
 Volume No: 2(2015), Issue No: 1 (January) January 2015
 www.ijmetmr.com Page 346

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

ABSTRACT:

Multipath Switching systems are intensely used in
state-of-the-art core routers to provide terabit or even
petabit switching capacity. One of the most intractable
issues in designing MPS is ow to load balance traffic
across its multiple paths while not disturbing the inter-
flow packet orders. Previous packet-based solutions
either suffer from delay penalties or lead to hardware
complexity, hence do not scale. Flow-based hashing
algorithms also perform badly due to the heavy-tailed
flow-size distribution. In this paper, we develop a nov-
el scheme, namely, Flow Slice that cuts off each flow
into flow slices at every interflow interval larger than
a slicing threshold and balances the load on a finer
granularity.

Based on the studies of tens of real Internet traces, we
show that setting a slicing threshold of 1 _4 ms, the FS
scheme achieves comparative load-balancing perfor-
mance to the optimal one. It also limits the probability
of out-of-order packets to a negligible level on three
popular at the cost of little hardware complexity and
an internal speedup up to two. These results are prov-
en by theoretical analyses and also validated through
trace-driven prototype simulations. In this project
a novel load-balancing scheme, namely, Flow Slice,
based on the fact that the intraflow packet interval is
often, larger than the. Due to three positive properties
of flow slice, our scheme achieves good load-balancing
uniformity with little hardware overhead and timing
complexity. By calculating delay bounds at three popu-
lar, we show that when the slicing threshold is set to
the smallest admissible value at, the FS scheme can
achieve optimal performance while keeping the intra-
flow packet out-of-order probability negligible given
an internal speedup up to two. Our results are also
validated through trace-driven prototype simulations
under traffic patterns.

Nandam Pavan Kumar
M.Tech Student,

Nimra College of Engineering and Technology.

Khamar zahan
Guide,

Nimra College of Engineering and Technology.

INTRODUCTION:

MULTIPATH Switching systems (MPS) play a pivotal
role in fabricating state-of-the-art high performance
core routers. A well-known paradigm is the deploy-
ment of Benes multistage switches in Cisco CRS-1.
Other examples include the Vitesse switch chip family
implementing the Parallel Packet Switch (PPS), and the
Load-balanced Birkh- off-von Neumann (LBvN) switch-
es. In general, MPS is built by aggregating several lower
speed switches and, therefore, exhibits multiple inter-
nal data paths.One major open issue in MPS is the load-
balancing problem defined as how to distribute incom-
ing traffic A(t) across its k internal switching paths{Tl}
(l€[1,k]) to meet at least three objectives are1. Uniform
load sharing. Traffic dispatched to each path should be
uniform. Specifically in MPS, traffic destined for each
output should be spread evenly to avoid output con-
tention, minimize average packet delay, and maximize
throughput. This requirement is formalizedas.

Where Alj (t) denotes the traffic rate destined for out-
put port j through switching path l in MPS.

2. Intraflow packet ordering:

Packets in the same flow should depart MPS as their
arrival orders. (Unless otherwise stated, flow in this
paper is defined by TCP/IP 5-tuple.) This ordering is es-
sential since out-of-order packets will degrade the per-
formance of higher level protocols. For any two pack-
ets P1 and P2 in the same flow with arrival time T(P1),
T(P2), and departure time D(P1), D(P2), the formula
below should be guaranteed:

Consignment Stability Multi-Channel Trade System with
Dribble Portion

 Volume No: 2(2015), Issue No: 1 (January) January 2015
 www.ijmetmr.com Page 347

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

3. Low timing and hardware complexity:

The load-balancing and additional resequencing mech-
anisms at MPS should work fast enough to match the
line rate, and should introduce limited hardware com-
plexity. MPS is most likely to hold hundreds of oper-
ating at ultrahigh speed. To provide such scalability,
the timing/hardware complexity of O(1) is necessary.
Packet-based solutions are advocated where traffic is
dispatched packet by packet to optimally balance the
load.

However, packets in the same flow may be forwarded
in separate paths and experience different delays, thus
violating the intraflow packet ordering requirement.
A straight forward solution is to use an explicit rese-
quencer at each output to restore packet orders.

