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ABSTRACT: 

Inexact (or approximate) computing is an attractive 

paradigm for digital processing at nanometric scales. 

Inexact computing is particularly interesting for 

computer arithmetic designs. This paper deals with the 

analysis and design of two new approximate 4-2 

compressors for utilization in a multiplier. These 

designs rely on different features of compression, such 

that imprecision in computation (as measured by the 

error rate and the so-called normalized error distance) 

can meet with respect to circuit-based figures of merit 

of a design (number of transistors, delay and power 

consumption). Four different schemes for utilizing the 

proposed approximate compressors are proposed and 

analyzed for a Dadda multiplier. Extensive simulation 

results are provided using Xilinx14.4 ISE. The results 

show that the proposed designs accomplish significant 

reductions in delay and area compared to an exact 

design. 

 

Index Terms: 

Compressor, Dadda multiplier, inexact computing, 

approximate circuits 

 

I.INTRODUCTION: 

MOST Computer Arithmetic Applications Are 

Implemented Using Digital Logic Circuits, Thus 

Operating With A High Degree Of Reliability And 

Precision. However, Many Applications such as in 

multimedia and image processing can tolerate errors 

and imprecision in computation and still produce 

meaningful and useful results.  

 

Accurate and precise models and algorithms are not 

always suitable or efficient for use in these 

applications. The paradigm of inexact computation 

relies on relaxing fully precise and completely 

deterministic building modules when, for example, 

designing energy-efficient systems. This allows 

imprecise computation to redirect the existing design 

process of digital circuits and systems by taking 

advantage of a decrease in complexity and cost with 

possibly a potential increase in performance and power 

efficiency. Approximate (or inexact) computing relies 

on using this property to design simplified, yet 

approximate circuits operating at higher performance 

and/or lower power consumption compared with 

precise (exact) logic circuits.  

 

Addition and multiplication are widely used operations 

in computer arithmetic; for addition full-adder cells 

have been extensively analyzed for approximate 

computing. Liang et al. has compared these adders and 

proposed several new metrics for evaluating 

approximate and probabilistic adders with respect to 

unified figures of merit for design assessment for 

inexact computing applications. For each input to a 

circuit, the error distance (ED) is Defined as the 

arithmetic distance between an erroneous output and 

the correct one. The mean error distance (MED) and 

normalized error distance (NED) are proposed by 

considering the averaging effect of multiple inputs and 

the normalization of multiple-bit adders. The NED is 

nearly invariant with the size of an implementation and 

is therefore useful in the reliability assessment of a 
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Specific design. The tradeoff between precision and 

power has also been quantitatively evaluated. 

However, the design of approximate multipliers has 

received less attention. Multiplication can be thought 

as the repeated sum of partial products; however, the 

straightforward application of approximate adders 

when designing an approximate multiplier is not 

viable, because it would be very inefficient in terms of 

precision, hardware complexity and other performance 

metrics. Most of these designs use a truncated 

multiplication method; they estimate the least 

significant columns of the partial products as a 

constant. In an imprecise array multiplier is used for 

neural network applications by omitting some of the 

least significant bits in the partial products (and thus 

removing some adders in the array). A truncated 

multiplier with a correction constant is proposed. For 

an nXn multiplier, this design calculates the sum of the 

n+k most significant columns of the partial products 

and truncates the other n-k columns. Then n+k bit 

result is then rounded to n bits.  

 

The reduction error (i.e., the error generated by 

truncating the n-k least significant bits) and rounding 

error (i.e., the error generated by rounding the result to 

n bits) are found in the next step. The correction 

constant (n+k bits) is selected to be as close as possible 

to the estimated value of the sum of these errors to 

reduce the error distance. Initially in this paper, two 

novel approximate 4-2 compressors are proposed and 

analyzed. It is shown that these simplified compressors 

have better delay and power consumption than the 

optimized (exact) 4-2 compressor designs.  These 

approximate compressors are then used in the 

restoration module of a DADDA multiplier; four 

different schemes are proposed for inexact 

multiplication. Extensive simulation results are 

provided at circuit-level for figures of merit, such as 

delay, transistor count, power dissipation, error rate 

and normalized error distance under CMOS feature 

sizes of 32, 22 and 16 nm. The application of these 

multipliers to image processing is then presented.  

