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Abstract  

The standard Biot-Gassmann theory of 

poroelasticity fails to explain strong compressional 

wave velocity dispersion experimentally observed 

in 12 tight siltstones with clay-filled pores. In 

order to analyze and understand the results, we 

developed a new double-porosity model of clay 

squirt flow where wave-induced local fluid flow 

occurs between the micropores in clay aggregates 

and intergranular macropores. The model is 

validated based on the combined study of 

ultrasonic experiments on specimens at different 

saturation conditions and theoretical predictions. 

In compressional tectonic settings, this model 

implies that fluid flow may be directed downward 

to a depth of tectonically induced neutral 

buoyancy. In combination with dynamic 

propagation of the brittle-ductile transition, this 

phenomenon provides a mechanism by which 

upper crustal fluids may be swept into the lower 

crust. The depth of neutral buoyancy would also 

act as a barrier to upward fluid flow within 

vertically oriented structural features that are 

normally the most favorable means of 

accommodating fluid expulsion. Elementary 

analysis based on the seismogenic zone depth and 

experimental rheological constraints indicates that 

tectonically induced buoyancy would cause fluids 

to accumulate in an approximately kilometer thick 

horizon 2–4 km below the brittle-ductile transition, 

an explanation for anomalous midcrustal seismic 

reflectivity. INDEX TERMS: 3660 Mineralogy 

and Petrology: Metamorphic petrology; 5104 

Physical Properties of Rocks: Fracture and flow; 

5114 Physical Properties of Rocks: Permeability 

and porosity; 8045 Structural Geology: Role of 

fluids; 8102 Tectonophysics: Continental 

contractional orogenic belts; 

KEYWORDS: compaction, fluid flow, brittle-

ductile transition, tectonic, stress, seismic 

reflector 

I. Introduction 

Turbulence in fluids has been an active research 

topic due to its impact on a wide variety of 

applications, including those in aeronautics, 

transportation, energy generation systems and 

weather forecasting. Several experimental studies 

of turbulent flows in various canonical and 

practical cases have enhanced the understanding of 

turbulent behavior, leveraging it to design more 

efficient systems. Although experiments have been 

invaluable, complementary computational fluid 

dynamics (CFD) efforts have the ability to gain a 

more detailed insight into the physics of turbulent 

flows, especially in situations where 

experimentation had been too expensive and/or 

impractical. With the availability of increased 

computing power in the recent years, high-fidelity 

CFD techniques like Large Eddy Simulation (LES) 

and Direct Numerical Simulation (DNS) have 

made it feasible to study turbulence with an 

unprecedented level of detail.  
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However, with an increase in fidelity there arise 

some significant challenges and opportunities. 

LES/DNS computations are very time intensive 

and expensive, therefore they are primarily used as 

a research tool to study the fundamental physics of 

turbulence. Additionally, these computations 

generate extremely high dimensional large datasets 

typically contain millions of degrees of freedom, 

which are often intractable to efficiently handle 

and analyze. As a result, techniques for modeling 

the high-fidelity dynamics of turbulence, while 

significantly minimizing the steep computation 

and data storage costs associated with LES/DNS 

have been a subject of active research [1]. Such 

efforts to model spatio-temporal dynamics of 

turbulence in a low dimensional space are 

generally referred to as Reduced Order Models 

(ROMs).  

ROMs have two primary objectives: a) The ability 

to model the key dynamics/coherent features of the 

turbulent flow, and b) Provide an efficient means 

of data compression for LES/DNS datasets. A 

major application of such ROMs is to design flow 

control systems for turbulence, where their low 

computational cost and efficient models make 

them ideal candidates for building control logic for 

actuators [2]. Indeed, this capability of ROMs has 

been much sought after and has been a subject of 

considerable research, due to its wide-ranging 

applications in aerospace and mechanical 

engineering. Various methods of building ROMs 

exist, the common underlying theme being 

extracting the key features in the flow-field, 

preferably from a high fidelity experimental or 

computational data source. These extracted 

features are carefully chosen such that they 

represent dominant spatio-temporal dynamics 

computed by the Navier-Stokes equations. 

Mathematically, the goal here is model reduction 

i.e., representing high dimensional data in a low-

dimensional subspace, which is essential to reduce 

computational and data handling costs [3]. The 

various types of ROMs have been demonstrated 

for canonical problems. The ROM based control 

for fluid flows. The luster based modeling to 

extract features and build adaptive ROMs [4].  

