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Abstract: 

With the rapid progress in semiconductor technology 

and the shrinking of device geometries, the resulting 

processors are increasingly becoming prone to effects 

like aging and soft errors. As a processor ages, its 

electrical characteristics degrade, i.e., the switching 

times of its transistors increase. Hence, the processor 

cannot continue error-free operation at the same clock 

frequency and/or voltage for which it was originally 

designed. In order to mitigate such effects, recent 

research proposes to equip processors with special 

circuitry that automatically adapts its clock frequency 

in response to changes in its circuit-level timing 

properties (arising from changes in its electrical 

characteristics). From the point of view of tasks 

running on these processors, such autonomic 

frequency scaling (AFS) processors become slower as 

they gradually age. This leads to additional execution 

delay for tasks, which needs to be analyzed carefully, 

particularly in the context of hard real time or safety-

critical systems. Hence, for real-time systems based on 

AFS processors, the associated schedulability analysis 

should be aging-aware which a relatively unexplored 

topic is so far. In this paper we propose a 

schedulability analysis framework that accounts such 

aging-induced degradation and changes in timing 

properties of the processor, when designing hard real-

time systems. In particular, we address the 

schedulability and task mapping problem by taking a 

lifetime constraint of the system into account. In other 

words, the system should be designed to be fully 

operational (i.e., meet all deadlines) till a given 

minimum period of time (i.e., its lifetime).  

 

 

The proposed framework is based on an aging model 

of the processor which we discuss in detail. In addition 

to studying the effects of aging on the schedulability of 

real-time tasks, we also discuss its impact on task 

mapping and resource dimensioning. 
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I. Introduction: 

As device geometries continue to shrink with the 

advances in fabrication technology, the resulting 

processors are increasingly becoming susceptible to 

effects like aging. As a processor ages, the switching 

times of its constituent transistors increase because of 

which the processor is no longer able to sustain the 

clock frequency it was originally designed for. 

Hardware solutions to mitigate such effects consist of 

equipping processors with on-chip monitors or sensors 

[8], [5] that measure the timing margin available to 

circuits on the chip, or variations in their timing 

behavior arising from changes in their electrical 

characteristics. The output from such monitors is 

coupled with the clock generation circuit to adjust the 

clock frequency in response to changes in the signal 

propagation delay due to effects like aging. Such 

techniques have already been used in IBM’s POWER7 

architecture in order to automatically adjust the 

processor’s clock frequency and voltage level, with the 

aim of saving energy. The same technique is also 

applicable to cope with the effects of aging.  
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In such autonomic frequency scaling (AFS) 

processors, the execution times of tasks increase over 

time as the processor ages. For real-time or safety-

critical applications running on such AFS processors, a 

natural question is: how to perform timing or 

schedulability analysis? Given a life-time constraint, 

i.e., the duration of time during which all deadlines 

have to be met, one obvious solution would be to 

perform schedulability analysis with task execution 

times at the end of this duration (i.e., using the aged 

execution times). However, for cost sensitive domains 

such a naıve approach might be overly pessimistic and 

lead to resource over dimensioning. As a concrete 

example, let us consider the automotive domain. 

Today, high-end cars have 50-100 electronic control 

units (ECUs) or processors to run a variety of hard 

real-time, safety-critical control applications. 

Currently, these ECUs are often low-cost processors or 

microcontrollers that run at 200-500 MHz.  

 

However, in order to reduce cost, weight and cabling 

requirements, there is an increasing effort on ECU 

consolidation, i.e., integrating multiple functionalities 

on fewer more powerful ECUs. In the near future, we 

will see ECU architectures evolve into powerful, 

multi-core processors that are currently found in the 

high-performance computing domain. As soon as that 

happens, such ECUs will be faced with the effects of 

aging, soft errors, etc., especially because they will be 

exposed to a wide variety of operating environments 

and temperatures, depending on where the car is 

deployed. This will be coupled with the fact that 

additional processor cooling mechanisms – as found in 

the mainstream computing domain – will probably be 

absent. Given that it is common for automotive OEMs 

to provide guarantees in the range of 15 years, it has to 

be ensured that tasks running on aging-aware 

autonomic frequency scaling or AFS ECUs continue to 

meet all deadlines over this entire time period. In this 

paper we propose an appropriate processor aging-

aware schedulability analysis for such scenarios. 

Processors with autonomic frequency scaling:  

In general, aging effects can be divided into two 

categories: degradation and destructive effects. 

