

 Page 507

An Optimized High Throughput Aging-Aware Reliable Multiplier

with Variable Latency
Shaik Masma

PG Scholar,

Dept of ECE,

MJR College of Engineering & Technology,

Piler, A.P, India.

K.Balamurali

Assistant Professor,

Dept of ECE,

MJR College of Engineering & Technology,

A.P India.

Abstract:

With the rapid progress in semiconductor technology

and the shrinking of device geometries, the resulting

processors are increasingly becoming prone to effects

like aging and soft errors. As a processor ages, its

electrical characteristics degrade, i.e., the switching

times of its transistors increase. Hence, the processor

cannot continue error-free operation at the same clock

frequency and/or voltage for which it was originally

designed. In order to mitigate such effects, recent

research proposes to equip processors with special

circuitry that automatically adapts its clock frequency

in response to changes in its circuit-level timing

properties (arising from changes in its electrical

characteristics). From the point of view of tasks

running on these processors, such autonomic

frequency scaling (AFS) processors become slower as

they gradually age. This leads to additional execution

delay for tasks, which needs to be analyzed carefully,

particularly in the context of hard real time or safety-

critical systems. Hence, for real-time systems based on

AFS processors, the associated schedulability analysis

should be aging-aware which a relatively unexplored

topic is so far. In this paper we propose a

schedulability analysis framework that accounts such

aging-induced degradation and changes in timing

properties of the processor, when designing hard real-

time systems. In particular, we address the

schedulability and task mapping problem by taking a

lifetime constraint of the system into account. In other

words, the system should be designed to be fully

operational (i.e., meet all deadlines) till a given

minimum period of time (i.e., its lifetime).

The proposed framework is based on an aging model

of the processor which we discuss in detail. In addition

to studying the effects of aging on the schedulability of

real-time tasks, we also discuss its impact on task

mapping and resource dimensioning.

Keywords:

Adaptive hold logic (AHL), negative bias temperature

instability (NBTI), positive bias temperature instability

(PBTI), reliable multiplier, variable latency.

I. Introduction:

As device geometries continue to shrink with the

advances in fabrication technology, the resulting

processors are increasingly becoming susceptible to

effects like aging. As a processor ages, the switching

times of its constituent transistors increase because of

which the processor is no longer able to sustain the

clock frequency it was originally designed for.

Hardware solutions to mitigate such effects consist of

equipping processors with on-chip monitors or sensors

[8], [5] that measure the timing margin available to

circuits on the chip, or variations in their timing

behavior arising from changes in their electrical

characteristics. The output from such monitors is

coupled with the clock generation circuit to adjust the

clock frequency in response to changes in the signal

propagation delay due to effects like aging. Such

techniques have already been used in IBM’s POWER7

architecture in order to automatically adjust the

processor’s clock frequency and voltage level, with the

aim of saving energy. The same technique is also

applicable to cope with the effects of aging.

 Page 508

In such autonomic frequency scaling (AFS)

processors, the execution times of tasks increase over

time as the processor ages. For real-time or safety-

critical applications running on such AFS processors, a

natural question is: how to perform timing or

schedulability analysis? Given a life-time constraint,

i.e., the duration of time during which all deadlines

have to be met, one obvious solution would be to

perform schedulability analysis with task execution

times at the end of this duration (i.e., using the aged

execution times). However, for cost sensitive domains

such a naıve approach might be overly pessimistic and

lead to resource over dimensioning. As a concrete

example, let us consider the automotive domain.

Today, high-end cars have 50-100 electronic control

units (ECUs) or processors to run a variety of hard

real-time, safety-critical control applications.

Currently, these ECUs are often low-cost processors or

microcontrollers that run at 200-500 MHz.

However, in order to reduce cost, weight and cabling

requirements, there is an increasing effort on ECU

consolidation, i.e., integrating multiple functionalities

on fewer more powerful ECUs. In the near future, we

will see ECU architectures evolve into powerful,

multi-core processors that are currently found in the

high-performance computing domain. As soon as that

happens, such ECUs will be faced with the effects of

aging, soft errors, etc., especially because they will be

exposed to a wide variety of operating environments

and temperatures, depending on where the car is

deployed. This will be coupled with the fact that

additional processor cooling mechanisms – as found in

the mainstream computing domain – will probably be

absent. Given that it is common for automotive OEMs

to provide guarantees in the range of 15 years, it has to

be ensured that tasks running on aging-aware

autonomic frequency scaling or AFS ECUs continue to

meet all deadlines over this entire time period. In this

paper we propose an appropriate processor aging-

aware schedulability analysis for such scenarios.

