

 Page 77

Design and Analysis of Approximate Compressors for

Multiplication

Ms.Vinutha H

M.Tech ES & VLSI,

Malla Reddy Collage of Engineering.

Mr.M Chandra Mohan, B.E, M.Tech

Assistant Professor,

Malla Reddy Collage of Engineering.

ABSTRACT:

Inexact (or approximate) computing is an attractive

paradigm for digital processing at nanometric scales.

Inexact computing is particularly interesting for

computer arithmetic designs. This paper deals with the

analysis and design of two new approximate 4-2

compressors for utilization in a multiplier. These

designs rely on different features of compression, such

that imprecision in computation (as measured by the

error rate and the so-called normalized error distance)

can meet with respect to circuit-based figures of merit

of a design (number of transistors, delay and power

consumption). Four different schemes for utilizing the

proposed approximate compressors are proposed and

analyzed for a Dadda multiplier. Extensive simulation

results are provided using Xilinx14.4 ISE. The results

show that the proposed designs accomplish significant

reductions in delay and area compared to an exact

design.

Index Terms:

Compressor, Dadda multiplier, inexact computing,

approximate circuits

I.INTRODUCTION:

MOST Computer Arithmetic Applications Are

Implemented Using Digital Logic Circuits, Thus

Operating With A High Degree Of Reliability And

Precision. However, Many Applications such as in

multimedia and image processing can tolerate errors

and imprecision in computation and still produce

meaningful and useful results.

Accurate and precise models and algorithms are not

always suitable or efficient for use in these

applications. The paradigm of inexact computation

relies on relaxing fully precise and completely

deterministic building modules when, for example,

designing energy-efficient systems. This allows

imprecise computation to redirect the existing design

process of digital circuits and systems by taking

advantage of a decrease in complexity and cost with

possibly a potential increase in performance and power

efficiency. Approximate (or inexact) computing relies

on using this property to design simplified, yet

approximate circuits operating at higher performance

and/or lower power consumption compared with

precise (exact) logic circuits.

Addition and multiplication are widely used operations

in computer arithmetic; for addition full-adder cells

have been extensively analyzed for approximate

computing. Liang et al. has compared these adders and

proposed several new metrics for evaluating

approximate and probabilistic adders with respect to

unified figures of merit for design assessment for

inexact computing applications. For each input to a

circuit, the error distance (ED) is Defined as the

arithmetic distance between an erroneous output and

the correct one. The mean error distance (MED) and

normalized error distance (NED) are proposed by

considering the averaging effect of multiple inputs and

the normalization of multiple-bit adders. The NED is

nearly invariant with the size of an implementation and

is therefore useful in the reliability assessment of a

 Page 78

Specific design. The tradeoff between precision and

power has also been quantitatively evaluated.

However, the design of approximate multipliers has

received less attention. Multiplication can be thought

as the repeated sum of partial products; however, the

straightforward application of approximate adders

when designing an approximate multiplier is not

viable, because it would be very inefficient in terms of

precision, hardware complexity and other performance

metrics. Most of these designs use a truncated

multiplication method; they estimate the least

significant columns of the partial products as a

constant. In an imprecise array multiplier is used for

neural network applications by omitting some of the

least significant bits in the partial products (and thus

removing some adders in the array). A truncated

multiplier with a correction constant is proposed. For

an nXn multiplier, this design calculates the sum of the

n+k most significant columns of the partial products

and truncates the other n-k columns. Then n+k bit

result is then rounded to n bits.

The reduction error (i.e., the error generated by

truncating the n-k least significant bits) and rounding

error (i.e., the error generated by rounding the result to

n bits) are found in the next step. The correction

constant (n+k bits) is selected to be as close as possible

to the estimated value of the sum of these errors to

reduce the error distance. Initially in this paper, two

novel approximate 4-2 compressors are proposed and

analyzed. It is shown that these simplified compressors

have better delay and power consumption than the

optimized (exact) 4-2 compressor designs. These

approximate compressors are then used in the

restoration module of a DADDA multiplier; four

different schemes are proposed for inexact

multiplication. Extensive simulation results are

provided at circuit-level for figures of merit, such as

delay, transistor count, power dissipation, error rate

and normalized error distance under CMOS feature

sizes of 32, 22 and 16 nm. The application of these

multipliers to image processing is then presented.

