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Abstract: 

The Optimal Power Flow (OPF) is an important 

criterion in today’s power system operation and control 

due to scarcity of energy resources, increasing power 

generation cost and ever growing demand for electric 

energy. As the size of the power system increases, load 

may be varying. The generators should share the total 

demand plus losses among themselves. The sharing 

should be based on the fuel cost of the total generation 

with respect to some security constraints. Conventional 

optimization methods that make use of derivatives and 

gradients are, in general, not able to locate or identify 

the global optimum. 

 

Heuristic algorithms such as genetic algorithms (GA) 

and evolutionary programming have been recently 

proposed for solving the OPF problem. Unfortunately, 

recent research has identified some deficiencies in GA 

performance. Recently, a new evolutionary computation 

technique, called Particle Swarm Optimization (PSO), 

has been proposed and introduced. This technique 

combines social psychology principles in socio-

cognition human agents and evolutionary 

computations.  In this paper, a novel PSO based 

approach is presented to solve Optimal Power Flow 

problem. 
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I Introduction 

The fundamental mission of a power system is to provide 

consumers with sustained, reliable and cost-efficient 

electrical energy. In order to achieve this goal, system 

operators need to constantly adjust various controls such 

as generation outputs, transformer tap ratios, etc., to 

assure the continuous economic and secure system 

operations. This is a difficult task that relies highly on 

optimal power flow (OPF) function at power system 

control centers, the OPF procedure consists of using 

mathematical methodology to find the optimal operation 

of a power system under feasibility and security 

constraints. It has been consider as basic tool for 

determining secure and economic operating conditions of 

power systems. 

 

The optimal power flow problem can be traced back 

early as early as 1920’s when economic allocation of 

generation was the only concern. The economic 

operation of power system was achieved by dividing 

loads among available generator units such that their 

incremental generation costs are equal. This was a rather 

simple problem where only operating limits on real 

power generation were considered and the effect of 

system losses was either neglected or approximated by 

penalty factors calculated from loss formula or load flow 

Jacobian matrix. 

 

As power system became increasingly large and 

complex, the security became an important issue, which 

requires more detailed system models. On the other hand, 

the evolution of digital computers made such detailed 

modeling become possible. In 1962, Carpentier for the 

first time established the Optimal Power Flow (OPF) 

problem on a rigorous mathematical base. He formulated 

it as a constrained nonlinear programming problem and 

derived its optimality conditions using Kuhn-Tucker 

theorem. In his formulation, the OPF problem is 

expressed in terms of all control and state variables, with 
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both network and security constraints. The objective 

function can be total generation cost or transmission 

losses, depending on a specific application. 

 

II Literature Survey 

The first known Interior Point (IP) is usually attributed to 

Frisch in 1955, which is a logarithmic barrier method that 

was later extensively studied by Fiacco and McCormick 

to solve nonlinearly inequality constrained problem in 

1960. In 1979 Khachiyan presented an ellipsoid method 

that would solve an LP problem in polynomial time. The 

greatest breakthrough in the Interior point method 

research field took place in 1984 by Karmarkar’s method. 

After 1984, several variants of Karmarkar’s Interior Point 

(IP) method have been proposed and implemented. 

Natural creatures sometimes behave as a swarm. One of 

the main streams of artificial life research is to examine 

how natural creatures behave as a swarm and reconfigure 

the swarm models inside a computer. Reynolds 

developed boid as a swarm model with simple rules and 

generated complicated swarm behavior by computer 

graphic animation [1]. Boyd and Richerson examined the 

decision process of human beings and developed the 

concept of individual learning and cultural transmission 

[2]. According to their examination, human beings make 

decisions using their own experiences and other persons’ 

experiences. 

 

A new optimization technique using an analogy of swarm 

behavior of natural creatures was started in the beginning 

of the 1990s. Dorigo developed ant colony optimization 

(ACO) based mainly on the social insect, especially ant, 

metaphor [3]. Each individual exchanges information 

through pheromones implicitly in ACO. Eberhart and 

Kennedy developed particle swarm optimization (PSO) 

based on the analogy of swarms of birds and fish 

schooling [4]. Each individual exchanges previous 

experiences in PSO. These research efforts are called 

swarm intelligence [5, 6]. This paper focuses on PSO as 

one of the swarm intelligence techniques. 

 

Other evolutionary computation (EC) techniques such as 

genetic algorithms (GAs), utilize multiple searching 

points in the solution space like PSO. Whereas GAs can 

treat combinatorial optimization problems, PSO was 

aimed to treat nonlinear optimization problems with 

continuous variables originally. Moreover, PSO has been 

expanded to handle combinatorial optimization problems 

and both discrete and continuous variables as well.  

 

Efficient treatment of mixed-integer nonlinear 

optimization problems (MINLPs) is one of the most 

difficult problems in practical optimization. Moreover, 

unlike other EC techniques, PSO can be realized with 

only a small program; namely, PSO can handle MINLPs 

with only a small program. This feature of PSO is one of 

its advantages compared with other optimization 

techniques. 