Processors with autonomic frequency scaling:

In general, aging effects can be divided into two

categories: degradation and destructive effects.

Degradation effects may be classified into Negative

Bias Temperature Instability (NBTI) and HotCarrier

Injection (HCI). These cause a shift in a device’s

electrical characteristics, such as threshold voltage or

on-current, which leads to prolonged switching times

of transistors. On the other hand, destructive effects

like Time-Dependent Dielectric Breakdown (TDDB)

or Electro Migration (EM) cause the destruction of

device parts and irreparable damage. In this paper, we

are concerned with degradation effects, i.e., those that

do not damage a processor but rather affect its timing

behavior. As a processor ages, its transistors gradually

need more time for switching (due to degradation

effects). Hence, as mentioned before, the processor

cannot sustain the clock frequency it was originally

designed for. While very large safety margins or

timing guard bands can be used to mitigate such

effects, they lead to poor resource utilization and hence

more expensive processors, which are not acceptable

in cost-sensitive domains like automotive

architectures. Autonomic frequency scaling (AFS)

processors use critical path monitors (CPM) which

allow measuring the maximum delay degradation at

runtime (see Fig.1). Depending on the implementation,

an AFS processor may become slower as it ages, in

order to keep the processor operational. To reliably

design real-time systems based on AFS processors, it

is necessary to analyze the system’s aging behavior

and develop timing or schedulability analysis

techniques that are aging-aware.

 Page 509

Our contributions: As discussed above, an AFS

processor automatically reduces its clock frequency to

account for additional circuit-level signal propagation

delay incurred due to aging. This way, although the

processor becomes slower, it avoids the occurrence of

aging-dependent functional/computation errors.

However, in the context of realtime systems, we need

to analyze what the maximum slowdown is, to be able

to guarantee deadlines all along the system’s lifetime.

For this purpose, we make use of the aging model from

[14] to predict the processor’s worst-case aging

behavior within the desired lifetime tlif e. This model

returns the maximum aging-dependent delay Dmax as

a function of the time under stress tstress (i.e., the time

in which the processor is busy executing some

workload). Now, to account for aging in schedulability

analysis, we can use our aging-model to obtain Dmax

considering a tstress equal to tlif e and compute the

speed of the aged AFS processor after tlif e of

continuous use. Clearly, if the aged AFS processor can

guarantee all deadlines, then the system is schedulable

along its whole lifetime. However, even considering

aging, the processor utilization is normally below

100% and, in most cases, tstress is much less than tlif e

(i.e., the processor is not being constantly used during

its lifetime, but rather it has some idle intervals). As a

result, this first na¨ ıve approach leads to a pessimistic

slow-down estimation and, hence, a more expensive

design.

II. Literature Survey:

The aging behavior of semiconductors is a major topic

of research within the processor architecture

community, but it has so far received relatively less

attention from the software community. Notable

exceptions to this are [7], [23], [16], [17]. There exists

a large body of work that addresses aging effects at the

hardware level. For example, Wu and Marculescu

presented optimization techniques that allow

synthesizing digital circuits that are less prone to aging

degradation [23]. In [24], different process variations

at a chip level are studied and characterized.

In [16], [17], software techniques are presented to cope

with problems that are posed by unreliable hardware.

These include devising reliability-aware instruction

sets, coupled with appropriate instruction scheduling

using reliability aware compilation techniques.

Recently, in [7], Huang et al. presented an allocation

framework based on a heuristic that aims at

maximizing the lifetime of an SoC (System-on-Chip).

Our work here follows this line of research and also

deals with the allocation issues that arise in aging

devices. However, in contrast to recent research

efforts, the approach presented here deals with the

schedulability of real-time tasks and extends the state-

ofthe-art by considering hardware-dependent behavior

in the schedulability and mapping problem, viz., aging

effects.

III.PRELIMINARIES:

Row-Bypassing Multiplier:

A low-power row-bypassing multiplier [23] is also

proposed to reduce the activity po wer of the AM. The

operation of the low-power row-bypassing multiplier

is similar to that of the low-power column-bypassing

multiplier, but the selector of the multiplexers and the

tristate gates use the multiplicator. Fig. 2 is a 4 ×4

row-bypassing multiplier. Each input is connected to

an FA through a tristate gate. When the inputs are

11112 * 10012, the two inputs in the first and second

rows are 0 for FAs. Because b1 is 0, the multiplexers

in the first row select aib0 as the sum bit and select

0 as the carry bit. The inputs are bypassed to FAs in

the second rows, and the tristate gates turn off the

input paths to the FAs.