The analysis and simulation results show that the

proposed approximate designs for both the compressor

and the multiplier are viable candidates for inexact

computing. A multitude of various multiplier

architectures have been published in the literature,

during the past few decades. The multiplier is one of

the key hardware blocks in most of the digital and high

performance systems such as digital signal processors

and microprocessors. With the recent advances in

technology, many researchers have worked on the

design of increasingly more efficient multipliers. They

aim at offering higher speed and lower power

consumption even while Occupying reduced silicon

area. This makes them compatible for various complex

and portable VLSI circuit implementations [2].

However, the fact remains that the area and speed are

two conflicting performance constraints. Hence,

innovating increased speed always results in larger

area. The proposed architecture enhances the speed

performance of the widely acknowledged Wallace tree

multiplier when implemented on a FPGA.

The structural optimization is performed on the

conventional Wallace multiplier, in such a way that the

latency of the total circuit reduces considerably.A

truncated multiplier with constant correction has the

maximum error if the partial products in the n-k least

significant columns are all ones or all zeros. A variable

correction truncated multiplier has been proposed. This

method changes the correction term based on column

n-k-1. If all partial products in column n-k-1 are one,

then the correction term is increased. Similarly, if all

partial products in this column are zero, the correction

term is decreased. In a simplified 22 multiplier block is

proposed for building larger multiplier arrays. In the

design of a fast multiplier, compressors have been

widely used to speed up the partial product reduction

tree and decrease power dissipation. Kelly et al. and

Ma et al. have also considered compression for

approximate multiplication. An approximate signed

multiplier has been proposed for use in arithmetic data

value speculation (AVDS); multiplication is performed

using the BaughWooley algorithm.

 Page 79

However no new design is proposed for the

compressors for the inexact computation. Designs of

approximate compressors have been proposed;

however, these designs do not target multiplication. It

should be noted that the approach of improves over by

utilizing a simplified multiplier block that is amenable

to approximate multiplication.

II.EXACT COMPRESSORS:

The main goal of either multi-operand carry-save

addition or parallel multiplication is to reduce n

numbers to two numbers; therefore, n-2 compressors

(or n-2 counters) have been widely used in computer

arithmetic. A n-2 compressor (Fig. 1) is usually a slice

of a circuit that reduces n numbers to two numbers

when properly replicated. In slice i of the circuit, the n-

2 compressor receives n bits in position i and one or

more carry bits from the positions to the right, such as

i-1 or i-2. It produces two output bits in positions i and

i+1 and one or more carry bits into the higher

positions, such as i+1 or i+2. For the correct operation

of the circuit shown in Fig.1, the following inequality

must be satisfied

n+𝜑1+𝜑2+𝜑3+….<=3+2𝜑1+4𝜑2+8𝜑3+….. (1)

Where 𝜑𝑗 denotes the number of carry bits from slice i

to slice i+j.

A widely used structure for compression is the 4-2

compressor; a 4-2 compressor (Fig. 2) can be

implemented with a carry bit between adjacent

slices(𝜑1 = 1). The carry bit from the position to the

right is denoted as Cin while the carry bit into the

higher position is denoted as Cout. The two output bits

in positions i and i+1 are also referred to as the sum

and carry respectively.

Fig.1 4-2 compressor

The following equations give the outputs of the 4-2

compressor, while Table 1 shows its truth table

…. (2)

….(3)

….(4)

The common implementation of a 4-2 compressor is

accomplished by utilizing two full-adder (FA) cells.

