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Abstract: 

This paper discuss about new AM-FM methods for 

image reconstruction. This approach is based on 2 

basic ideas: i) AM-FM Demodulation using new gabor 

filterbank ii) New accurate methods for instantaneous 

frequency (IF) estimation. This project includes quasi-

eigen function approximation(QEA), quasi local 

method(QLM) and variable-spacing local linear phase 

(VS-LLP) methods for improved accuracy. The new 

VS-LLP method is a generalization of QEA method 

where we choose the best integer spacing between the 

samples to adapt as a function of frequency. We also 

introduce QLM method for IF and IA estimation. We 

present different noises (salt&pepper, speckle, poisson, 

Gaussian) decompositions to show that the proposed 

methods can be used to reconstruct and analyze 

general images. However each technique has different 

properties, making it more suited for specific 

applications and this technique is implemented by 

using MATLAB. 
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Introduction: 

Image reconstruction techniques are used to create  2-D 

and 3-D images from sets of 1-D projections. The 

development of accurate methods for estimating 

amplitude modulation frequency modulation image 

decompositions is of its great interest due to its 

potentially significant impact on image analysis 

applications [1]. 

A general AM-FM representation model approximates 

using 

 
In eq.(1), an image I(x,y) is approximated by an AM-FM 

image a(x,y)cosφ(x,y). The AM function a(x,y) is 

assumed to be non-negative, slowly varying functions 

which corresponds to the component texture envelops or 

contrasts.  the context of this paper, we will consider the 

cases when (single scale) to 4 (three scales), and The 

phase φ(x,y) of the FM function cos ψ(x,y) captures fast 

changing spatial variability in the image intensity [2]. 

For phase function φ(x,y) we define the instantaneous 

frequency in terms of Δ 

    (2) 

Δ is a gradient operator. 

 

There is strong interest in the development of AM-FM 

models due to the wide range of applicatons in various 

areas in signal, image and video processing. Non 

stationary images are represented using AM-FM 

components interms of amplitude and phase functions. 

 

There has also been significant research on the use of 

AM-FM components to reconstruct digital images [3]. 

Analytic image methods methods for AM-FM 

demodulation are based on the extendind notion of of the  

Cite this article as: Dogga Swathi & K.Srinivas, "Image 

Reconstruction Improvement Using Multiscale AM-FM Methods", 

International Journal & Magazine of Engineering, Technology, 

Management and Research, Volume 5 Issue 2, 2018, Page 8-15. 



 

 Page 9 
 

1-D analytic signal to 2-D or simply to provide a Hilbert 

based extension of the 1-D Hilbert based demodulation 

approach. This approach provides a unique AM-FM 

demodulation methods that satisfies certain conditions, 

they are i)amplitude continuity and differentiability, 

ii)phase independence of scaling and homogeneity, and 

iii)harmonic correspondence. 

 

In this we will consider multiscale. The term scale refers 

to collection of  bandpass filters as low pass filter, very 

low frequencies, low frequencies, medium frequencies 

and high frequencies. This multiscale approach is a 

special case of general multicomponent in the sense that  

the AM-FM scale components are not allowed to overlap 

in the spectral domain and each component is further 

restricted to  specific passbands. 

 

We employ several new techniques to improve the 

accuracy of our estimates. To improve IA estimation, we 

propose the use of optimally designed digital filters as 

like min and max filters to reduce noise like salt and 

pepper etc. The optimally designed digital filters allow 

us to control the passband gain to be close to unity while 

reducing the stop band gain to be closer to zero. hence 

interference from the stopband can be effectively 

controlled by keeping the stop band gain very low [4].  

 

In this paper we estimate the instantaneous frequency 

using the 3 methods QEA, QLM, VS-LLP. 

 

Instantaneous frequency (IF) is a very important 

parameter in a large number of applications. Generally, 

the IF is a non-linear function of time. For such cases the 

analysis of timefrequency content provides an efficient 

solution. 