Degradation effects may be classified into Negative 

Bias Temperature Instability (NBTI) and HotCarrier 

Injection (HCI). These cause a shift in a device’s 

electrical characteristics, such as threshold voltage or 

on-current, which leads to prolonged switching times 

of transistors. On the other hand, destructive effects 

like Time-Dependent Dielectric Breakdown (TDDB) 

or Electro Migration (EM) cause the destruction of 

device parts and irreparable damage. In this paper, we 

are concerned with degradation effects, i.e., those that 

do not damage a processor but rather affect its timing 

behavior. As a processor ages, its transistors gradually 

need more time for switching (due to degradation 

effects). Hence, as mentioned before, the processor 

cannot sustain the clock frequency it was originally 

designed for. While very large safety margins or 

timing guard bands can be used to mitigate such 

effects, they lead to poor resource utilization and hence 

more expensive processors, which are not acceptable 

in cost-sensitive domains like automotive 

architectures. Autonomic frequency scaling (AFS) 

processors use critical path monitors (CPM) which 

allow measuring the maximum delay degradation at 

runtime (see Fig.1). Depending on the implementation, 

an AFS processor may become slower as it ages, in 

order to keep the processor operational. To reliably 

design real-time systems based on AFS processors, it 

is necessary to analyze the system’s aging behavior 

and develop timing or schedulability analysis 

techniques that are aging-aware. 
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Our contributions: As discussed above, an AFS 

processor automatically reduces its clock frequency to 

account for additional circuit-level signal propagation 

delay incurred due to aging. This way, although the 

processor becomes slower, it avoids the occurrence of 

aging-dependent functional/computation errors. 

However, in the context of realtime systems, we need 

to analyze what the maximum slowdown is, to be able 

to guarantee deadlines all along the system’s lifetime. 

For this purpose, we make use of the aging model from 

[14] to predict the processor’s worst-case aging 

behavior within the desired lifetime tlif e. This model 

returns the maximum aging-dependent delay Dmax as 

a function of the time under stress tstress (i.e., the time 

in which the processor is busy executing some 

workload). Now, to account for aging in schedulability 

analysis, we can use our aging-model to obtain Dmax 

considering a tstress equal to tlif e and compute the 

speed of the aged AFS processor after tlif e of 

continuous use. Clearly, if the aged AFS processor can 

guarantee all deadlines, then the system is schedulable 

along its whole lifetime. However, even considering 

aging, the processor utilization is normally below 

100% and, in most cases, tstress is much less than tlif e 

(i.e., the processor is not being constantly used during 

its lifetime, but rather it has some idle intervals). As a 

result, this first na¨ ıve approach leads to a pessimistic 

slow-down estimation and, hence, a more expensive 

design. 

 

II. Literature Survey: 

The aging behavior of semiconductors is a major topic 

of research within the processor architecture 

community, but it has so far received relatively less 

attention from the software community. Notable 

exceptions to this are [7], [23], [16], [17]. There exists 

a large body of work that addresses aging effects at the 

hardware level. For example, Wu and Marculescu 

presented optimization techniques that allow 

synthesizing digital circuits that are less prone to aging 

degradation [23]. In [24], different process variations 

at a chip level are studied and characterized.  

In [16], [17], software techniques are presented to cope 

with problems that are posed by unreliable hardware. 

These include devising reliability-aware instruction 

sets, coupled with appropriate instruction scheduling 

using reliability aware compilation techniques. 

Recently, in [7], Huang et al. presented an allocation 

framework based on a heuristic that aims at 

maximizing the lifetime of an SoC (System-on-Chip). 

Our work here follows this line of research and also 

deals with the allocation issues that arise in aging 

devices. However, in contrast to recent research 

efforts, the approach presented here deals with the 

schedulability of real-time tasks and extends the state-

ofthe-art by considering hardware-dependent behavior 

in the schedulability and mapping problem, viz., aging 

effects. 

 

III.PRELIMINARIES: 

Row-Bypassing Multiplier: 

A low-power row-bypassing multiplier [23] is also 

proposed  to reduce the activity po wer of the AM. The 

operation of  the  low-power row-bypassing multiplier 

is similar to that of the low-power column-bypassing 

multiplier, but the selector of the  multiplexers and the 

tristate gates use the multiplicator. Fig. 2 is a 4  ×4 

row-bypassing multiplier. Each input is  connected to 

an FA through a  tristate gate. When the inputs  are  

11112 * 10012, the two  inputs in the first and second 

rows are 0 for FAs. Because  b1 is 0, the multiplexers 

in  the first row select  aib0  as  the sum bit and select 

0 as the carry bit. The inputs are  bypassed to FAs in 

the second rows,  and the tristate  gates turn off the 

input paths to the FAs.  

