

 Page 29

Detection of Malicious Behavior with NDIS Intermediate Drivers

Vimal Kumar Gangwar

Department of Computer Science and Engineering,

ICAR- Indian Institute of Farming System and Research,

Meerut, Uttar Pradesh 250 001, India.

ABSTRACT

In the progression of technology world, the malicious

harmful code is also improved their evolution which

often hides its malicious behavior in various methods

which might be bind with other code. This will mainly

effect to the network communication. This cover-up

technique poses difficulties to security mechanisms,

which will detect the malicious harmful behavior

codes. In this paper, we give an overview of the

detection of malicious data and blocking, a new

approach to computer security via malicious data

detection and automatic blocking software. In

particular, this project focuses on building a united

executable program analysis platform and using it to

provide unique solutions to an aware the future loss of

their data and other security issues. We propose a

technique for the Network Driver Interface

Specification (NDIS) integrate together with a united

malicious software detection platform. The NDIS

model supports hybrid network transport NDIS drivers,

called NDIS intermediate drivers. This driver lies

between transport driver and NDIS driver. This can be

see the entire network traffic taking place on a system

as the drivers lie between protocol drivers and network

drivers. By introducing security-related approaches

from network traffic directly, our project permits a

principled, root cause based method to computer

security and provides an effective solutions.

Keywords—malicious behavior; network driver

interface specification; code abstraction; data security;

vulnerability; code injection attack.

Introduction

The main Objective of this project is to develop a real

time Signature free buffer overflow attack model, to

protect from buffer overflow attacks in Internet services.

Buffer overflow attacks typically contain executable

whereas legitimate client requests never contain

executable in most Internet services such as Web

Services, SQL Services, BIND, SNMP, and other remote

access services. Based on this observation, Sig Free

blocks attacks by detecting the presence of code.

Throughout the history of cyber security, buffer

overflow is one of the most serious vulnerabilities in

computer systems. Buffer overflow vulnerability is a

root cause for most of the cyber-attacks such as server

breaking-in, worms, zombies etc. A buffer overflow

occurs during program execution when a fixed-size

buffer has had too much data copied into it. This causes

the data to overwrite into adjacent memory locations,

and, depending on what is stored there, the behavior of

the program itself might be affected.” (Note that the

buffer could be in stack or heap.)Sig Free is an

application layer blocker that typically stays between a

service and the corresponding firewall. When a service

requesting message arrives at Sig Free, Sig Free first

uses a new O (N) algorithm, where N is the byte length

of the message, to disassemble and distil all possible

instruction sequences from the message’s payload,

where every byte in the payload is considered as a

possible starting point of the code embedded.Sig Free

can filter out code-injection buffer overflow attack

messages targeting at various Internet services such as

web service. Sig Free blocks attacks by detecting the

presence of code. Sig Free first blindly dissembles and

extracts instruction sequences from a request. It then

applies a novel technique called code abstraction, which

Cite this article as: Vimal Kumar Gangwar, "Detection of Malicious

Behavior with NDIS Intermediate Drivers", International Journal &

Magazine of Engineering, Technology, Management and Research,

Volume 7 Issue 2, 2020, Page 29-33.

 Page 30

uses data flow anomaly to crop useless instructions in an

instruction sequence. Finally it compares the number of

useful instructions to a threshold to determine if this

instruction sequence contains code. Sig Free is signature

free, thus it can block new and unknown buffer overflow

attacks and also update the new threats. Sig Free is

transparent to the servers being protected; it is good for

economical Internet wide deployment with very low

deployment and maintenance cost. Sig Free would block

all types of code injection attack packets that are tested

in our project.

Exiting system

Detection of Data Flow Anomalies there is static or

dynamic methods to detect data flow anomalies in the

software reliability and testing field. Static methods are

not suitable in our case due to its slow speed; dynamic

methods are not suitable either due to the need for real

execution of a program with some inputs.

Drawbacks

 Existing systems does not identifies new and

unknown threats.

 Rely on string-matching and uses limited rules.

 Requires changes to legacy systems required

 Existing system slows down the system.

 Existing systems requires updating and so

increases the cost.

Proposed system

Their scheme is rule-based, whereas Sig Free is a

genericapproach which does not require any pre-known

patterns. Then, it uses the found patterns and a data flow

analysis technique called program slicing to analyze the

packet’s payload to see if the packet really contains code

Four rules (or cases) are discussed in their project: Case

1 not only assumes the occurrence of the call/jmp

instructions, but alsoexpects the push instruction appears

before the branch; Case 2 relies on the

interruptinstruction; Case 3 relies on instruction ret;

Case 4 exploits hidden branch instructions. Besides, they

used a special rule to detect polymorphic exploit code

which contains a loop. Although they mentioned that the

above rules are initial sets and may require updating

with time, it is always possible for attackers to bypass

those pre-known rules. Moreover, more rules mean more

overhead and longer latency in filtering packets. In

contrast, Sig Free exploits a different data flow analysis

technique, which is much harder for exploit code to

evade

Advantages:

 Sig Free is Signature Free recognises new and

unknown threats.