Fig. 4 shows the optimized design of an exact 4-2

compressor based on the XOR-XNOR gates; A XOR-

XNOR gate simultaneously generates the XOR and

XNOR output signals. The design consists of three

XOR-XNOR (denoted by XOR) gates, one XOR and

two 2-1 MUXes. The critical path of this design has a

delay of 3D, where D is the unitary delay through any

gate in the design.

Fig.2 Implementation of 4-2 compressor

 Page 80

Table I: Truth Table of 4-2 Compressor

III.PROPOSED COMPRESSORS:

In this section, two designs of an approximate

compressor are proposed. Intuitively to design an

approximate 4-2 compressor, it is possible to substitute

the exact full-adder cells in Fig. 3 by an approximate

full-adder cell (such as the first design proposed).

However, this is not very efficient, because it produces

at least 17 incorrect results out of 32 possible outputs,

i.e., the error rate of this inexact compressor is more

than 53 percent (where the error rate is given by the

ratio of the number of erroneous outputs over the total

number of outputs). Two different designs are

proposed next to reduce the error rate; these designs

offer significant performance improvement compared

to an exact compressor with respect to delay, number

of transistors and power consumption. The exact

compressor was reduced by proposing two

approximate compressors. The two approximate

compressors are shown below

A. Design 1:

In the design1 approximation, we approximate the

result by making Carry’=Cin with this approximation

the carry output in an exact compressor has the same

value of input Cin.. In particular, the simplification of

sum to a value of 0 reduces the difference between the

approximate and the exact outputs as well as the

complexity of its design. Also, the presence of some

errors in the sum signal will results in a reductions of

the delay of producing the approximate sum and the

overall delay of the design. As shown in Table 2.5, the

carry output in an exact compressor has the same value

of the input Cin in 24 out of 32 states. Therefore, an

approximate design must consider this feature. In

Design 1, the carry is simplified to Cin by changing

the value of the other eight outputs.

….(5)

Since the Carry output has the higher weight of a

binary bit, an erroneous value of this signal will

produce a difference value of two in the output. For

example, if the input pattern is “01001” (row 10 of

Table 2), the correct output is “010” that is equal to 2.

By simplifying the carry output to Cin, the

approximate compressor will generate the “000”

pattern at the output (i.e., a value of 0). This

substantial difference may not be acceptable; however,

it can be compensated or reduced by simplifying the

Cout and sum signals. In particular, the simplification

of sum to a value of 0 (second half of Table 2) reduces

the difference between the approximate and the exact

outputs as well as the complexity of its design. Also,

the presence of some errors in the sum signal will

results in a reductions of the delay of producing the

approximate sum and the overall delay of the design

(because it is on the critical path).

….(6)

Fig.3 Optimized 4-2 compressor of design 1

 Page 81

In the last step, the change of the value of Cout in

some states may reduce the error distance provided by

approximate carry and sum and also more

simplification in the proposed design.

….(7)

Although the above mentioned simplifications of carry

and sum increase the error rate in the proposed

approximate compressor, its design complexity and

therefore the power consumption are considerably

decreased. Table 2 shows the truth table of the first

proposed approximate compressor. It also shows the

difference between the inexact output of the proposed

approximate compressor and the output of the exact

compressor. As shown in Table 2, the proposed design

has 12 incorrect outputs out of 32 outputs (thus

yielding an error rate of 37.5 percent).

This is less than the error rate using the best

approximate full-adder cell.

Fig.4 Gate level implementation of design 1

Equations are the logic expressions for the outputs of

the first design of the approximate 4-2 compressor

proposed in this manuscript. The gate level structure of

the first proposed design (Fig. 2.2(b)) shows that the

critical path of this compressor has still a delay of 3D,

so it is the same as for the exact compressor. However,

the propagation delay through the gates of this design

is lower than the one for the exact compressor. For

example, the propagation delay in the XOR gate that

generates both the XOR and XNOR signals is higher

than the delay through a XNOR gate of the proposed

design.