 

Methodology: 

Analytic image methods for AM-FM demodulation are 

based on providing a Hilbert-based extension of the ID 

Hilbert-based demodulation approach. Here, the basic 

idea is to simply apply the ID Hilbert operator along the 

rows (or the columns). The fundamental advantage of 

this approach is that it preserves the 2D phase and 

magnitude spectra of the 2D input image. In fact, 

implementation involves taking the 2D FFT of the input 

image, removing spectral frequency with a negative row-

frequency component, multiplying the result by 2, and 

taking the inverse 2D FFT. Given the conjugate 

symmetry of 2D images, the removal of two frequency 

quadrants does not result in the loss of any spectral 

information. Furthermore, it can be shown that for 

single-component AM-FM signals, this can lead to exact 

demodulation. In practice though, we replace derivatives 

by finite differences.   Given the input image , we first 

apply the partial Hilbert transform  to form a2-D 

extension of the 1-D analytic signal. This signal is 

processed through a collection of bandpass filters as is 

showed in Fig. 1. Each processing block will produce 

the instantaneous amplitude, the instantaneous phase, 

and the instantaneous frequencies in both and directions 

by means of either the QEA method or the QLM 

method. The basic idea is to apply dominant component 

analysis over each scale. The approach produces a single 

AM-FM component from each scale. The algorithm 

adaptively selects the estimates from the bandpass filter 

with the maximum response. This approach does not 

assume spatial continuity and allows the model to 

quickly adapt to singularities in the image [5]. 

 
Fig1. Multiscale AM-FM demodulation. 

 

The extended analytic signal will only have support in 

the lower two quadrants. Thus, in effect, each channel 

filter operates over a single quadrant. The filters were 

designed using an optimal min-max, equiripple 

approach. Passband ripple was set at 0.017 dB and the 

stopband attenuation was set to 66.02 dB. For the 

transition bandwidth, we require that i) it remains lower 
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than the passband bandwidth, and that ii) it remains 

sufficiently large so that the passband and stopband 

requirements can be met with a reasonable number of 

digital filtering coefficients. Here, we note that the 

transition widths are relatively less important for the 

high frequencies,since they also come with filters of 

larger passband bandwidths.On the other hand, low-

frequencies require relatively larger transition widths 

(from stopband to passband) since images contain larger, 

low-frequency components and the transitions occur 

over smaller passbands. 

 

AM-FM Demodulation Methods: 

We can use QEA, QLM and VS-LLP methods. The 

advantage of these methods is that they operate with 

sums and products of four local image samples.  

 

QuasiEigenfunction Approximation(QEA): 

For the Quasi-Eigen function Approximation (QEA) 

methods we work with sums and differences of pairs of 

image samples. Here, we compute the 2-D extended 

analytic signal associated with I(x,y). The 2-D-extended 

analytic signal is computed using 

 
Where H2d denotes a 2-D extension of the 1-D Hilbert 

transform operator. The 2-D operator is defined in terms 

of the 1-D operator, operating in either the x or the y 

direction 

 
 

For developing the algorithm, we assume that ideal 

samples of the continuous-space image are available to 

us and we write as 

I(k1,k2)≈a(k1,k2) cos φ(k1,k2)               (5) 

Where k1 and k2 assume integer values of the 

continuous-space arguments x and y. Thus, in what  

follows, we will interpret I (k1, k2) as a continuous-

space real-valued function. We compute the 2-D-

extended analytic signal using the partial Hilbert 

Transform implemented using the fast Fourier transform 

(FFT). The instantaneous frequency can be estimated 

using inverse trigonometric functions [6]. 

Quasi Local Method (QLM): 

For the 1-D Quasi-local method (QLM), we work with 

products of pairs of image samples. The Quasi-Local 

Method (QLM) was introduced, for 1-D signals and half 

the discrete frequency spectrum. 

 

Consider the continuous space signal, ideally sampled at 

the integers. 

f(k1,k2) = a(k1,k2) cosφ(k1,k2)                 (6) 

Similar analysis is done for the direction. In order to 

avoid aliasing, the IF of the input signal must be 

restricted to 0<∂φ/∂x<πfs/2 , for the -direction, where is 

the sampling frequency. A similar condition is required 

for the -direction. It is proposed to either resample or 

oversample the input signal with a higher in order to 

overcome this restriction. 

 

Salt & Pepper Noise: 

Images generally contain noise. Hence the wavelet 

coefficients are noisy too. In most applications, it is 

necessary to know if a coefficient is due to signal or to 

noise In this project we have to reconstruct the images 

with better accuracy after applying the following 

noises.Salt and pepper noise is a form of noise typically 

seen on images. It represents itself as randomly 

occurring white and black pixels. An effective noise 

reduction method for this type of noise involves the 

usage of a median filter, morphological filter or a contra 

harmonic mean filter. Salt and pepper noise creeps into 

images in situations where quick transients, such as 

faulty switching, take place [7]. 