ROM to build a Machine learning based control 

for various nonlinear dynamical systems. 

Generally, the most commonly adopted model 

reduction technique is the Proper Orthogonal 

Decomposition (POD) [5-7], as POD reduced basis 

(or modes) are mathematically optimal [8] for any 

given dataset. After model reduction, the next step 

is to use the reduced basis for modeling the flow at 

future time instants. A highly popular technique is 

the Galerkin projection (GP) approach, which has 

been documented extensively in literature [9–11]. 

The crux of the GP method lies in the use of 

spatio-temporal dynamics captured by the reduced 

basis (such as POD) which can then be evolved 

them in time, instead of the full Navier-Stokes 

equations. The use of the reduced basis with ODEs 

ensures that the computation is much cheaper, 

since they contain considerably fewer degrees of 

freedom. On the other hand, Navier-Stokes 

simulations utilize PDEs and considerably large 

mesh sizes which drastically increase 

computational costs. Therefore, GP based 

approaches have seen widespread popularity and 

have been demonstrated for several canonical 

problems [12].  

However, GP models do not typically account for 

spatial variations in the flow and are known to 

become unstable under different conditions, even 

for canonical cases [13–16]. As such, considerable 

research efforts are being devoted to improving the 

stability of GP models, with some efforts focusing 

on Galerkin-free formulations. As a potential 

alternative, this paper explores a non-Galerkin 

projection-based approach to ROM using deep 
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learning. Deep learning is a subset of machine 

learning which refers to the use of highly 

multilayered neural networks to understand (or 

“learn”) a complex dataset with the intention of 

predicting some features of that dataset. The neural 

network does so by internally extracting a set of 

patterns or associations between different 

variables/parameters in the dataset, and 

subsequently using these patterns to predict a 

variable of interest (the output) given some input 

variable(s).  

In recent years, deep learning has shown 

considerable promise in modeling complex 

datasets in diverse fields like imaging, finance, 

robotics etc. Application of machine learning (and 

deep learning) in fluid mechanics is an emerging 

area of research, with several efforts by Duraisamy 

Wang and Ling focusing on improving the 

accuracy of CFD simulations using data-driven 

approaches. Apart from CFD, reduced order 

modeling appears to be an ideal candidate to be 

approached using machine learning algorithms, 

due to the sheer data-driven nature of the problem.  

The focus of this work is to exploit neural 

networks to “learn” the key dynamics of turbulent 

flows from high-fidelity simulation databases and 

use them to generate ROMs for flow control 

applications. These ROMs can then be employed 

to model the flow-field at future time instants. 

Different types of neural networks (NNs) exist for 

various types of data, and a choice must be made 

based on the application.  

II. Fluid Pressure, Mean Stress, and Hydraulic 

Domains 

Mechanical equilibrium of an interstitial pore fluid 

within a viscous rock matrix requires that the 

pressure of the interstitial fluid must be identical 

to the mean stress, i.e., pressure, supported by the 

fluid-rock aggregate. The apparent success of 

petrological thermobarometry premised on this 

equality, and ubiquitous textural and structural 

evidence of deformation at high fluid pressures 

suggest that this limit must be approximately valid 

in the nominally ductile region of the crust. It is, 

however, widely appreciated that rocks that 

contain a fluid at, or near, the rock confining 

pressure have vanishing strength and deform 

brittlely. Thus, the presence of high-pressure 

fluids throughout the lower crust is inconsistent 

with the paucity of deep crustal seismic events and 

geo-mechanical models that imply significant 

lower crustal strength. The paradox posed by 

crustal strength in the presence of high-pressure 

fluids can be explained if the fluids are localized 

within high-permeability domains. 

In such a domain the vertical fluid pressure 

gradient may approach the hydrostatic condition 

independent of the mean stress of the matrix, but 

the mean fluid pressure must remain near the 

mean stress supported by the rock matrix with 

relatively small deviations determined by various 

hydraulic and/or rheological factors. Because 

fluid-saturated rocks have little strength, such 

domains would behave analogously to weak 

inclusions within a stressed solid, irrespective of 

the nature of hydraulic connectivity within the 

domains.  