Fig 2 .4 × 4 normal AM.

 Page 510

Therefore, no switching activities occur in the first-

row FAs; in return, power consumption is reduced.

Similarly, because b2is 0, no switching activities will

occur in the second-row FAs. However, the FAs must

be active in the third row because the b3 is not zero.

Fig 3. 4X4 Row by passing multiplier

Selector of the multiplexer to decide the output of the

FA, and ai can also be used as the selector of the

tristate gate to turn off the input path of the FA. If 𝑎𝑖

is 0, the inputs of FA are disabled, and the sum bit of

the current FA is equal to the sum bit from its upper

FA, thus reducing the power consumption of the

multiplier. If is 1, the normal sum result is selected.

More details for the column-bypassing multiplier can

be found.

Variable-Latency Design:

The basic concept is to execute a shorter path using a

shorter cycle and longer path using two cycles. Since

most paths execute in a cycle period that is much

smaller than the critical path delay, the variable-

latency design has smaller average latency. For

example, Fig. 4 is an 8-bit variable-latency ripple carry

adder (RCA). A8–A1, B8–B1 are 8-bit inputs, and S8–

S1 are the outputs. Supposing the delay for each FA is

one, and the maximum delay for the adder is 8.

Through simulation, it can be determined that the

possibility of the carry propagation delay being longer

than 5 is low. Hence, the cycle period is set to 5, and

hold logic is added to notify the system whether the

adder can complete the operation within a cycle

period.

Fig. 4. 8-bit RCA with a hold logic circuit.

Fig. 4 also shows the hold logic that is used in this

circuit. The function of the hold logic is (A4

XORB4)(A5 XORB5). If the output of the hold logic

is 0, i.e., A4=B4orA5=B5, either the fourth or the fifth

adder will not produce a carryout. Hence, the

maximum delay will be less than one cycle period.

When the hold logic output is 1, this means that the

input can activate paths longer than 5, so the hold logic

notifies the system that the current operation requires

two cycles to complete. Two cycles are sufficient for

the longest path to complete (5 * 2 is larger than 8).

The performance improvement of the variable-latency

design can be calculated as follows: if the possibility

of each input being 1 is 0.5, the possibility of (A4

XORB4) (A5 XORB5) being 1 is 0.25.

The average latency for the variable-latency design is

0.75∗5+0.25∗10=6.25. Compared with the simple

fixed-latency RCA, which has an average latency of 8,

the variable-latency design can achieve a 28%

performance improvement. Fig. 5 shows the path delay

distribution of a 16×16 AM and for both a traditional

column-bypassing and traditional row-bypassing

multiplier with 65 536 randomly chosen input patterns.

All multipliers execute operations on a fixed cycle

period. The maximum path delay is 1.32 ns for the

AM, 1.88 ns for the column-bypassing multiplier, and

1.82 ns for the row-bypassing multiplier.

 Page 511

It can be seen that for the AM, more than 98% of the

paths have a delay of<0.7 ns. Moreover, more than

93% and 98% of the paths in the FLCB and row-

bypassing multipliers present a delay of <0.9 ns,

respectively. Hence, using the maximum path delay for

all paths will cause significant timing waste for shorter

paths, and redesigning the multiplier with variable

latency can improve.their performance Another key

observation is that the path delay for an operation is

strongly tied to the number of zeros in the

multiplicands in the column-bypassing multiplier. Fig.

6 shows the delay distribution of the 16×16 column-

bypassing multiplier under three different numbers of

zeros in the multiplicands: 1) 6; 2) 8; and 3) 10. Three

thousand randomly selected patterns are used in each

experiment. It can be seen as the number of zeros in

the multiplicands increases, delay distributionis left

shifted, and average delay is reduced.

The reason for this is the multiplicand is used as the

select line for column-bypassing multipliers, and if

more zeros exist in the ,multiplicand, more FAs will be

skipped, and the sum bit from the upper FA is passed

to the lower FA, reducing the path delay. Note that

similar experiments are also done for row-bypassing

multipliers. However, because the results are similar,

they are not shown to avoid duplications. For a row-

bypassing multiplier, the multiplicators are used to

determine whether a pattern needs one cycle or two

cycles to complete an operation because the

multiplicator is used as the select line. This makes the

column-bypassing multiplicand and row-bypassing

multiplier excellent candidates for the variable latency

design since we can simply examine the number of

zeros in the multiplicand or multiplicator to predict

whether the operation requires one cycle or two cycles

to complete.