Previous systems cannot gracefully deal with the load-
balancing problem in MPS to meet the three objectives
outlined above. Here develop a new scheme called
Flow Slice (FS) that achieves our load- balancing goals
perfectly. Based on the observations on tens of broad-
ly located Internet traces, that the intraflow packet
intervals are often, say in 40-50 percent, larger than
the delay upper bound at MPS which can be calculated
statistically. Flow slice cut off each flow at every inter-
val larger than a slicing threshold set to this bound and
balance the load on the generated flow slices.

The major improvement over the existing works is to
tailor the FS approach in the MPS scenario by introduc-
ing the offline delay bound calculation, while the previ-
ous solutions either use an empirical slicing threshold,
e.g., 60 ms in, or maintain flow context to facilitate the
slicing The empirical slicing threshold will lead to poor
load-balancing performance for MPS. Maintaining flow
context is impractical in the MPS scenario as it requires
a flow table for each input updated by all the outputs
in real time.

2. FEASIBILITY STUDY:

The feasibility of the project is analyzed in this phase
and business proposal is put forth with a very general
plan for the project and some cost estimates. During
system analysis the feasibility study of the proposed
system is to be carried out. This is to ensure that the
proposed system is not a burden to the company.

For feasibility analysis, some understanding of the ma-
jor requirements for the system is essential.

a) Economical feasibility:

This study is carried out to check the economic impact
that the system will have on the organization. The
amount of fund that the company can pour into the
research and development of the system is limited.
The expenditures must be justified. Thus the devel-
oped system as well within the budget and this was
achieved because most of the technologies used are
freely available. Only the customized products had to
be purchased.

b) Technical feasibility:

This study is carried out to check the technical feasibil-
ity, that is, the technical requirements of the system.
Any system developed must not have a high demand on
the available technical resources. This will lead to high
demands on the available technical resources. This will
lead to high demands being placed on the client. The
developed system must have a modest requirement,
as only minimal or null changes are required for imple-
menting this system.

c) Social feasibility:

The aspect of study is to check the level of acceptance
of the system by the user. This includes the process
of training the user to use the system efficiently. The
user must not feel threatened by the system, instead
must accept it as a necessity. The level of acceptance
by the users solely depends on the methods that are
employed to educate the user about the system and to
make him familiar with it. His level of confidence must
be raised so that he is also able to make some construc-
tive criticism, which is welcomed, as he is the final user
of the system.

3. SOFTWARE DEVELOPMENT LIFE CYCLE:

The software development life cycle (SDLC),also re-
ferred to as the application development life-cycle, is
used in systems engineering, information systems and
software engineering to describe a process for plan-
ning, creating, testing, and deploying an information
system.

 Volume No: 2(2015), Issue No: 1 (January) January 2015
 www.ijmetmr.com Page 348

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

The systems development life-cycle concept applies to
a range of hardware and software configurations, as a
system can be composed of hardware only, software
only, or a combination of both. SPIRAL MODEL was
defined by Barry Boehm in his 1988 article, “A spiral
Model of Software Development and Enhancement.
This model was not the first model to discuss iterative
development, but it was the first model to explain why
the iteration models.

As originally envisioned, the iterations were typically 6
months to 2 years long. Each phase starts with a de-
sign goal and ends with a client reviewing the progress
thus far. Analysis and engineering efforts are applied
at each phase of the project, with an eye toward the
end goal of the project.

The steps for Spiral Model can be generalized as fol-
lows:

a) The new system requirements are defined in as much
details as possible. This usually involves interviewing a
number of users representing all the external or inter-
nal users and other aspects of the existing system.
b) A preliminary design is created for the new system.
c) A first prototype of the new system is constructed
from the preliminary design. This is usually a scaled-
down system, and represents an approximation of the
characteristics of the final product.
A second prototype is evolved by a fourfold proce-
dure:
a) Evaluating the first prototype in terms of its
strengths, weakness, and risks.
b) Defining the requirements of the second proto-
type.
c) Planning an designing the second prototype.
d) Constructing and testing the second prototype.
At the customer option, the entire project can be
aborted if the risk is deemed too great. Risk factors
might involve development cost overruns, operating-
cost miscalculation, or any other factor that could, in
the customer’s judgment, result in a less-than-satisfac-
tory final product. The existing prototype is evaluated
in the same manner as was the previous prototype,
and if necessary, another prototype is developed from
it according to the fourfold procedure outlined above.
The preceding steps are iterated until the customer is
satisfied that the refined prototype represents the fi-
nal product desired.