The analysis and simulation results show that the 

proposed approximate designs for both the compressor 

and the multiplier are viable candidates for inexact 

computing. A multitude of various multiplier 

architectures have been published in the literature, 

during the past few decades. The multiplier is one of 

the key hardware blocks in most of the digital and high 

performance systems such as digital signal processors 

and microprocessors. With the recent advances in 

technology, many researchers have worked on the 

design of increasingly more efficient multipliers. They 

aim at offering higher speed and lower power 

consumption even while Occupying reduced silicon 

area. This makes them compatible for various complex 

and portable VLSI circuit implementations [2]. 

However, the fact remains that the area and speed are 

two conflicting performance constraints. Hence, 

innovating increased speed always results in larger 

area. The proposed architecture enhances the speed 

performance of the widely acknowledged Wallace tree 

multiplier when implemented on a FPGA.  

 

The structural optimization is performed on the 

conventional Wallace multiplier, in such a way that the 

latency of the total circuit reduces considerably.A 

truncated multiplier with constant correction has the 

maximum error if the partial products in the n-k least 

significant columns are all ones or all zeros. A variable 

correction truncated multiplier has been proposed. This 

method changes the correction term based on column 

n-k-1. If all partial products in column n-k-1 are one, 

then the correction term is increased. Similarly, if all 

partial products in this column are zero, the correction 

term is decreased. In a simplified 22 multiplier block is 

proposed for building larger multiplier arrays. In the 

design of a fast multiplier, compressors have been 

widely used to speed up the partial product reduction 

tree and decrease power dissipation. Kelly et al. and 

Ma et al. have also considered compression for 

approximate multiplication. An approximate signed 

multiplier has been proposed for use in arithmetic data 

value speculation (AVDS); multiplication is performed 

using the BaughWooley algorithm.  
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However no new design is proposed for the 

compressors for the inexact computation. Designs of 

approximate compressors have been proposed; 

however, these designs do not target multiplication. It 

should be noted that the approach of improves over by 

utilizing a simplified multiplier block that is amenable 

to approximate multiplication. 

 

II.EXACT COMPRESSORS:  

The main goal of either multi-operand carry-save 

addition or parallel multiplication is to reduce n 

numbers to two numbers; therefore, n-2 compressors 

(or n-2 counters) have been widely used in computer 

arithmetic. A n-2 compressor (Fig. 1) is usually a slice 

of a circuit that reduces n numbers to two numbers 

when properly replicated. In slice i of the circuit, the n-

2 compressor receives n bits in position i and one or 

more carry bits from the positions to the right, such as 

i-1 or i-2. It produces two output bits in positions i and 

i+1 and one or more carry bits into the higher 

positions, such as i+1 or i+2. For the correct operation 

of the circuit shown in Fig.1, the following inequality 

must be satisfied 

 

n+𝜑1+𝜑2+𝜑3+….<=3+2𝜑1+4𝜑2+8𝜑3+….. (1) 

 

Where 𝜑𝑗  denotes the number of carry bits from slice i 

to slice i+j. 

 

A widely used structure for compression is the 4-2 

compressor; a 4-2 compressor (Fig. 2) can be 

implemented with a carry bit between adjacent 

slices(𝜑1 = 1). The carry bit from the position to the 

right is denoted as Cin while the carry bit into the 

higher position is denoted as Cout. The two output bits 

in positions i and i+1 are also referred to as the sum 

and carry respectively. 

 
Fig.1 4-2 compressor 

The following equations give the outputs of the 4-2 

compressor, while Table 1 shows its truth table 

…. (2) 

….(3) 

….(4) 

The common implementation of a 4-2 compressor is 

accomplished by utilizing two full-adder (FA) cells. 

Fig. 4 shows the optimized design of an exact 4-2 

compressor based on the XOR-XNOR gates; A XOR-

XNOR gate simultaneously generates the XOR and 

XNOR output signals. The design consists of three 

XOR-XNOR (denoted by XOR) gates, one XOR and 

two 2-1 MUXes. The critical path of this design has a 

delay of 3D, where D is the unitary delay through any 

gate in the design. 

 
Fig.2 Implementation of 4-2 compressor 
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Table I: Truth Table of 4-2 Compressor 

 
III.PROPOSED COMPRESSORS: 

In this section, two designs of an approximate 

compressor are proposed. Intuitively to design an 

approximate 4-2 compressor, it is possible to substitute 

the exact full-adder cells in Fig. 3 by an approximate 

full-adder cell (such as the first design proposed). 