IV. Proposed Aging-Aware Multiplier

Proposed Architecture:

Fig. 5 shows our proposed aging-aware multiplier

architecture, which includes two m-bit inputs (mis a

positive number), one 2m-bit output, one column- or

row-bypassing multiplier, 2m1-bit Razor flip-flops

[27], and an AHL circuit.

Fig. 5. Proposed architecture (md means

multiplicand; mr means multiplicator).

Hence, the two aging-aware multipliers can be

implemented using similar architecture, and the

difference between the two bypassing multipliers lies

in the input signals of the AHL. According to the

bypassing selection in the columnor row-bypassing

multiplier, the input signal of the AHL in the

architecture with the column-bypassing multiplier is

the multiplicand, whereas that ofthe row-bypassing

multiplier is the multiplicator. Razor flip-flops can be

used to detect Fig. 6. Razor flip flops. whether timing

violations occur before the next input pattern arrives.

Fig. 6. Razor flip flops

Fig. 6 shows the details of Razor flip-flops. A 1-bit

Razor flip-flop contains a main flip-flop, shadow

latch,XORgate, and mux. The main flip-flop catches

the execution result for the combination circuit using a

normal clock signal, and the shadow latch catches the

execution result using a delayed clock signal, which is

slower than the normal clock signal. If the latched bit

of the shadow latch is different from that of the main

flip-flop, this means the path delay of the current

operation exceeds the cycle period, and the main flip-

flop catches an incorrect result.

 Page 512

If errors occur, the Razor flip-flop will set the error

signal to 1 to notify the system to reexecute the

operation and notify the AHL circuit that an error has

occurred. We use Razor flip-flops to detect whether an

operation that is considered to be a one-cycle pattern

can really finish in a cycle. If not, the operation is

reexecuted with two cycles. Although the reexecution

may seem costly, the overall cost is low because the

reexecution frequency is low.

Fig. 7. Diagram of AHL (md means multiplicand;

mr means multiplicator).

The AHL circuit is the key component in the aging-

ware variable-latency multiplier. Fig. 12 shows the

details of the AHL circuit. The AHL circuit contains

an aging indicator, two judging blocks, one mux, and

one D flip-flop. The aging indicator indicates whether

the circuit has suffered significant performance

degradation due to he aging effect. The aging

indicator is implemented in a simple counter that

counts the number of errors over a certain amount of

operations and is reset to zero at the end of those

operations. If the cycle period is too short, the column-

or row-bypassing multiplier is not able to complete

these operations successfully, causing timing

violations. These timing violations will be caught by

the Razor flip-flops, which generate error signals. If

errors happen frequently and exceed a predefined

threshold, it means the circuit has suffered significant

timing degradation due to the aging effect, and the

aging indicator will output signal 1; otherwise, it will

output 0 to indicate the aging effect is still not

significant, and no actions are needed.

V.SIMULATION RESULTS:

VI.CONCLUSION:

This paper proposed an aging-aware variable-latency

multiplier design with the AHL.

 Page 513

The multiplier is able to adjust the AHL to mitigate

performance degradation due to increased delay.

The experimental results show that our proposed

architecture with 4x4 multiplication with CLA as last

stage instead of Normal RCA adder it will decrease the

delay and improve the performance compared with

previous designs.

REFERENCES:

[1] N. Audsley, A. Burns, M. Richardson, K. Tindell,

and A. Wellings. Applying new scheduling theory to

static priority pre-emptive scheduling. Software

Engineering Journal, 8(5):284–292, 1993.

[2] E. Bini and G. Buttazzo. Biasing effects in

schedulability measures. In Euromicro Conference on

Real-Time Systems, June 2004.

[3] E. Bini and G. Buttazzo. Measuring the

performance of schedulability tests. Real-Time

Systems, 30(1-2):129–154, 2005.

[4] K. Bowman, J. Tschanz, C. Wilkerson, S.-L. Lu, T.

Karnik, V. De, and S. Borkar. Circuit techniques for

dynamic variation tolerance. In Design Automation

Conference (DAC), July 2009.

[5] A. Drake, R. Senger, H. Deogun, G. Carpenter, S.

Ghiasi, T. Nguyen, N. James, M. Floyd, and V.

Pokala. A distributed critical-path timing monitor for a

65nm high-performance microprocessor. In

International Solid-State Circuits Conference (ISSCC),

Feb. 2007.

[6] M. Floyd, M. Allen-Ware, K. Rajamani, B. Brock,

C. Lefurgy, A. Drake, L. Pesantez, T. Gloekler, J.

Tierno, P. Bose, and A. Buyuktosunoglu. Introducing

the adaptive energy management features of the

POWER7 chip. IEEE Micro, 31(2):67–75, 2011.