Therefore, the critical path delay in the proposed

design is lower than in the exact design and moreover,

the total number of gates in the proposed design is

significantly less than that in the optimized exact

compressor.

Table II: Truth table of Approximate Compressor

B. Design 2:

A second design of an approximate compressor is

proposed to further increase performance as well as

reducing the error rate. Since the carry and Cout

outputs have the same weight, the proposed equations

for the approximate carry and Cout in the previous part

can be interchanged. In this new design, carry uses the

right hand side and Cout is always equal to Cin; since

Cin is zero in the first stage, Cout and Cin will be zero

in all stages. So, Cin and Cout can be ignored in the

hardware design. Fig. 2.5(c) shows the block diagram

of this approximate 4-2 compressor and the

expressions below describe its outputs.

….(8)

….(9)

 Page 82

Fig. 2.5(d) shows the gate level implementation of the

second proposed design. The delay of the critical path

of this approximate design is 2∆. So it is 1∆ less than

the previous designs; moreover, a further reduction in

the number of gates is accomplished.

Fig.5 Optimized 4-2 compressor of design 2

Table III shows the truth table of the second

approximate design for a 4-2 compressor; this Table

also shows the difference between the exact decimal

value of the addition of the inputs and the decimal

value of the outputs produced by the approximate

compressor.

Fig.6 Gate level implementation of design 2

For example when all inputs are 1, the decimal value

of the addition of the inputs is 4. However, the

approximate compressor produces a 1 for the carry and

sum. The decimal value of the outputs in this case is 3;

Table 2 shows that the difference is –1. This design

has therefore four incorrect outputs out of 16 outputs,

so its error rate is now reduced to 25 percent.

This is a very positive feature, because it shows that on

a probabilistic basis, the imprecision of the proposed

design is smaller than the other available schemes.

Table III: Truth table of Approximate Compressor

Design 2

4. PROPOSED MULTIPLIER:

Multiplication is a fundamental operation in most

signal processing algorithms. Multipliers have large

area, long latency and consume considerable power.

Therefore low-power multiplier design has an

important part in low-power VLSI system design. A

system is generally determined by the performance of

the multiplier because the multiplier is generally the

slowest element and more area consuming in the

system. Hence optimizing the speed and area of the

multiplier is one of the major design issues. However,

area and speed are usually conflicting constraints so

that improvements in speed results in larger areas.

Multiplication is a mathematical operation that include

process of adding an integer to itself a specified

number of times. A number (multiplicand) is added

itself a number of times as specified by another

number (multiplier) to form a result (product).

Multipliers play an important role in today’s digital

signal processing and various other applications. In

this section, the impact of using the proposed

compressors for multiplication is investigated. A fast

(exact) multiplier is usually composed of three parts

(or modules).

 Page 83

 Partial product generation.

 A carry save adder (CSA) tree to reduce the

partial products’ matrix to an addition of only

two operands.

 A carry propagation adder (CPA) for the final

computation of the binary result.

In the design of a multiplier, the second module plays

a pivotal role in terms of delay, power consumption

and circuit complexity. Compressors have been widely

used to speed up the CSA tree and decrease its power

dissipation, so to achieve fast and low-power

operation. The use of approximate compressors in the

CSA tree of a multiplier results in an approximate

multiplier. A 8x8 unsigned DADDA tree multiplier is

considered to assess the impact of using the proposed

compressors in approximate multipliers. The proposed

multiplier uses in the first part AND gates to generate

all partial products. In the second part, the approximate

compressors proposed in the previous section are

utilized in the CSA tree to reduce the partial products.