The following diagram shows how a spiral
model

4, SYSTEM REQUIREMENTS SPECIFICATION:

A requirement specification for a software system is a
complete description of the behavior of a system to be
developed. It includes a set of use cases that describe
all the interactions the users will have with server.
Use cases are also know as a functional requirements.
Non-functional requirements are requirements which
impose constraints on the design or implementation
(such as performance engineering requirements, qual-
ity standards, or design constraints).

4.1 Functional Requirements:

Functional requirements specify which output file
should be produced from the given file they describe
the relationship between the input and output of the
system, for each functional requirement a detailed
description of all data inputs and their source and the
range of valid inputs must be specified.

a) Pre Processing Module:

This is the first module. This module is to convert the in-
put data to packets. And systems have to do the packet
enhancements. Packets get from the data is extracted
into packets.

b) Segmentation:

 Data can be divided into packets. For switching system
have to switch the data through multipath systems
that balance the data.

 Volume No: 2(2015), Issue No: 1 (January) January 2015
 www.ijmetmr.com Page 349

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

c) Action Recognition:

The Switching systems have to fetch the data to des-
tination systems. This module is to find the human ac-
tion with the use of parallel packet switches.

4.2 Non-Functional Requirements:

•Describe user-visible aspects of the system that are
not directly related with the functional behavior of the
system.

•Non-functional requirements include quantitative
constraints, such as response time (i.e. how fast the
system reacts to user commands.) or accuracy (i.e.
how precise are the system numerical answers).

5. SYSTEM DESIGN:

5.1 Data Flow Diagram:

The Data-flow diagram is a graphical representation of
the “flow” of data through an information system. It
differs from the flowchart. Flowchart as it shows the
data flow instead of the control flow of the program.
A data-flow diagram can also be used for the visualiza-
tion of Data processing.

The system designer makes “a context level DFD” or,
which shows the “interaction” (data flows) between
“the system” (represented by one process) and “the
system environment” (represented by terminators).
The system is “decomposed in lower-level DFD” into a
set of “processes, data stores, and the data flows be-
tween these processes and data stores.” Each process
is then decomposed into an even-lower-level diagram
containing its sub processes.

Data flow diagrams (“bubble charts”) are directed
graphs in which the nodes specify processing activi-
ties and the arcs specify data items transmitted be-
tween processing nodes. A data flow diagram might
represent data flow between individual statements or
blocks of statements in a routine, data flow between
sequential routines, data flow between concurrent
process, or data flow in a distributed computing sys-
tem, where each node represents a geographically re-
mote processing unit.

Data Flow Diagram:

5.2 Unified Modeling Language:

The Unified Modeling Language (UML) is a standard
language for writing software blueprints. The UML
may be used to visualize, specify, construct, and doc-
ument the artifacts of a software-intensive system.
The UML is an appropriate for modeling systems rang-
ing from enterprise information systems to distributed
Web-based applications and even to hard real time
embedded systems. It is a very expressive language,
addressing all the views needed to develop and then
deploy such systems. The UML is only a language and
so is just one part of a software development method.
The UML is process independent, although optimally
it should be used in a process that is use case driven,
architecture-centric, iterative, and incremental.

Use case diagram for system accesses.

 Volume No: 2(2015), Issue No: 1 (January) January 2015
 www.ijmetmr.com Page 348

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

The systems development life-cycle concept applies to
a range of hardware and software configurations, as a
system can be composed of hardware only, software
only, or a combination of both. SPIRAL MODEL was
defined by Barry Boehm in his 1988 article, “A spiral
Model of Software Development and Enhancement.
This model was not the first model to discuss iterative
development, but it was the first model to explain why
the iteration models.