However, this is not very efficient, because it produces 

at least 17 incorrect results out of 32 possible outputs, 

i.e., the error rate of this inexact compressor is more 

than 53 percent (where the error rate is given by the 

ratio of the number of erroneous outputs over the total 

number of outputs). Two different designs are 

proposed next to reduce the error rate; these designs 

offer significant performance improvement compared 

to an exact compressor with respect to delay, number 

of transistors and power consumption. The exact 

compressor was reduced by proposing two 

approximate compressors. The two approximate 

compressors are shown below 

 

A. Design 1: 

In the design1 approximation, we approximate the 

result by making Carry’=Cin with this approximation 

the carry output in an exact compressor has the same 

value of input Cin.. In particular, the simplification of 

sum to a value of 0 reduces the difference between the 

approximate and the exact outputs as well as the 

complexity of its design. Also, the presence of some 

errors in the sum signal will results in a reductions of 

the delay of producing the approximate sum and the 

overall delay of the design. As shown in Table 2.5, the 

carry output in an exact compressor has the same value 

of the input Cin in 24 out of 32 states. Therefore, an 

approximate design must consider this feature. In 

Design 1, the carry is simplified to Cin by changing 

the value of the other eight outputs. 

….(5) 

Since the Carry output has the higher weight of a 

binary bit, an erroneous value of this signal will 

produce a difference value of two in the output. For 

example, if the input pattern is “01001” (row 10 of 

Table 2), the correct output is “010” that is equal to 2. 

By simplifying the carry output to Cin, the 

approximate compressor will generate the “000” 

pattern at the output (i.e., a value of 0). This 

substantial difference may not be acceptable; however, 

it can be compensated or reduced by simplifying the 

Cout and sum signals. In particular, the simplification 

of sum to a value of 0 (second half of Table 2) reduces 

the difference between the approximate and the exact 

outputs as well as the complexity of its design. Also, 

the presence of some errors in the sum signal will 

results in a reductions of the delay of producing the 

approximate sum and the overall delay of the design 

(because it is on the critical path). 

….(6) 

 
Fig.3  Optimized 4-2 compressor of design 1 
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In the last step, the change of the value of Cout in 

some states may reduce the error distance provided by 

approximate carry and sum and also more 

simplification in the proposed design. 

….(7) 

Although the above mentioned simplifications of carry 

and sum increase the error rate in the proposed 

approximate compressor, its design complexity and 

therefore the power consumption are considerably 

decreased. Table 2 shows the truth table of the first 

proposed approximate compressor. It also shows the 

difference between the inexact output of the proposed 

approximate compressor and the output of the exact 

compressor. As shown in Table 2, the proposed design 

has 12 incorrect outputs out of 32 outputs (thus 

yielding an error rate of 37.5 percent).  

This is less than the error rate using the best 

approximate full-adder cell. 

 
Fig.4  Gate level implementation of design 1 

 

Equations are the logic expressions for the outputs of 

the first design of the approximate 4-2 compressor 

proposed in this manuscript. The gate level structure of 

the first proposed design (Fig. 2.2(b)) shows that the 

critical path of this compressor has still a delay of 3D, 

so it is the same as for the exact compressor. However, 

the propagation delay through the gates of this design 

is lower than the one for the exact compressor. For 

example, the propagation delay in the XOR gate that 

generates both the XOR and XNOR signals is higher 

than the delay through a XNOR gate of the proposed 

design.  

Therefore, the critical path delay in the proposed 

design is lower than in the exact design and moreover, 

the total number of gates in the proposed design is 

significantly less than that in the optimized exact 

compressor. 

 

Table II: Truth table of Approximate Compressor 

 
 

B. Design 2: 

A second design of an approximate compressor is 

proposed to further increase performance as well as 

reducing the error rate. Since the carry and Cout 

outputs have the same weight, the proposed equations 

for the approximate carry and Cout in the previous part 

can be interchanged. In this new design, carry uses the 

right hand side and Cout is always equal to Cin; since 

Cin is zero in the first stage, Cout and Cin will be zero 

in all stages. So, Cin and Cout can be ignored in the 

hardware design. Fig. 2.5(c) shows the block diagram 

of this approximate 4-2 compressor and the 

expressions below describe its outputs. 

….(8) 

….(9) 
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Fig. 2.5(d) shows the gate level implementation of the 

second proposed design. The delay of the critical path 

of this approximate design is 2∆. So it is 1∆ less than 

the previous designs; moreover, a further reduction in 

the number of gates is accomplished. 