Thus, the analogy applies equally to a domain, 

such as magmatic diapir or dike, that is entirely 

fluid filled, a network of fluid-filled fractures, or a 

domain in which fluid flow occurs through grain-

scale porosity. In each case, a spherical domain 

would have the same mean stress gradient as the 

surrounding rocks, whereas the mean stress 

gradients in vertically and horizontally elongated 

domains would approach the vertical gradients in, 

respectively, the horizontal and vertical 

components of the far-field stress tensor. 
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Figure 1. Dependence of the morphology and size 

of lower crustal hydraulic domains, in the absence 

of far-field tectonic stress, on deformation style. 

‘‘Differential yielding’’ refers to behavior such 

that the rock matrix is drastically weakened at 

negative effective pressure (i.e., Pfluid > Ptotal) 

by processes such as hydrofracture. 

 

Within the nominally ductile lower crust, 

differential yielding would be increasingly 

favored toward the brittle-ductile transition. In 

view of this observation, and length scale 

estimates, it appears probable that in the absence 

of tectonic stress, vertically elongated hydraulic 

domains predominate beneath the brittle-ductile 

transition. Elsewhere we have shown that 

differential yielding increases the rate of domain 

propagation by up to 2 orders of magnitude. In the 

absence of yielding propagation, if d > le, then 

velocities are on the order of Darcyian fluid 

velocity required to drain metamorphic fluid 

production by steady state pervasive flow (_10 km 

Myr_1); however, if d < le, then velocities (13) 

decay exponentially upward and may become 

insignificant within the ductile portion of the 

crust. 

 

that the stress within a weak inclusion is constant, 

which is assumed here to imply a hydrostatic 

stress state for an inclusion in a gravitational field, 

is implicit in this logic. The Eshelby conjecture is 

of proven validity for ellipsoidal inclusions in 

linear elastic media; here we also assume that any 

effects that might arise due to nonlinear viscous 

lower crustal rheology are negligible. The 

preceding argument neglects the relatively small 

influence of the deviation of the fluid pressure and 

mean stress gradients on the stress state of the 

rock matrix. This deviation is significant in that it 

induces deformation that not only influences the 

shape of the domain, but can also cause the entire 

domain to propagate in response to a gradient in 

mean stress, i.e., as a ‘‘porosity wave’’. It is well 

established that porosity waves would nucleate, 

and grow as the preferred mechanism of fluid 

expulsion, from uniform flow regimes in ductile 

rocks as a natural consequence of heterogeneities 

or perturbations caused by metamorphic reactions.  

 

Although the term porosity wave evokes the 

image of grain-scale porosity, the only restriction 

on the porosity wave mechanism is that the 

hydraulically conductive features occur on a 

spatial scale that is small in comparison to the 

scale of the domain. With this proviso, the concept 

applies equally, and perhaps with more relevance, 

to a domain defined by a network of 

interconnected network of fluid-filled fractures. A 

deformation-propagated mode of fluid flow is not 

essential to our arguments, but the effect of 

rheology on domain shape is important. 

Investigate this effect for compaction driven flow 

regimes and show that the vertical scale for self-

nucleating hydraulic domains is controlled by the 

shorter of two length scales: the viscous 

compaction length d and the scale for variation in 

the rheology due to the geothermal gradient le. 

The horizontal scale is determined by whether or 

not the matrix strength is drastically reduced at 

negative effective pressure by processes such as 

hydro fracture, a phenomenon we designate as 

differential yielding. When differential yielding is 
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suppressed, then the horizontal scale is the viscous 

compaction length, and the domains are spherical 

or oblate ellipsoids. The horizontal length scale 

under differential yielding is not easily 

constrained, but it must be less than the viscous 

compaction length, and consequently causes fluid 

flow to be channelled into vertically elongated 

structures with spacing comparable to the viscous 

compaction length. To quantify the operative 

length scales in the nominally ductile portion of 

the crust, we assume a constitutive relationship of 

the general form 

 

  
Figure 2. Characteristic length scales as a function 

of crustal depth for relaxation of (a) differential 

stress, ls (equation (2)) and (b) hydraulic domains 

maintained by ductile fluid expulsion, le = ls/n and 

d (equation (6)). Solid and dashed curves 

correspond to geothermal gradients of 10 and 30 

K km
1
, respectively. Curves are labeled by the 

relevant activation energy for viscous creep. For Q 

= 223 and Q = 135 kJ mol
1 

the curves correspond, 

respectively, to the experimentally determined 

power law rheologies for quartz aggregates of 

Gleason and Tullis (A = 1.1   10
26 

Pa
n
, n = 4).  