As originally envisioned, the iterations were typically 6
months to 2 years long. Each phase starts with a de-
sign goal and ends with a client reviewing the progress
thus far. Analysis and engineering efforts are applied
at each phase of the project, with an eye toward the
end goal of the project.

The steps for Spiral Model can be generalized as fol-
lows:

a) The new system requirements are defined in as much
details as possible. This usually involves interviewing a
number of users representing all the external or inter-
nal users and other aspects of the existing system.
b) A preliminary design is created for the new system.
c) A first prototype of the new system is constructed
from the preliminary design. This is usually a scaled-
down system, and represents an approximation of the
characteristics of the final product.
A second prototype is evolved by a fourfold proce-
dure:
a) Evaluating the first prototype in terms of its
strengths, weakness, and risks.
b) Defining the requirements of the second proto-
type.
c) Planning an designing the second prototype.
d) Constructing and testing the second prototype.
At the customer option, the entire project can be
aborted if the risk is deemed too great. Risk factors
might involve development cost overruns, operating-
cost miscalculation, or any other factor that could, in
the customer’s judgment, result in a less-than-satisfac-
tory final product. The existing prototype is evaluated
in the same manner as was the previous prototype,
and if necessary, another prototype is developed from
it according to the fourfold procedure outlined above.
The preceding steps are iterated until the customer is
satisfied that the refined prototype represents the fi-
nal product desired.

The following diagram shows how a spiral
model

4, SYSTEM REQUIREMENTS SPECIFICATION:

A requirement specification for a software system is a
complete description of the behavior of a system to be
developed. It includes a set of use cases that describe
all the interactions the users will have with server.
Use cases are also know as a functional requirements.
Non-functional requirements are requirements which
impose constraints on the design or implementation
(such as performance engineering requirements, qual-
ity standards, or design constraints).

4.1 Functional Requirements:

Functional requirements specify which output file
should be produced from the given file they describe
the relationship between the input and output of the
system, for each functional requirement a detailed
description of all data inputs and their source and the
range of valid inputs must be specified.

a) Pre Processing Module:

This is the first module. This module is to convert the in-
put data to packets. And systems have to do the packet
enhancements. Packets get from the data is extracted
into packets.

b) Segmentation:

 Data can be divided into packets. For switching system
have to switch the data through multipath systems
that balance the data.

 Volume No: 2(2015), Issue No: 1 (January) January 2015
 www.ijmetmr.com Page 349

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

c) Action Recognition:

The Switching systems have to fetch the data to des-
tination systems. This module is to find the human ac-
tion with the use of parallel packet switches.

4.2 Non-Functional Requirements:

•Describe user-visible aspects of the system that are
not directly related with the functional behavior of the
system.

•Non-functional requirements include quantitative
constraints, such as response time (i.e. how fast the
system reacts to user commands.) or accuracy (i.e.
how precise are the system numerical answers).

5. SYSTEM DESIGN:

5.1 Data Flow Diagram:

The Data-flow diagram is a graphical representation of
the “flow” of data through an information system. It
differs from the flowchart. Flowchart as it shows the
data flow instead of the control flow of the program.
A data-flow diagram can also be used for the visualiza-
tion of Data processing.

The system designer makes “a context level DFD” or,
which shows the “interaction” (data flows) between
“the system” (represented by one process) and “the
system environment” (represented by terminators).
The system is “decomposed in lower-level DFD” into a
set of “processes, data stores, and the data flows be-
tween these processes and data stores.” Each process
is then decomposed into an even-lower-level diagram
containing its sub processes.

Data flow diagrams (“bubble charts”) are directed
graphs in which the nodes specify processing activi-
ties and the arcs specify data items transmitted be-
tween processing nodes. A data flow diagram might
represent data flow between individual statements or
blocks of statements in a routine, data flow between
sequential routines, data flow between concurrent
process, or data flow in a distributed computing sys-
tem, where each node represents a geographically re-
mote processing unit.