The last part is an exact CPA to compute the final

binary result. Fig. 9a shows the reduction circuitry of

an exact multiplier for n ¼ 8. In this figure, the

reduction part uses half-adders, full-adders and 4-2

compressors; each partial product bit is represented by

a dot. In the first stage, two half-adders, two full-

adders and eight compressors are utilized to reduce the

partial products into at most four rows. In the second

or final stage, 1 half-adder, 1 full-adder and 10

compressors are used to compute the two final rows of

partial products. Therefore, two stages of reduction

and three half-adders, three full-adders and 18

compressors are needed in the reduction circuitry of an

8x8 DADDA multiplier. In this paper, four cases are

considered for designing an approximate multiplier.

 In the first case (Multiplier 1), Design 1 is used for

all 4-2 compressors.

 In the second case (Multiplier 2), Design 2 is used

for the 4-2 compressors. Since Design 2 does not

have Cin and Cout, the reduction circuitry of this

multiplier requires a lower number of

compressors. Multiplier 2 uses six half-adders, one

full-adder and 17 compressors.

 In the third case (Multiplier 3), Design 1 is used

for the compressors in the n-1 least significant

columns. The other n most significant columns in

the reduction circuitry use exact 4-2 compressors.

 In the fourth case (Multiplier 4), Design 2 and

exact 4-2 compressors are used in the n-1 least

significant columns and the n most significant

columns in the reduction circuitry respectively.

The objectives of the first two approximate designs are

to reduce the delay and power consumption compared

with an exact multiplier; however, a high error

distance is expected. The next two approximate

multipliers (i.e., Multipliers 3 and 4) are proposed to

decrease the error distance. The delay in these designs

is determined by the exact compressors that are in the

critical path; therefore, there is no improvement in

delay for these approximate designs compared with an

exact multiplier. However, it is expected that the

utilization of approximate compressors in the least

significant columns will decrease the power

consumption and transistor count (as measure of

circuit complexity). While the first two proposed

multipliers have better performance in terms of delay

and power consumption, the error distances in the third

and fourth designs are expected to be significantly

lower. The DADDA multiplier was designed by the

scientist Luigi Dadda in 1965. It looks similar to

Wallace multiplier but slightly faster and requires less

gates.

DADDA Multiplier was defined in three steps:

 Multiply each bit of one argument with the

each and every bit of other argument and

continue until all arguments are multiplied.

 Reduce the number of partial products to two

layers of full and half adders.

 Group the wires in two numbers, and add them

with a conventional adder.

A 8x8 multiplier using dada multiplier design is

designed. Instead of using conventional full adders and

 Page 84

half adder for designing the multiplier, compressors

which reduce the complexity of the multiplier is

introduced.

A.DADDA Multiplier using Design1:

•A 8×8 unsigned DADDA tree multiplier is considered

to access the impact of using the proposed

compressors in approximate multipliers.

•The proposed multiplier uses in the first part, the

AND gates to generate all partial products.

•The reduction part uses half-adders, full-adders and 4-

2 compressors; each partial product bit is represented

by a dot. In the first stage, 2 half-adders, 2 full-adders

and 8 compressors are utilized to reduce the partial

products into at- most four rows.

•In the second or final stage, 1 half-adder, 1 full-adder

and 10 compress-ors are used to compute the two final

rows of partial products.

•Therefore, two stages of reduction and 3 half-adders,

3 full-adders and 18 compressors are needed in the

reduction circuitry of an 8×8 DADDA multiplier.

Fig.7.a Reduction circuitry of 8x8 Dadda Multiplier

using design 1 Compressor

B.DADDA Multiplier using Design2:

•In the first case (Multiplier1), Desi-gn1 is used for all

4-2 compressors.

•In the second case (Multiplier2), Design2 is used for

the 4-2 compressors. Since Design2 does not have Cin

and Cout, the reduced circuitry of this multiplier

requires a lower number of compressors. Multiplier2

uses 6 half-adders, 1 full-adder and 17 compressors.

•In the third case (Multiplier 3), Design1 is used for

the compressors in the 1-least significant columns. The

other n most significant columns in the reduction

circuitry use exact 4-2 compressors.