 

The length scale for hydraulic domains is defined 

by the shorter of le (shaded field in Figure 3b) or d, 

the former being the length scale for depth-

dependent variation in strain rate and the latter 

being the length scale for compaction in the 

absence of such variations. In Figure 3b, d is 

computed with f = 0.01and q = 10
9 

m s
1
, a 

plausible value for regional metamorphism. For n 

3, d increases by a factor of 2 for an order of 

magnitude increase in f or q. Although d is 

uncertain, the estimates for d in conjunction with 

the much narrower range for le suggest hydraulic 

domains will develop on a length scale of 1 km. 

 

 Because of its strong depth dependence, d is 

unlikely to dictate domain size over any 

significant depth interval within the crust unless it 

is orders of magnitude shorter than estimated, in 

which case fluid accumulation would occur on 

spatial scales that cannot be resolved by 

geophysical methods. The Q = 20 kJ mol
1 

curves 

in Figure 3a correspond to pressure solution creep 

in sandstones as deduced from theoretical models, 

natural compaction profiles, and experiment. 

These values are likely to provide an upper limit 

on ls for the linear-viscous rheologies that might 

operate episodically during crustal metamorphism 

 

III. Stress Gradients During Tectonic 

Compression 

It is generally accepted that in compressional 

tectonic regimes the differential stress supported 

by the brittle upper crust increases with depth until 

depths are reached at which ductile mechanisms 

begin to operate, thereafter the differential stress 

decays as ductile deformation becomes 

increasingly efficient with depth. Making the 

conventional assumptions that the minimum 

principal stress component is vertical and identical 

to the overburden weight; that the intermediate 

principle stress is identical to the mean stress; and 

that the variation in total density, r, with depth is 

insignificant;  



 

 Page 238 
 

The pressure is in general supralithostatic. This 

pressure increases with depth in the brittle crust 

where rock strength is limited pressure-dependent 

yielding, whereas in the lower crust increasing 

efficacy of thermally activated ductile yielding 

causes the pressure to decay toward lithostatic 

values with increasing depth. Demonstrate that it 

is to be expected that decay of the differential 

stress in the upper portion of the ductile region 

occurs so rapidly that the rock pressure gradient 

will be inverted beneath the brittleductile 

transition. To assess the importance of this effect 

on fluid flow, we characterize the differential 

stress by equation (3), assuming that ls in the 

vicinity of the brittle-ductile transition can be 

taken as a constant characteristic of the lower 

crust. Although the computed variation in ls is 

seemingly large (Figure 3a), the effect of such 

variations is dampened by the logarithmic 

dependence of differential stress on ls in equation 

(3); thus the accuracy of our analysis is not 

reduced significantly by this approximation. With 

this simplification, equation (3) can be written in 

terms of the differential stress sY at the depth of 

the brittle-ductile transition zY  

  (2) 

If the ductile deformation occurs by homogeneous 

pure shear (Figure 1), then from equations (2) the 

potential for vertical fluid flow (P^ = P  rfgz) is 

 (3) 

where Dr = r _ rf. Because the first term in 

equation (2) grows linearly with depth, while the 

second term decays exponentially, there must be a 

depth z0 at which the gradient in the hydraulic 

potential is zero, i.e., 

 

(4) 

At this depth the buoyancy forces acting on the 

fluid are balanced by the stress gradient in the 

rock matrix and the driving force for vertical flow 

vanishes. Above this point, the hydraulic potential 

gradient is negative and fluid flow must have a 

downward component, whereas below the point 

fluid flow will have an upward component. The 

existence of this point is only relevant if it lies 

beneath the brittle-ductile transition at zY.  