Data Flow Diagram:

5.2 Unified Modeling Language:

The Unified Modeling Language (UML) is a standard
language for writing software blueprints. The UML
may be used to visualize, specify, construct, and doc-
ument the artifacts of a software-intensive system.
The UML is an appropriate for modeling systems rang-
ing from enterprise information systems to distributed
Web-based applications and even to hard real time
embedded systems. It is a very expressive language,
addressing all the views needed to develop and then
deploy such systems. The UML is only a language and
so is just one part of a software development method.
The UML is process independent, although optimally
it should be used in a process that is use case driven,
architecture-centric, iterative, and incremental.

Use case diagram for system accesses.

 Volume No: 2(2015), Issue No: 1 (January) January 2015
 www.ijmetmr.com Page 350

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

5.3 Collaboration Diagram:

A sequence diagram is dynamic and more importantly,
is time ordered. A collaboration diagram is very similar
to a sequence diagram in the purpose it achieves; in
other words.

It shows the dynamic interaction of the objects in a
system. A distinguishing feature of a collaboration dia-
gram is that it shows the objects and their association
with other objects in the system apart from how they
interact with each other. The association between ob-
jects is not represented in a sequence diagram.

Collaboration diagram

6. SYSTEM IMPLEMENTATION:

6.1 MODULES:

1. Load-Balancing Scheme,
2. Multipath Switching System,
3. Multistage Multiplane Clos Switches,
4. Flow Slice.

a) Load-Balancing Scheme:

Interflow packet order is natively preserved besetting
slicing threshold to the delay upper bound at .Any two
packets in the same flow slice cannot be disordered as
they are dispatched to the same switching path where
processing is guaranteed; and two packets in the same
flow but different flow slices will be in order at depar-
ture, as the earlier packet will have depart from before
the latter packet arrives. Due to the fewer number of
active flow slices, the only additional overhead in, the
hash table, can be kept rather small, and placed on-
chip to provide ultrafast access speed.

This table size depends only on system line rate and will
stay unchanged even if scales to more than thousand
external ports, thus guarantees system scalability.

b) Multipath Switching System:

Through lay-aside Buffer Management module, all
packets are virtually queued at the output according
to the flow group and the priority class in a hierarchi-
cal manner. The output scheduler fetches packets to
the output line using information provided by. Packets
in the same flow will be virtually buffered in the same
queue and scheduled in discipline. Hence, intraflow
packet departure orders hold as their arriving orders at
the multiplexer. Central-stage parallel switches adopt
an output-queued model. By Theorem, we derive pack-
et delay bound at first stage. We then study delay at
second-stage switches. Define native packet delay at
stage m of an be delay experienced at stage m on the
condition that all the preceding stages immediately
send all arrival packets out without delay.

C) Multistage Multiplane Clos Switches:

The Multistage Multi plane Close network is a based
switch by Chao et al. It is constructed of five stages of
switch modules with top-level architecture similar to a
external input output ports. The first and last stages
close are composed of input demultiplexers and out-
put multiplexers, respectively, having similar internal
structures as those in PPS. Stages 2-4 of M2Clos are
constructed by parallel switching planes; however,
each plane is no longer formed by a basic switch, but
by a three-stage Close Network to support large port
count. Inside each Close Network, the first stage is
composed by k identical Input Modules. Each IM is a
packet switch, with each output link connected to a
Central Module. Thus, there is a total of m identical in
second stage of the Close networks.

Three stage M2 clos switches diagram

 Volume No: 2(2015), Issue No: 1 (January) January 2015
 www.ijmetmr.com Page 351

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

D) Flow Slice:

A flow slice is a sequence of packets in a flow, where
every intraflow interval between two consecutive
packets is smaller than or equal to a slicing threshold
Flow slices can be seen as miniflows created by cutting
off every intraflow interval larger than . We depict the
Cumulative Distribution Functions (C.D.F) of intraflow
intervals in our traces. Most of the traces have more
than 50 percent of their intervals larger than 1 ms, and
more than 40 percent are larger than 4 ms. Two excep-
tions are PSC and FRG. The former is under a light load
(≈10%); the latter is collected from a low-speed OC-12c
network edge link. Thus, their weights are minimized.
We denote the probability for an intraflow interval to
be larger than by PC and the average packet count in
the original flow by C0. After slicing, the average pack-
et count in flow slices. Setting = 1ms, which leads to PC
> 0:5, we obtain FC < 2. That is, each flow slice has no
more than two packets in average. Even under a mod-
est setting of = 4ms, we still have FC < 2:5. This reveals
the very close load-balancing granularity of FS to the
optimal packet-based solution.