 
Fig.5 Optimized 4-2 compressor of design 2 

 

Table III shows the truth table of the second 

approximate design for a 4-2 compressor; this Table 

also shows the difference between the exact decimal 

value of the addition of the inputs and the decimal 

value of the outputs produced by the approximate 

compressor. 

 
Fig.6 Gate level implementation of design 2 

 

For example when all inputs are 1, the decimal value 

of the addition of the inputs is 4. However, the 

approximate compressor produces a 1 for the carry and 

sum. The decimal value of the outputs in this case is 3; 

Table 2 shows that the difference is –1. This design 

has therefore four incorrect outputs out of 16 outputs, 

so its error rate is now reduced to 25 percent.  

This is a very positive feature, because it shows that on 

a probabilistic basis, the imprecision of the proposed 

design is smaller than the other available schemes. 

 

Table III: Truth table of Approximate Compressor 

Design 2 

 
4. PROPOSED MULTIPLIER: 

Multiplication is a fundamental operation in most 

signal processing algorithms. Multipliers have large 

area, long latency and consume considerable power. 

Therefore low-power multiplier design has an 

important part in low-power VLSI system design. A 

system is generally determined by the performance of 

the multiplier because the multiplier is generally the 

slowest element and more area consuming in the 

system. Hence optimizing the speed and area of the 

multiplier is one of the major design issues. However, 

area and speed are usually conflicting constraints so 

that improvements in speed results in larger areas. 

Multiplication is a mathematical operation that include 

process of adding an integer to itself a specified 

number of times. A number (multiplicand) is added 

itself a number of times as specified by another 

number (multiplier) to form a result (product). 

Multipliers play an important role in today’s digital 

signal processing and various other applications. In 

this section, the impact of using the proposed 

compressors for multiplication is investigated. A fast 

(exact) multiplier is usually composed of three parts 

(or modules). 
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 Partial product generation. 

 A carry save adder (CSA) tree to reduce the 

partial products’ matrix to an addition of only 

two operands. 

 A carry propagation adder (CPA) for the final 

computation of the binary result. 

 

In the design of a multiplier, the second module plays 

a pivotal role in terms of delay, power consumption 

and circuit complexity. Compressors have been widely 

used to speed up the CSA tree and decrease its power 

dissipation, so to achieve fast and low-power 

operation. The use of approximate compressors in the 

CSA tree of a multiplier results in an approximate 

multiplier. A 8x8 unsigned DADDA tree multiplier is 

considered to assess the impact of using the proposed 

compressors in approximate multipliers. The proposed 

multiplier uses in the first part AND gates to generate 

all partial products. In the second part, the approximate 

compressors proposed in the previous section are 

utilized in the CSA tree to reduce the partial products. 

The last part is an exact CPA to compute the final 

binary result. Fig. 9a shows the reduction circuitry of 

an exact multiplier for n ¼ 8. In this figure, the 

reduction part uses half-adders, full-adders and 4-2 

compressors; each partial product bit is represented by 

a dot. In the first stage, two half-adders, two full-

adders and eight compressors are utilized to reduce the 

partial products into at most four rows. In the second 

or final stage, 1 half-adder, 1 full-adder and 10 

compressors are used to compute the two final rows of 

partial products. Therefore, two stages of reduction 

and three half-adders, three full-adders and 18 

compressors are needed in the reduction circuitry of an 

8x8 DADDA multiplier. In this paper, four cases are 

considered for designing an approximate multiplier. 

 

 In the first case (Multiplier 1), Design 1 is used for 

all 4-2 compressors. 

 In the second case (Multiplier 2), Design 2 is used 

for the 4-2 compressors. Since Design 2 does not 

have Cin and Cout, the reduction circuitry of this 

multiplier requires a lower number of 

compressors. Multiplier 2 uses six half-adders, one 

full-adder and 17 compressors. 

 In the third case (Multiplier 3), Design 1 is used 

for the compressors in the n-1 least significant 

columns. The other n most significant columns in 

the reduction circuitry use exact 4-2 compressors. 

 In the fourth case (Multiplier 4), Design 2 and 

exact 4-2 compressors are used in the n-1 least 

significant columns and the n most significant 

columns in the reduction circuitry respectively. 