 

III Basic Particle Swarm Optimization 

Swarm behavior can be modeled with a few simple rules. 

Schools of fishes and swarms of birds can be modeled 

with such simple models. Namely, even if the behavior 

rules of each individual (agent) are simple, the behavior 

of the swarm can be complicated. Reynolds utilized the 

following three vectors as simple rules in the researches 

on boid. 

 Step away from the nearest agent 

 Go toward the destination 

 Go to the center of the swarm 

 

The behavior of each agent inside the swarm can be 

modeled with simple vectors. The research results are 

one of the basic backgrounds of PSO. 

 

Boyd and Richardson examined the decision process of 

humans and developed the concept of individual learning 

and cultural transmission [2]. According to their 

examination, people utilize two important kinds of 

information in decision process. The first one is their 

own experience; that is, they have tried the choices and 

know which state has been better so far, and they know 

how good it was. The second one is other people’s 

experiences, i.e., they have knowledge of how the other 

agents around them have performed. Namely, they know 
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which choices their neighbors have found most positive 

so far and how positive the best pattern of choices was. 

 

Each agent decides its decision using its own experiences 

and the experiences of others. The research results are 

also one of the basic background elements of PSO.  

 

According to the above background of PSO, Kennedy 

and Eberhart developed PSO through simulation of bird 

flocking in a two-dimensional space. The position of 

each agent is represented by its x, y axis position and also 

its velocity is expressed by vx (the velocity of x axis) and 

vy (the velocity of y axis). Modification of the agent 

position is realized by the position and velocity 

information. 

 

Bird flocking optimizes a certain objective function. 

Each agent knows its best value so far (pbest) and its x, y 

position. This information is an analogy of the personal 

experiences of each agent. Moreover, each agent knows 

the best value so far in the group (gbest) among pbests.  

 

This information is an analogy of the knowledge of how 

the other agents around them have performed. Each agent 

tries to modify its position using the following 

information: 

 The current positions (x, y), 

 The current velocities (vx, vy), 

 The distance between the current position and 

pbest 

 The distance between the current position and 

gbest 

 

This modification can be represented by the concept of 

velocity (modified value for the current positions).  

 

Velocity of each agent can be modified by the following 

equation: 

(1) 

where 
k
iv  is velocity of agent i at iteration k, w  is 

weighting function, c1 and c2 are weighting factors, rand1 

and rand2 are random numbers between 0 and 1, 
k
is  is 

current position of agent i at iteration k, pbesti is the 

pbest of agent i, and gbest is gbest of the group. Namely, 

velocity of an agent can be changed using three vectors 

such like boid. The velocity is usually limited to a certain 

maximum value. PSO using eqn. (1) is called the Gbest 

model. 

 

The following weighting function is usually utilized in 

eqn. (1): 

(2) 

Where maxw is the initial weight, minw  is the final weight, 

itermax is maximum iteration number and iter is current 

iteration number. 

 

The meanings of the right-hand side (RHS) of eqn. (1) 

can be explained as follows [7]. The RHS of eqn. (1) 

consists of three terms (vectors). The first term is the 

previous velocity of the agent. The second and third 

terms are utilized to change the velocity of the agent.  

 

Without the second and third terms, the agent will keep 

on “flying” in the same direction until it hits the 

boundary. Namely, it tries to explore new areas and, 

therefore, the first term corresponds with diversification 

in the search procedure. On the other hand, without the 

first term, the velocity of the “flying” agent is only 

determined by using its current position and its best 

positions in history. Namely, the agents will try to 

converge to their pbests and/or gbest and, therefore, the 

terms correspond with intensification in the search 

procedure. As shown below, for example, maxw  and 

minw  are set to 0.9 and 0.4. Therefore, at the beginning of 

the search procedure, diversification is heavily weighted, 

while intensification is heavily weighted at the end of the 

search procedure such like simulated annealing (SA).  
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Namely, a certain velocity, which gradually gets close to 

pbests and gbest, can be calculated. PSO using eqns.(1) 

& (2) is called inertia weights approach (IWA).  

 
Figure 1: concept of modifications of a searching point 

by PSO 
ks : current searching point 

1ks : modified searching point 
kv : current velocity 

1kv : modified velocity 

pbestv : velocity based on pbest 

gbestv : velocity based on gbest 

 

The current position (searching point in the solution 

space) can be modified by the following equation (3): 

(3) 

 

Figure 1 shows a concept of modification of a searching 

point by PSO, and it shows a searching concept with 

agents in a solution space. Each agent changes its current 

position using the integration of vectors as shown in 

Figure 1. 

 

The features of the searching procedure of PSO can be 

summarized as follows: 

 As shown in eqns. (1), (2), and (3), PSO can 

essentially handle continuous optimization 

problems. 

 PSO utilizes several searching points, and the 

searching points gradually get close to the 

optimal point using their pbests and the gbest. 