CONCLUSION & FUTURE WORK:

A novel load-balancing scheme is proposed, namely,
Flow Slice, based on the fact that the intraflow packet
interval is often, say in 40-50 percent, larger than the
delay upper bound at MPS. Due to three positive prop-
erties of flow slice, our scheme achieves good load-bal-
ancing uniformity with little hardware overhead and
O(1) timing complexity. By calculating delay bounds at
three popular MPS, system show that when the slicing
threshold is set to the smallest admissible value at 1-4
ms, the FS scheme can achieve optimal performance
while keeping the intraflow packet out-of-order prob-
ability negligible (below 10^6), given an internal speed-
up up to two.

The results are also validated through trace-driven pro-
totype simulations under highly bursty traffic patterns.
FS scheme had proven to be effective under strictly ad-
missible traffic, but it is also important to know how
it behaves under extreme traffic. The simulations with
bursty real traces shed some light on this issue and sug-
gest that it still work well. Actually, if only the slicing
threshold is larger than the delay variation bound at all
switching paths, packet order will be undisturbed.

Under bursty input traffic, the delay at all switching
paths may increase synchronously, leaving its delay
variation bound nearly unchanged.For future work, one
of future works will be studying FS performance under
Quality of Services (QoS) conditions, The FS scheme is
validated in switches without class-based queues, As
Quality of Services (QoS) provisioning is also critical in
switch designs.

REFERENCES:

1] J. Bennet, C. Partidge, and N. Shectman, “Packet Re-
ordering Is Not Pathological Network Behavior,”IEEE/
ACM Trans. Networking, vol. 7,no. 6, pp789-798, Dec.
1999.

2] Z. Cao, Z. Wang, and E. Zegura, “Performance of
Hashing-Based Schemes for Internet Load Balancing,”
Proc. IEEE INFOCOM, pp. 332-341, 2000.

3]S. Iyer, A. Awadallah, and N. McKeown, “Analysis of a
Packet Switch with Memories Running Slower than the
Line Rate,” Proc. IEEE INFOCOM, pp. 529-537, 2000.

4] A. Aslam and K. Christensen, “Parallel Packet Switch-
ing Using Multiplexors with Virtual Input Queues,”
Proc. Ann. IEEE Conf. Local Computer Networks (LCN),
pp. 270-277, 2002.

5] N. Brownlee and K. Claffy, “Understanding Internet
Traffic Streams: Dragonflies and Tortoises,” IEEE Comm.
Magazine, vol. 40, no. 10, pp. 110-117, Oct. 2002.

6] I. Keslassy and N. Mckeown, “Maintaining Packet
Order in Two- Stage Switches,” Proc. IEEE INFOCOM,
pp. 1032-1041, 2002.

7] L. Shi, W. Li, B. Liu, and X. Wang, “Flow Mapping in
the Load Balancing Parallel Packet Switches,” Proc.
IEEE Workshop High Performance Switching and Rout-
ing (HPSR), pp. 254-258, 2005.

8] W. Shi and M.H. MacGregor, “Load Balancing for
Parallel Forwarding,” IEEE/ACM Trans. Networking,
vol. 13, no. 4,pp. 790-801, Aug. 2005.

8] W. Shi, M.H. MacGregor, and P. Gburzynski, “A Scal-
able Load Balancer for Forwarding Internet Traffic:
Exploiting Flow-Level Burstiness,” Proc. Symp. Archi-
tecture for Networking and Comm.Systems (ANCS),
2005.

9] W. Shi and L. Kencl, “Sequence-Preserving Adaptive
Load Balancers,” Proc. ACM/IEEE Symp. Architecture
for Networking and Comm. Systems (ANCS), 2006.