Since the rheological parameter ls is well 

constrained (Figure 3a) and the variation in Dr 

(1900 kg m
3
) would be minor for aqueous fluids 

along the cool geotherms characteristic of 

compressive tectonic settings, the yield strength of 

the crust at the brittle-ductile transition (Figure 

4a). The depth of the seismogenic zone (e.g., 10–

20 km [Sibson, 1986; Scholz, 1988]) is commonly 

taken as evidence of a frictional sliding 

mechanism for brittle deformation in the crust 

such as described by Byerlee’s law, a model 

supported by in situ stress studies. Assuming that 

near hydrostatic fluid pressures maintain in the 

brittle crust, that the effective pressure is the 

difference between the rock and fluid pressure, 

and that the angle of internal friction is p/6, then 

the Mohr-Coulomb criterion gives the yield 

strength as a function of depth as 

sY ¼ 2
m

Drgz; ð12Þ    (5) 

where the exponent m is introduced to distinguish 

the MohrCoulomb (m = 1) criterion from 

‘‘Goetze’s criterion’’ (m = 0) as discussed below. 

Employing quartzite power law creep rheology as 

a proxy for the ductile portion of the crust (ls = 2–

5 km), imply yield stresses at the base of the 
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modern seismogenic zone would be adequate to 

cause an inverted gradient for fluid flow over a 

depth interval extending at 4–10 km beneath the 

brittle-ductile transition (Figure 5). This result is 

not greatly modified if the ductile crust deforms 

by pressure solution creep for which ls  8 km is 

appropriate. In the case of a granitic magma the 

density difference between the magma and 

surrounding rocks would be more than an order of 

magnitude smaller than in the case of an aqueous 

fluid. Substituting such values. Increases the depth 

of the neutral buoyancy by els (10 km) over those 

estimated for aqueous fluid. 

 

Figure 3. (a) Principal stress and (b) hydraulic 

potential depth profiles for a two-dimensional 

pure shear model of the crust. The vertical 

principal stress is the lithostatic load (r = 2700 kg 

m
3
). In the brittle crust, which extends to depth zY, 

the differential stress is computed from Byerlee’s 

law for an internal angle of friction of p/6 and 

assuming the presence of hydrostatically 

pressured pore fluid with density rf = 800 kg m
3
. 

The hydraulic potential for fluid flow at rock 

pressure is computed from equation (9) with Dr = 

1900 kg m
3 

and ls = 3000 m (Figure 3), values 

appropriate for aqueous fluids in a 

quartzdominated rock matrix. The solid curve 

represents the potential within a vertically 

elongated domain (s = 1), whereas the dashed 

curve represents the potential within a spherical 

domain. 

The brittle-ductile transition is likely to be 

gradual, with ductile deformation becoming 

dominant at conditions such that the differential 

stress is comparable to the effective least principle 

stress, i.e., ‘‘Goetze’s criterion’’. This somewhat 

ad hoc criterion gives yield stresses half as large 

as from the Mohr-Coulomb criterion, but does not 

alter the conclusion that in compressional settings 

the brittle-ductile transition can be expected to act 

as a barrier to upward propagation of equant or 

vertically elongated hydraulic domains. 

IV. Stress-Induced Fluid Stagnation and 

Hydrofracture 

The foregoing analysis has the counterintuitive 

implication that the brittle-ductile transition is 

most likely to act as an obstacle to fluids within 

vertically oriented structural features that 

normally would be expected to be the most 

favorable means of accommodating fluid 

expulsion. In contrast, fluids concentrated in sill-

like structures are not affected by compressive 

stress and therefore fluid flow in such domains 

would have an upward compaction driven 

component irrespective of tectonic forcings. These 

observations suggest an antagonistic relationship 

between 

the hydraulic potential and conductivity, such that 

conductive vertically oriented structural features 

would tend to evolve to less conductive horizontal 

structures beneath the brittle ductile transition.  

For experimentally determined quartzite 

rheologies, the strong depth dependence and 

experimental uncertainty of these scales precludes 

any broad statement about the efficiency of the 

ductile compaction mechanism in the depth range 

of interest. What can be stated is that for either 

rheological parameterization at shallow depths (z 

10 km), equation (3) implies a horizontal domain 

would propagate upward at <10 m Myr
1
. Thus, in 
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the absence of a more effective deformation 

mechanism, once formed, such domains would 

remain as long-term features of the mid crust. 

 

Figure 4. Local time (equation (14)) and velocity 

(equation (13)) scales for rheologically limited (le 

< d, v < q/f) compaction. Curves labeled L&P and 

G&T correspond to the experimentally determined 

quartzite rheologies of Paterson and Luan [1990] 

and Gleason and Tullis, respectively, with 

parameters as given in the Figure 3 caption. 