 Does not rely on string-matching and very

resistant to attack code altering.

 Uses generic code-data separation criteria

instead of limited rules.

 No changes to legacy systems required and do

not slow you down the system.

 Sig Free is an economical deployment with

extremely low maintenance cost.

 Sig Free is the first technique that can detect

self-modifying code without any runtime

analysis.

 Sig Free can handle polymorphism, encryption,

metamorphism, self-modifying, and anti-

disassembly, anti-emulation.

 We proposed Sig Free, a real-time, signature

free, out of- the-box blocker that can filter code-

injection buffer overflow attack messages, one

of the most serious cyber security threats, to

various Internet services. Sig Free does not

require any signatures, thus it can block new,

unknown attacks.

Feasibility study

The feasibility of the project is analyzed in this phase

and business proposal is put forth with a very general

plan for the project and some cost estimates. During

system analysis the feasibility study of the proposed

system is to be carried out. This is to ensure that the

proposed system is not a burden to the company. For

feasibility analysis, some understanding of the major

requirements for the system is essential.

 Page 31

Three key considerations involved in the feasibility

analysis are

 Economical feasibility

 Technical Feasibility

 Social Feasibility

Economical Feasibility:

This study is carried out to check the economic impact

that the system will have on the organization. The

amount of fund that the company can pour into the

research and development of the system is limited. The

expenditures must be justified. Thus the developed

system as well within the budget and this was achieved

because most of the technologies used are freely

available. Only the customized products had to be

purchased.

Technical Feasibility:

This study is carried out to check the technical

feasibility, that is, the technical requirements of the

system. Any system developed must not have a high

demand on the available technical resources. This will

lead to high demands on the available technical

resources. This will lead to high demands being placed

on the client. The developed system must have a modest

requirement, as only minimal or null changes are

required for implementing this system.

Social Feasibility:

The aspect of study is to check the level of acceptance of

the system by the user. This includes the process of

training the user to use the system efficiently. The user

must not feel threatened by the system, instead must

accept it as a necessity. The level of acceptance by the

users solely depends on the methods that are employed

to educate the user about the system and to make him

familiar with it. His level of confidence must be raised

so that he is also able to make some constructive

criticism, which is welcomed, as he is the final user of

the system.

Main Modules

 Sig Free Attack Model

 URI decoder.

 ASCII Filter.

 Instruction sequences distiller (ISD).

 Instruction sequences analyzer.

Architecture:

Activity Diagram:

 Page 32

Sequential Diagram:

Sig Free Attack Model:

 A malicious payload may be embedded in the

Request-URL field as a query parameter.

 An attacker can use any request method and

embed the malicious code data in any field. So

we create all possible Attack Model in this

module to test the proposed system.

URL Decoder:

URL decoder is used because a malicious payload may

be embedded in the Request-URL as a request

parameter.The first step of Sig Free is to decode the

Request-URL.

ASCII Filter:

 Malicious executable code is normally binary

strings.

 In order to guarantee the throughput and

response time of the protected web system, if the

query parameters of the Request-URL and

Request-body of a request are both printable

ASCII codes.

 Page 33

Instruction Sequences Distiller(ISD):

This module distills all possible instruction sequences

from the query parameters of Request-URL and

Request-body.

Instruction Sequences Analyzer (ISA):

Using all the instruction sequences distilled from the

instruction sequences distiller as the inputs, this module

analyzes these instruction sequences to determine

whether one of them is a program.

Future Enhancements

As future enhancements the Sig Free should be upgraded

up to the level of zero false negatives, which must also

detect more number of attacks with higher accuracy and

throughput.

Conclusion

We proposed Sig Free, a real-time, Signature Fee, out

of- the-box locker that can filter code-injection buffer

overflow attack messages, one of the most serious cyber

security threats, to various internet application services

used by day to day work. Sig Free does not require any

signatures, which can block new, unknown attacks. It is

immunized from most attack-side code obfuscation

methods, good for economical Internet wide deployment

with less maintenance cost and negligible throughput

degradation and can also handle encrypted SSL

messages. Sig Free is transparent to the servers being

protected. The Sig Free DLL was tested extensively

throughout its development, in both lab and real-world

scenarios. With every test, improvements were made in

methods of detection and Sig Free efficiency.

Improvements included the development of unique

techniques to defeat polymorphism, encryption,

metamorphism, and self-modification, and in the

development of real life applications

References

[1] Lee Ling Chuan, Chan Lee Yee, Mahamod Ismail

and Kasmiran Jumari, “Automated Blocking of

Malicious Code with NDIS Intermediate Driver”,

ICACT 2011, IEEE February 2011.

[2] MSDN Library, Microsoft Corporation, “NDIS-

Supplied Packet and Buffer Handling Functions (NDIS

5.1),” March 6, 2010.