 

Fat-tail distributed or "impulsive" noise is sometimes 

called salt-and-pepper noise or spike noise. An image 

containing salt-and-pepper noise will have dark pixels in 

bright regions and bright pixels in dark regions. This 

type of noise can be caused by analog-to-digital 

converter errors, bit errors in transmission, etc. It can be 

mostly eliminated by using dark frame subtraction and 

interpolating around dark/bright pixels.The purpose of 

this challenge is to illustrate that spectral filtering 

methods may not always be successful when the noise in 

the image is highly non-Gaussian. We consider salt-and-
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pepper noise, for which a certain amount of the pixels in 

the image are either black or white (hence the name of 

the noise). Salt-and-pepper noise can, e.g., be used to 

model defects in the CCD or in the transmission of the 

image. Given the probability r (with 0 · r · 1) that a pixel 

is corrupted, we can introduce salt-and-pepper noise in 

an image by setting a fraction of r=2 randomly selected 

pixels to black, and another fraction of r=2 randomly 

selected pixels to white. Simple de-noising of such 

images by means of low-pass filters [8]. 

 

Gaussian Noise: 

The stochastic processes of almost exclusive interest in 

modeling channel noise are the Gaussian processes. 

Gaussian processes are stochastic processes for which 

the random variables N(t1),N(t2),...,N(tk) are jointly 

Gaussian for all t1,...,tk and all k > 0. Today we start by 

giving a more complete discussion of jointly Gaussian 

random variables. 

 

We restrict our attention to zero mean jointly Gaussian 

random variables and zero mean Gaussian processes, 

both because a mean can be trivially added to a zero 

mean fluctuation, and because zero mean processes are 

used to model noise [5]. 

 

White Gaussian  noise: 

Time domain view: 

Physical noise processes are very often reasonably 

modeled as zero mean, effectively stationary over 

(−T0,T0), and Gaussian. There is one further 

simplification that is often reasonable. This is that the 

covariance between the noise at two epochs dies out very 

rapidly as the interval between those epochs increases. 

The interval over which this co- variance is significantly 

non-zero is often very small relative to the intervals over 

which the signal varies appreciably. What this means is 

that the covariance function KN(τ) looks like a short 

duration pulse around τ = 0. 

 

Poisson Noise: 

Poisson noise is used to improve the image accuracy in 

image processing. The psnr ratio is higher than other 

methods. Dissimilarities in the analysis of Gaussian and 

PoIsson noise functionals can be found in may ways.  

 

Infinite symmetric group gives an invariance of Poisson 

noise mea- sure. This property is compared with the fact 

that the infinite dimensional rotation group give an 

invariance of white noise measure and even gives a 

characterization of Gaussian measure. Unitary 

representation of the infinite symmetric group shows a 

particularly potent properties of Poisson noise [7]. 

 

Speckle Noise: 

Speckle noise is a granular noise that inherently exits in 

and degrades the quality of the active radar and synthetic 

aperture radar (SAR) image. Speckle noise in 

conventional radar results from random fluctuations in 

the return signal from an object that is no bigger than a 

signal image processing element. It increases the mean 

grey level of  a  local area. 

 

Speckle noise in SAR is generally more serious, causing 

difficulties for image  interpretation. 

 

PSNR ratio table form: 

 
 

Results: 

For all experiments, we add salt and pepper noise. We 

measure performance using the mean-squared error 

(MSE) and the peak signal-to-noise ratio (PSNR). For 

computing the PSNR in the estimates we use 

20log10(A/√MSE), where A=100 for the IA (maximum 

amplitude), and A=Π for the IF. 

 

We present IF estimation results for QLM, QEA, and 

VS-LLP . Here, we compare QLM, QEA, and the 

modulation version of VS-LLP. 
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SALT & PEPPER NOISE: 

 

 

 

 

 
 



 

 Page 13 
 

GAUSSIAN NOISE: 

 

 

 

 

SPECKLE NOISE: 
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POISSON NOISE: 

 

 

 

 

Conclusion: 

The first step in developing new AM-FM methods was 

to design a new multiscale filterbank. The almost flat 

response in the bandpass frequency of the 1-D filters 

eliminated errors due to the use of an amplitude 

correction as in the case of using Gabor filterbanks. The 

use of these filters in the AM-FM demodulation problem 

produced big improvements in the IA and IF 

estimations. We developed a new method for accurate IF 

estimation: VS-LLP. For noisy signals, VS-LLP 

produced significantly better results than other methods 

such as QEA or QLM. We have also developed new 

QLM methods for IA and IF estimation for digital 

images. 
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