 

Figure 5. Schematic model of hydrofracturing 

induced by relaxation of compressional tectonic 

stress. During compression fluids accumulate 

within the stagnant zone with a maximum 

overpressure (lightly shaded field) limited by the 

tensile strength at the center of the stagnant zone.  

With relaxation of tectonic pressure toward the 

lithostat, the depth of maximum overpressure 

(heavily shaded field) shifts to the top of the 

stagnant region. The resulting overpressure causes 

hydrofracturing to propagate upward over the 

interval Dzfracture until the overpressure decays to 

the tensile strength (profile indicated by the heavy 

dashed curve). Equation (3)gives an upper limit on 

Dzfracture of 5–7 km. 

Collection of fluids beneath the brittle-ductile 

transition must lead to the development of a depth 

interval (about z0, Figure 4b) at which the fluid is 

overpressured but stagnant. If these fluids are 

accommodated by ductile dilational deformation, 

the depth interval would develop on the length 

scale le  1 km. In the event that fluid accumulation 

occurs on a timescale that is much shorter than the 

compaction timescale (Figure 6a), then the extent 

of this interval would only become limited once 

fluid overpressures became sufficient to induce 

hydrofracturing. Since the maximum 

overpressures would occur at depth z0, fracturing 

would tend to localize within, rather than at the 

margins of, the overpressure interval.  

For rock tensile strengths typical of those 

measured experimentally and inferred from 

structural studies (5– 20 MPa) implies aqueous 

fluids would be trapped over a maximum depth 

interval of 2–5 km. The extent of this interval 

would also be constrained by the brittle-ductile 

transition, such that for conditions where Dz = 

dz/2 fluid the interval would breach the brittle-

ductile transition and permit fluid to drain into the 

brittle crust. If this drainage perturbs fluid 

pressures within the upper crust, the consequent 

lowering of the yield strength at the brittle-ductile 

transition creates a feedback mechanism by 

weakening the stress induced barrier to fluid flow, 

an effect that would cause episodic flow across the 

transition. 

The relaxation of compressional tectonic stresses 

would cause the locus of maximum fluid pressure 

to migrate upward from the middle toward the top 

of the stagnant domain providing a mechanism by 

which hydro fractures might be propagated 
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upward. This process can be constrained given 

that the maximum fluid overpressure, relative to 

fully relaxed conditions, i.e., lithostatic pressure, 

in the stagnant region. 

V. Downward Fluid Flow Through Ductile 

Rocks 

Inverted stress gradients create the potential for 

downward fluid flow in ductile rocks. For any 

particular yield stress at the brittle-ductile 

transition, the depth interval where these 

conditions are attained is fixed (equation (10)) and 

limits the extent of downward flow (Figure 5). 

However, in dynamic tectonic settings, increases 

in the intensity of crustal deformation cause the 

brittle-ductile transition to shift downward, giving 

rise to a mechanism by which upper crustal fluids 

might be swept into the lower crust. To quantify 

the scale of this effect, we note that a Taylor 

expansion of the expression derived by equating 

the ductile flow stress (equation (2)) to the brittle 

strength (equation (2)) shows that the depth of the 

brittleductile transition varies with strain rate as ls 

ln (e_)/n, provided A
0
(2

m
lsDrg)

n 
< 1, as generally 

the case. This strain rate dependence is identical to 

that obtained for the maximum depth of 

downward flow potential gradient 

(6) 

Thus strain rate variations will not have a major 

effect on the width of the interval of downward 

fluid flow, but will cause the interval to shift 

together with the brittle-ductile transition. Given 

the parameters estimated for power law crustal 

rheology (Figure 3), this shift would be 3 km 

downward per order of magnitude increase in 

strain rate, whereas for linear viscous rheology an 

order of magnitude increase in strain rate would 

be sufficient to cause aqueous fluids to flow to the 

base of the crust. The effectiveness of this 

mechanism is critically dependent on uncertain 

rheological properties of the crust and imposed 

strain rate. Applying the parameter values used 

previously (Figure 2) to equations (3) and (5) with 

strain rates of 10
15 

s
1
, the depth of downward fluid 

flow varies from 9–13 km to 23– 35 km with 

geothermal gradients of 10–30 K km
1
. Thus, 

quantitatively, it appears plausible that this 

mechanism could cause infiltration of upper 

crustal fluids into the lower crust, particularly in 

cold tectonic settings.  