Fig.7.b Reduction circuitry of 8x8 Dadda Multiplier

using design 2 Compressor

V.SIMULATION RESULTS:

All the synthesis and simulation results are performed

using Verilog HDL. The synthesis and simulation are

performed on Xilinx ISE 14.4. The simulation results

are shown below figures. The corresponding

simulation results of the Approximate Muliplier4 are

shown below.

Figure 8: RTL schematic of Approximate

Multiplier4

 Page 85

Figure 9: RTL schematic of Internal Approximate

Multiplier4

Figure 11: Synthesis report of Approximate

Multiplier4

Figure 12: Simulated output for Approximate

Multiplier4

Figure 13: Simulated output for Approximate

Multiplier3

Figure 14: Simulated output for Approximate

Multiplier2

Figure 15: Simulated output for Approximate

Multiplier1

CONCLUSION:

Inexact computing is an emerging paradigm for

computation at nano scale. Computer arithmetic offers

significant operational advantages for inexact

computing; an extensive literature exists on

approximate adders. However, this paper has initially

focused on compression as used in a multiplier; to the

best knowledge of the authors, no work has been

reported on this topic. This paper has presented the

novel designs of two approximate 4-2 compressors.

These approximate compressors are utilized in the

reduction module of four approximate multipliers. The

approximate compressors show a significant reduction

in Area, power consumption and delay compared with

an exact design. Four different approximate schemes

have been proposed in this paper to investigate the

performance of the approximate compressors for the

aforementioned metrics for inexact multiplication. The

approximate compressors have been utilized in the

reduction module of a DADDA multiplier.

REFERENCES:

[1]J. Liang, J. Han, and F. Lombardi, “New metrics for

the reliability of approximate and Probabilistic

Adders” IEEE Trans Computers vol. 63, no. 9, pp.

1760–1771, Sep 2013.

[2]V. Gupta, D. Mohapatra, S. P. Park, A.

Raghunathan, and K. Roy, “IMPACT: IMPrecise

adders for low-power approximate computing,” in

 Page 86

Proc. Int. Symp. Low Power Electron Design, Aug.

2011, pp. 409–414.

[3] M. J. Schulte and E. E. Swartzlander Jr.,

“Truncated multiplication with correction constant” in

Proc. Workshop VLSI Signal Process VI, 1993, pp.

388–396.

[4] C. Chang, J. Gu, and M. Zhang, “Ultra low-voltage

low- power CMOS 4-2 and 5-2 compressors for fast

arithmetic circuits,” IEEE Trans. Circuits Syst., vol.

51, no. 10, pp. 1985–1997, Oct. 2004.

[5] D. Radhakrishnan and A. P. Preethy, “Low-Power

CMOS pass logic 4-2 compressor for high-speed

multiplication,” in Proc. IEEE 43
rd

 Midwest Symp

Circuits Syst., 2000, vol.3, pp 1296–1298.

[6] J. Gu and C. H. Chang, “Ultra low-voltage, low-

power 4-2 compressor for high speed multiplications,”

in Proc. 36th IEEE Int. Symp. Circuits Syst., Bangkok,

Thailand, May 2003, pp. v-321–v-324.

[7] M. Margala and N. G. Durdle, “Low-power low-

voltage 4-2 compressors for VLSI Applications,” in

Proc. IEEE Alessandro Volta Memorial Workshop

Low-Power Design, 1999, pp. 84–90.

[8] D. Baran, M. Aktan, and V. G. Oklobdzija,

“Energy efficient implementation of parallel CMOS

multipliers with improved compressors,” in Proc.

ACM/IEEE 16th Int. Symp. Low Power Electron.

Design, 2010, pp. 147–152.

[9] J. Ma, K. Man, T. Krilavicius, S. Guan, and T.

Jeong, “Implementation of high performance

multipliers based on approximate compressor design,”

presented at the Int. Conf. Electrical and Control

Technologies, Kaunas, Lithuania, 2011.

