept of patient

controlled encryption (PCE) has been studied. In PCE,

the health record is separate into a different forms

based on the use of different ontology (metaphysical

science), and patients are the clients who will produce

and use secret data. When there is a need for a

healthcare personnel to know the part of the record, a

patient will say the secret information for the particular

part of the record. In the work of Benaloh , three

solutions have been provided, which are symmetric-

key PCE for fixed hierarchy (the ―folklore‖ tree-based

method in Section 3.1), public-key PCE for fixed

hierarchy (the IBE analog of the folklore method, as

mentioned in Section 3.1), and RSA-based symmetric-

key PCE for ―flexible hierarchy‖ (which is the ―set

membership‖ access policy as we explained). Our

work provides a candidate relevant information for the

missing piece, public-key PCE for flexible hierarchy,

which the containers of an efficient data was an open

query. Any patient can either revel her own hierarchy

according to her need, or follow the set of types

suggested by the electronic medical record system

she/he is using, such as ―clinic visits‖, ―x-rays‖,

―allergies‖, ―medications‖ and so on. When the patient

wishes to give rights to her doctor to acess, she/he can

select any subset of these categories and issue a single

key, from which keys for all these categories can be

calculated.

 Page 631

7. Conclusion and Future Work:

How to protect users‘ information is a central question

of cloud storage. With more mathematical tools,

cryptographic schemes are having more multiples and

also involve multiple keys for a single application. In

this article, we consider how to ―compress‖ secret keys

in public-key cryptosystems which having delegation

of secret keys for different ciphertext classes in cloud

storage. No matter which one among the power set of

classes, the delegate can always get an aggregate key

of constant size. Our view is more flexible than

hierarchical key assignment which can only save

spaces if all key-holders share a similar set of

dispensation. A deficiency in our work is the

predefined way of the number of maximum ciphertext

classes. In cloud storage, the number of ciphertexts

usually grows more rapidly. So we have to reserve

enough ciphertext classes for the future use.

Otherwise, we need to expand the public-key as we

described in Section 4.2.Although the parameter can

be downloaded with ciphertexts, it would be better if

its size is independent of the maximum number of

ciphertext classes. On the other hand, when one carries

the delegated keys around in a mobile device without

using special trusted hardware, the key is dispose to

revel, designing a leakage resilient cryptosystem [22],

[34] yet allows efficient and flexible key delegation is

also an interesting .

8. References:

1. ―Key-Aggregate Cryptosystem for Scalable Data

Sharing in Cloud Storage‖, Cheng-Kang Chu,

Sherman S. M. Chow, Wen-Guey Tzeng, Jianying

Zhou, and Robert H. Deng, Senior Member, IEEE

2. L. Hardesty, ―Secure computers aren‘t so secure,‖

MIT press, 2009,

http://www.physorg.com/news176107396.html.

3. C. Wang, S. S. M. Chow, Q. Wang, K. Ren, and W.

Lou, ―Privacy- Preserving Public Auditing for Secure

Cloud Storage,‖ IEEE Trans. Computers, vol. 62, no.

2, pp. 362–375, 2013.

4. B. Wang, S. S. M. Chow, M. Li, and H. Li, ―Storing

Shared Data on the Cloud via Security-Mediator,‖ in

International Conference on Distributed Computing

Systems - ICDCS 2013. IEEE, 2013.

5. S. S. M. Chow, C.-K. Chu, X. Huang, J. Zhou, and

R. H. Deng, ―Dynamic Secure Cloud Storage with

Provenance,‖ in Cryptography and Security: From

Theory to Applications - Essays Dedicated to Jean-

Jacques Quisquater on the Occasion of His 65th

Birthday, ser. LNCS, vol. 6805. Springer, 2012, pp.

442–464.

6. D. Boneh, C. Gentry, B. Lynn, and H. Shacham,

―Aggregate and Verifiably Encrypted Signatures from

Bilinear Maps,‖ in Proceedings of Advances in

Cryptology - EUROCRYPT ‘03, ser. LNCS, vol.

2656. Springer, 2003, pp. 416–432.

7. M. J. Atallah, M. Blanton, N. Fazio, and K. B.

Frikken, ―Dynamic and Efficient Key Management for

Access Hierarchies,‖ ACM Transactions on

Information and System Security (TISSEC), vol. 12,

no. 3, 2009.

8. J. Benaloh, M. Chase, E. Horvitz, and K. Lauter,

―Patient Controlled Encryption: Ensuring Privacy of

Electronic Medical Records,‖ in Proceedings of ACM

 Page 632

Workshop on Cloud Computing Security (CCSW ‘09).

ACM, 2009, pp. 103–114.

9. F. Guo, Y. Mu, Z. Chen, and L. Xu, ―Multi-Identity

Single-Key Decryption without Random Oracles,‖ in

Proceedings of Information Security and Cryptology

(Inscrypt ‘07), ser. LNCS, vol. 4990. Springer, 2007,

pp. 384–398.

10. S. S. M. Chow, Y. J. He, L. C. K. Hui, and S.-M.

Yiu, ―SPICE -Simple Privacy-Preserving Identity-

Management for Cloud Environment,‖ in Applied

Cryptography and Network Security – ACNS 2012,

ser. LNCS, vol. 7341. Springer, 2012, pp. 526–543.