The vertical flow channeling mechanism caused 

by differential yielding [Connolly and 

Podladchikov, 1998] is insensitive to the direction 

of fluid flow. Such a mechanism causes flow to 

focus spontaneously into vertical channels or to 

exploit weak preexisting structural features such 

as ductile shear zones. Therefore a virtue of this 

hypothesis is that it can explain the apparent 

association of fluids with ductile shear zones 

without appealing to brittle dilatancy. In contrast 

to the formulation in the previous section that 

assumes knowledge of the depth dependence of 

the brittle strength to estimate the depth interval of 

downward fluid flow, no assumptions about the 

brittle rheology are involved in the prediction of 

the maximum depth of downward fluid flow from 

equation (8), which is valid provided the ductile 

rheology is dominant at the indicated depth. 

VI. Discussion 

 The conflict between the existence of high 

metamorphic fluid pressures simultaneously with 

significant strength and ductile deformation style 

in the lower crust can be reconciled by the ‘‘layer 

cake’’ model. In the layer cake model the ductile 

crust is composed of alternating layers of strong, 

and relatively impermeable, fluid-poor, rock 

alternating with weak, permeable, fluid-rich rock. 

Within the weak layers the fluid pressure gradient 

is near hydrostatic, but the absolute pressure near 
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the confining pressure. The ‘‘Swiss cheese’’ 

model advocated here is an extension of the layer 

cake model in which the fluid-rich domains are 

envisioned as weak self-propagating holes within 

ductile lower crustal rocks. This model accounts 

for the inherent flow instability caused by the 

divergence of the fluid and rock pressure gradients 

within the high-permeability domains, an 

instability that explains both the nucleation and 

propagation of hydraulic domains within porous 

ductile rocks. Analysis of the length scales for 

these domains (Figures 2 and 3) suggests that the 

vertical length scale is likely to be on the order of 

a kilometer and controlled by thermal activation 

of the ductile rheology. The horizontal length 

scale is dependent on the nature of the yield 

mechanism at high fluid pressure, such that 

differential yielding will favor the formation of 

high aspect ratio domains with a characteristic 

spacing comparable to the viscous compaction 

length. In the absence of yielding the viscous 

compaction length dictates the horizontal length 

scale, leading to the formation of sill-like 

domains. Because the direction of compaction 

driven fluid flow is dictated by the mean stress 

gradient, the orientation of hydraulic domains 

with respect to a tectonically imposed far-field 

stress field can have profound consequences. In 

extensional settings this effect may influence the 

magnitude of the hydraulic potential responsible 

for fluid expulsion but cannot affect its sign. 

However, in compressional settings the relaxation 

of brittle yield stress within the ductile portion of 

the crust leads to a depth interval characterized by 

a negative gradient in the compressive stress. We 

have shown here that the negative stress gradient 

gives rise to a depth of neutral buoyancy for fluids 

within vertically elongated and equant hydraulic 

domains. Above the depth of neutral buoyancy 

such domains will propagate downward, whereas 

domains propagating upward from greater depth 

will become trapped at the depth of neutral 

buoyancy. Several lines of geological evidence 

lend credence to the mechanism proposed here for 

trapping fluids beneath the brittle-ductile 

transition. Geochemical evidence for lateral fluid 

flow within ductile rocks at midcrustal levels is 

common in metamorphic rocks that appear to 

record elevated fluid pressures.  

Conclusions 

This paper proposes a deep learning based ROM 

for turbulent flows for flow control applications 

using the Long Short Term Memory (LSTM) 

neural network , since they have demonstrated 

immense potential in modeling complex 

sequential data in other domains. We now outline 

some merits, limitations for the LSTM-ROM and 

avenues for further improvement based on our 

analysis so far. One of the more interesting 

observations in this work was that Bidirectional 

LSTM consistently performed worse than the 

traditional LSTM, despite its theoretical 

formulation intending otherwise. We surmise that 

this is likely because it over-fits data, by assuming 

long range memory that may not have actually 

existed. While LSTM was more accurate, it was 

seen that its accuracy deteriorated with an increase 

in horizon. While we made every effort in this 

work to tune the neural network hyper-parameters 

to improve accuracy, there is a possibility that a 

further improvement could have been obtained. 