[7] L. Huang, F. Yuan, and Q. Xu. Lifetime reliability-

aware task allocation and scheduling for MPSoC

platforms. In Design, Automation, and Test in Europe

(DATE), Apr. 2009.

[8] J. Keane, T.-H. Kim, X. Wang, and C. Kim. On-

chip reliability monitors for measuring circuit

degradation. Microelectronics Reliability,

50(8):1039–1053, 2010.

[9] C. Lefurgy, A. Drake, M. Floyd, M. Allen-Ware,

B. Brock, J. Tierno, and J. Carter. Active management

of timing guardband to save energy in POWER7. In

International Symposium on Microarchitecture

(MICRO), Dec. 2011.

[10] J. Lehoczky. Fixed priority scheduling of periodic

task sets with arbitrary deadlines. In Real-Time

Systems Symposium (RTSS), Dec. 1990.

[11] J. Lehoczky, L. Sha, and Y. Ding. The rate

monotonic scheduling algorithm: exact

characterization and average case behavior. In

RealTime Systems Symposium (RTSS), Dec. 1989.

[12] J. Leung and J. Whitehead. On the complexity of

fixed-priority scheduling of periodic, real-time tasks.

Performance Evaluation, 2(4):237–250, 1982.

[13] C. Liu and J. Layland. Scheduling algorithms for

multiprogramming in hard real-time environments.

Journal of the Association for Computing Machinery,

20(1):40–61, 1973.

[14] D. Lorenz, M. Barke, and U. Schlichtmann.

Aging analysis at gate and macro cell level. In

International Conference on Computer-Aided Design

(ICCAD), Nov. 2010.

[15] J. Park and J. Abraham. A fast, accurate and

simple critical path monitor for improving energy-

delay product in DVS systems. In International

Symposium on Low Power Electronics and Design

(ISLPED), Aug. 2011.

 Page 514

[16] S. Rehman, M. Shafique, F. Kriebel, and J.

Henkel. Reliable software for unreliable hardware:

embedded code generation aiming at reliability. In

International Conference on Hardware/Software

Codesign and System Synthesis (CODES+ISSS), Oct.

2011.

[17] S. Rehman, M. Shafique, F. Kriebel, and J.

Henkel. RAISE: Reliabilityaware instruction

scheduling for unreliable hardware. In Asia and South

Pacific Design Automation Conference (ASP-DAC),

Jan. 2012.

[18] S. S. Sapatnekar. Static timing analysis. In L.

Scheffer, L. Lavagno, and G. Martin, editors, EDA for

IC implementation, circuit design, and process

technology. Taylor and Francis, 2006.

[19] V. Stojanovic, D. Markovic, B. Nikolic, M.

Horowitz, and R. Brodersen. Energy-delay tradeoffs in

combinational logic using gate sizing and supply

voltage optimization. In European Solid-State Circuits

Conference (ESSCIRC), Sept. 2002.

[20] J. Tschanz, N.-S. Kim, S. Dighe, J. Howard, G.

Ruhl, S. Vanga, S. Narendra, Y. Hoskote, H. Wilson,

C. Lam, M. Shuman, C. Tokunaga, D. Somasekhar, S.

Tang, D. Finan, T. Karnik, N. Borkar, N. Kurd, and V.

De. Adaptive frequency and biasing techniques for

tolerance to dynamic temperature-voltage variations

and aging. In International Solid-State Circuits

Conference (ISSCC), Feb. 2007.

[21] C. Visweswariah, K. Ravindran, K. Kalafala, S.

Walker, S. Narayan, D. Beece, J. Piaget, N.

Venkateswaran, and J. Hemmet. First-order

incremental block-based statistical timing analysis.

IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, 25(10), 2006.

[22] Y. Wang, X. Chen, W. Wang, V. Balakrishnan,

Y. Cao, Y. Xie, and H. Yang. On the efficacy of input

vector control to mitigate NBTI effects and leakage

power. In International Symposium on Quality

Electronic Design (ISQED), Mar. 2009.

[23] K.-C. Wu and D. Marculescu. Aging-aware

timing analysis and optimization considering path

sensitization. In Design, Automation, and Test in

Europe (DATE), Mar. 2011.

[24] L. Zhang, L. Bai, R. Dick, L. Shang, and R.

Joseph. Process variation characterization of chip-level

multiprocessors. In Design Automation Conference

(DAC), July 2009.