 The first term of the RHS of eqn. (1) corresponds 

with diversification in the search procedure. The 

second and third terms correspond with 

intensification in the search procedure. Namely, 

the method has a well-balanced mechanism to 

utilize diversification and intensification in the 

search procedure efficiently. 

 The above concept is explained using only the x, 

y axis (two-dimensional space). However, the 

method can be easily applied to n-dimensional 

problems. Namely, PSO can handle continuous 

optimization problems with continuous state 

variables in an n-dimensional solution space. 

 

Shi and Eberhart tried to examine the parameter selection 

of the above parameters [7, 8]. According to their 

examination, the following parameters are appropriate 

and the values do not depend on problems: 

ic =2.0, maxw =0.9,     minw  =0.4, 

The values are also proved to be appropriate for power 

system problems [9, 10]. The basic PSO has been applied 

to a learning problem of neural networks and Schaffer f6, 

a famous benchmark function for GA, and the efficiency 

of the method has been observed [4]. 

 

IV Mathematical formulation of optimal-power flow 

problem 

The conventional formulation of the optimal-power-flow 

(OPF) problem determines the optimal settings of control 

variables such as real power generations, generator 

terminal voltages, transformer tap settings and phase-

shifter angles while minimizing the objective function 

such as fuel cost as given in eqn.(4). 

Min (Fuel cost) = min 



NG

i

iGiiGii CPbPa
1

2 )((  (4) 

Where 

NG: No. of Generators  

PGi: Active Power produced by generator i. 

ai, bi, ci: Fuel cost coefficients of generator i. 

 

The minimization problem of the objective function is 

subjected to the satisfaction of constraints from eqns. (5-

9) 
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Load-flow constraints: 

(5) 

(6) 

 

Voltage constraints: 

(7) 

 

Unit constraints 

(8) 

(9) 

 

V Results and discussions 

This section presents the details of the study carried out 

on IEEE-30 bus and IEEE-14 bus test systems fortesting 

the OPF methodology. The proposed algorithm was 

implemented in MATLAB computing environment with 

Pentium-IV, 2.66 GHz computer with 512 MB RAM. the 

proposed PSO based algorithm was applied to obtain the 

optimal-control variables in the IEEE 30 & 14 bus 

systems under base load conditions. 

 

The upper and lower voltage limits at all the bus bars 

except slack were taken as 1.1 and 0.95 respectively. The 

slack bus bar voltage was fixed to a value 1.07p.u. Here 

the contingencies are not considered and the proposed 

PSO based algorithm was applied to find the optimal 

scheduling of the power system for the base case loading 

condition. The objective function in this case is 

minimization of total fuel cost. Generator active-power 

outputs, generator busbar terminal voltages, transformer 

tap settings and shunt reactive power compensating 

elements were taken as optimization variables. The 

optimization variables are represented as floating point 

numbers in the population. The optimal values of control 

variables along with the real power generation of the 

slack busbar generator are given in Table 1 & 2 for 

IEEE-30 & 14 bus systems respectively. The minimum 

cost obtained with the proposed PSO algorithm for IEEE-

30 bus system is $800.966/h, which is less than the 

minimum generation cost of $803.1916/h obtained with 

interior point method. Also, it was found that all the state 

variables satisfy the lower and upper limits. 

 

For comparison, the OPF problem was solved using an 

evolutionary programming method with the population 

size of 20 and 250 generations. All the solutions satisfy 

the constraints on reactive power generation limits and 

line flow limits. The convergence of generation cost is 

shown in Fig.2 & 3 for IEEE 30 & 14 bus systems 

respectively.. From Fig. 2 & 3, it can be observed that the 

PSO took approximately 60 generations to reach the 

same production cost reached by EP. This shows that the 

proposed PSO algorithm occupies less computer space 

and takes less time to reach the optimal solution. 

 
Fig.2 Convergence of generation cost for 30-bus system 

 
Fig.3 Convergence of generation cost for 14-bus system 
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Table 1 Solution for IEEE 30-bus system 

 
 

Table 2 Solution for IEEE 14-bus system 

 

VI Conclusion 

In this chapter PSO based OPF algorithm has been 

validated with EP-OPF method using MATLAB 

software. It has been observed that optimal solution 

obtained by PSO-OPF is very close to that obtained by 

classical methods and it is clear that it is better than EP-

OPF. So the proposed OPF methods are most suitable 

and valid for incorporating new objective functions and 

constraints. The algorithm is capable of determining the 

global optimum solution to the OPF problem in the 

presence of multiple local optima. This provides the 

opportunity to better model power system operations and 

therefore determine a more accurate operating state. 

 

The performance of the developed OPF algorithms has 

been demonstrated by its application to the modified 

IEEE 30-bus and 14-bus test systems. The algorithms 

were accurately and reliably converged to the global 

optimum solution in each case. The PSO-algorithm is 

also capable of producing more favorable voltage profile 

while still maintaining a competitive cost. 
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