However, we believe that any such gains would 

have been marginal and the qualitative trends 

would hold. Furthermore, our accuracy may also 

be theoretically restricted due to the Lyapunov 

exponent theory for dynamical systems. 

Intuitively, in a dynamical system the likelihood 

of making accurate predictions for time series 

farther away from the origin, drops exponentially. 

However, this merely indicates the accurate, pure 

data-driven approaches to prediction of long time 
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horizons may have several difficulties. 

Developing governing equation, physics-based 

models (Navier Stokes equations) with a data-

driven approach (LSTM) may still provide us with 

an accurate and efficient prediction scheme that 

complements the strengths of both approaches, 

while not being constrained by the Lyapunov 

exponent. Additionally, we must address the 

implicit assumption made here, that the dominant 

POD spatial modes are consistent within the same 

regime.  

References  

[1] C. W. Rowley, T. Colonius, and R. M. 

Murray, “Model reduction for compressible 

flows using POD and Galerkin projection,” 

Physica D: Nonlinear Phenomena, vol. 189, 

no. 1, pp. 115–129, 2004.  

[2] K. Ito and S. Ravindran, “A reduced-order 

method for simulation and control of fluid 

flows,” Journal of computational physics, vol. 

143, no. 2, pp. 403–425, 1998.  

[3] S. S. Ravindran, “A reduced-order approach 

for optimal control of fluids using proper 

orthogonal decomposition,” International 

journal for numerical methods in fluids, vol. 

34, no. 5, pp. 425–448, 2000. 

[4] B. R. Noack, M. Morzynski, and G. Tadmor, 

Reduced-order modelling for flow control, 

vol. 528. Springer Science & Business Media, 

2011.  

[5] E. Kaiser, B. R. Noack, L. Cordier, A. Spohn, 

M. Segond, M. Abel, G. Daviller, J. Osth, ¨ S. 

Krajnovic, and R. K. Niven, “Cluster-based 

reduced-order modelling of a mixing ´ layer,” 

Journal of Fluid Mechanics, vol. 754, pp. 365–

414, 2014. 

[6] T. Duriez, S. L. Brunton, and B. R. Noack, 

Machine Learning Control-Taming Nonlinear 

Dynamics and Turbulence. Springer, 2017.  

[7] G. Berkooz, P. Holmes, and J. L. Lumley, 

“The proper orthogonal decomposition in the 

analysis of turbulent flows,” Annual review of 

fluid mechanics, vol. 25, no. 1, pp. 539–575, 

1993.  

[8] P. Holmes, Turbulence, coherent structures, 

dynamical systems and symmetry. Cambridge 

university press, 2012. 

[9] Bailey, R. C. (1994), Fluid trapping in 

midcrustal reservoirs by H2O-CO2 mixtures, 

Nature, 371(6494), 238–240. 

[10] Brace, W. F., and D. L. Kohlstedt (1980), 

Limits on lithospheric stress imposed by 

laboratory experiments, J. Geophys. Res., 85, 

6248–6252. 

[11] Bucher, K., and M. Frey (1994), 

Petrogenesis of Metamorphic Rocks, 318 pp., 

Springer-Verlag, New York. 

[12] Burov, E., C. Jaupart, and J. C. Marescha 

(1998), l, Large-scale crustal heterogeneities 

and lithospheric strength in cratons, Earth 

Planet Science Lett., 164(1–2), 205–219. 

[13] Cartwright, I., and I. S. Buick (1999), The 

flow of surface-derived fluids through Alice 

Springs age middle-crustal ductile shear zones, 

Reynolds Range, central Australia, J. 

Metamorph. Geol., 17(4), 397–414. 

[14] Connolly, J. A. D. (1997), 

Devolatilization-generated fluid pressure and 

deformation-propagated fluid flow during 

regional metamorphism, J. Geophys. Res., 

102, 18,149–18,173. 

[15] Connolly, J. A. D., and Y. Y. 

Podladchikov (1998), Compaction-driven 

fluid flow in viscoelastic rock, Geodin. Acta, 

11, 55–84. 

[16] Connolly, J. A. D., and Y. Y. 

Podladchikov (2000), Temperature-dependent 

viscoelastic compaction and 

compartmentalization in sedimentary basins, 

Tectonophysics, 324, 137–168. 