 

The objectives of the first two approximate designs are 

to reduce the delay and power consumption compared 

with an exact multiplier; however, a high error 

distance is expected. The next two approximate 

multipliers (i.e., Multipliers 3 and 4) are proposed to 

decrease the error distance. The delay in these designs 

is determined by the exact compressors that are in the 

critical path; therefore, there is no improvement in 

delay for these approximate designs compared with an 

exact multiplier. However, it is expected that the 

utilization of approximate compressors in the least 

significant columns will decrease the power 

consumption and transistor count (as measure of 

circuit complexity). While the first two proposed 

multipliers have better performance in terms of delay 

and power consumption, the error distances in the third 

and fourth designs are expected to be significantly 

lower. The DADDA multiplier was designed by the 

scientist Luigi Dadda in 1965. It looks similar to 

Wallace multiplier but slightly faster and requires less 

gates. 

 

DADDA Multiplier was defined in three steps: 

 Multiply each bit of one argument with the 

each and every bit of other argument and 

continue until all arguments are multiplied. 

 Reduce the number of partial products to two 

layers of full and half adders. 

 Group the wires in two numbers, and add them 

with a conventional adder. 

A 8x8 multiplier using dada multiplier design is 

designed. Instead of using conventional full adders and 
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half adder for designing the multiplier, compressors 

which reduce the complexity of the multiplier is 

introduced. 

 

A.DADDA Multiplier using Design1: 

•A 8×8 unsigned DADDA tree multiplier is considered 

to access the impact of using the proposed 

compressors in approximate multipliers. 

•The proposed multiplier uses in the first part, the 

AND gates to generate all partial products. 

•The reduction part uses half-adders, full-adders and 4-

2 compressors; each partial product bit is represented 

by a dot. In the first stage, 2 half-adders, 2 full-adders 

and 8 compressors are utilized to reduce the partial 

products into at- most four rows. 

•In the second or final stage, 1 half-adder, 1 full-adder 

and 10 compress-ors are used to compute the two final 

rows of partial products. 

•Therefore, two stages of reduction and 3 half-adders, 

3 full-adders and 18 compressors are needed in the 

reduction circuitry of an 8×8 DADDA multiplier. 

 
Fig.7.a Reduction circuitry of 8x8 Dadda Multiplier 

using design 1 Compressor 

 

B.DADDA Multiplier using Design2: 

•In the first case (Multiplier1), Desi-gn1 is used for all 

4-2 compressors. 

•In the second case (Multiplier2), Design2 is used for 

the 4-2 compressors. Since Design2 does not have Cin 

and Cout, the reduced circuitry of this multiplier 

requires a lower number of compressors. Multiplier2 

uses 6 half-adders, 1 full-adder and 17 compressors. 

•In the third case (Multiplier 3), Design1 is used for 

the compressors in the 1-least significant columns. The 

other n most significant columns in the reduction 

circuitry use exact 4-2 compressors. 

 
Fig.7.b Reduction circuitry of 8x8 Dadda Multiplier 

using design 2 Compressor 

 

V.SIMULATION RESULTS: 

All the synthesis and simulation results are performed 

using Verilog HDL. The synthesis and simulation are 

performed on Xilinx ISE 14.4. The simulation results 

are shown below figures. The corresponding 

simulation results of the Approximate Muliplier4 are 

shown below. 

 

 
Figure 8: RTL schematic of Approximate 

Multiplier4 
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Figure 9: RTL schematic of Internal Approximate 

Multiplier4 

 

 
Figure 11: Synthesis report of Approximate 

Multiplier4 

 

 
Figure 12: Simulated output for Approximate 

Multiplier4 

 

 
Figure 13: Simulated output for Approximate 

Multiplier3 

 

 
Figure 14: Simulated output for Approximate 

Multiplier2 

 

 
Figure 15: Simulated output for Approximate 

Multiplier1 

 

CONCLUSION: 

Inexact computing is an emerging paradigm for 

computation at nano scale. Computer arithmetic offers 

significant operational advantages for inexact 

computing; an extensive literature exists on 

approximate adders.  However, this paper has initially 

focused on compression as used in a multiplier; to the 

best knowledge of the authors, no work has been 

reported on this topic. This paper has presented the 

novel designs of two approximate 4-2 compressors. 

These approximate compressors are utilized in the 

reduction module of four approximate multipliers. The 

approximate compressors show a significant reduction 

in Area, power consumption and delay compared with 

an exact design. Four different approximate schemes 

have been proposed in this paper to investigate the 

performance of the approximate compressors for the 

aforementioned metrics for inexact multiplication. The 

approximate compressors have been utilized in the 

reduction module of a DADDA multiplier. 
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