 
Fig 2 .4 × 4 normal AM. 
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Therefore, no switching activities occur in the first-

row FAs;  in return, power consumption is reduced. 

Similarly, because  b2is 0, no switching activities will 

occur in the second-row FAs. However, the FAs must 

be active in the third row because  the b3 is not zero. 

 
Fig 3. 4X4 Row by passing multiplier 

 

Selector of the  multiplexer to decide the output of the 

FA, and ai  can also be used as the selector of the 

tristate gate to turn  off the input path of the FA. If 𝑎𝑖 

is 0, the inputs of FA are disabled, and the sum bit of 

the current FA is equal to the sum bit  from its upper 

FA, thus reducing the power consumption of the 

multiplier. If   is 1, the normal sum result is selected. 

More  details for the column-bypassing multiplier can 

be found. 

 

Variable-Latency Design: 

The basic concept is to execute a shorter path using a 

shorter cycle and longer path using two cycles. Since 

most paths execute in a cycle period that is much 

smaller than the critical path delay, the variable-

latency design has smaller average latency. For 

example, Fig. 4 is an 8-bit variable-latency ripple carry 

adder (RCA). A8–A1, B8–B1 are 8-bit inputs, and S8–

S1 are the outputs. Supposing the delay for each FA is 

one, and the maximum delay for the adder is 8. 

Through simulation, it can be determined that the 

possibility of the carry propagation delay being longer 

than 5 is low. Hence, the cycle period is set to 5, and 

hold logic is added to notify the system whether the 

adder can complete the operation within a cycle 

period. 

 

 
Fig. 4. 8-bit RCA with a hold logic circuit. 

 

Fig. 4 also shows the hold logic that is used in this 

circuit. The function of the hold logic is (A4 

XORB4)(A5 XORB5). If the output of the hold logic 

is 0, i.e., A4=B4orA5=B5, either the fourth or the fifth 

adder will not produce a carryout. Hence, the 

maximum delay will be less than one cycle period. 

When the hold logic output is 1, this means that the 

input can activate paths longer than 5, so the hold logic 

notifies the system that the current operation requires 

two cycles to complete. Two cycles are sufficient for 

the longest path to complete (5 * 2 is larger than 8). 

The performance improvement of the variable-latency 

design can be calculated as follows: if the possibility 

of each input being 1 is 0.5, the possibility of (A4 

XORB4) (A5 XORB5) being 1 is 0.25.  

 

The average latency for the variable-latency design is 

0.75∗5+0.25∗10=6.25. Compared with the simple 

fixed-latency RCA, which has an average latency of 8, 

the variable-latency design can achieve a 28% 

performance improvement. Fig. 5 shows the path delay 

distribution of a 16×16 AM and for both a traditional 

column-bypassing and traditional row-bypassing 

multiplier with 65 536 randomly chosen input patterns. 

All multipliers execute operations on a fixed cycle 

period. The maximum path delay is 1.32 ns for the 

AM, 1.88 ns for the column-bypassing multiplier, and 

1.82 ns for the row-bypassing multiplier.  
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It can be seen that for the AM, more than 98% of the 

paths have a delay of<0.7 ns. Moreover, more than 

93% and 98% of the paths in the FLCB and row-

bypassing multipliers present a delay of <0.9 ns, 

respectively. Hence, using the maximum path delay for 

all paths will cause significant timing waste for shorter 

paths, and redesigning the multiplier with variable 

latency can improve.their performance Another key 

observation is that the path delay for an operation is 

strongly tied to the number of zeros in the 

multiplicands in the column-bypassing multiplier. Fig. 

6 shows the delay distribution of the 16×16 column-

bypassing multiplier under three different numbers of 

zeros in the multiplicands: 1) 6; 2) 8; and 3) 10. Three 

thousand randomly selected patterns are used in each 

experiment. It can be seen as the number of zeros in 

the multiplicands increases, delay distributionis left 

shifted, and average delay is reduced.  

 

The reason for this is the multiplicand is used as the 

select line for column-bypassing multipliers, and if 

more zeros exist in the ,multiplicand, more FAs will be 

skipped, and the sum bit from the upper FA is passed 

to the lower FA, reducing the path delay. Note that 

similar experiments are also done for row-bypassing 

multipliers. However, because the results are similar, 

they are not shown to avoid duplications. For a row-

bypassing multiplier, the multiplicators are used to 

determine whether a pattern needs one cycle or two 

cycles to complete an operation because the 

multiplicator is used as the select line. This makes the 

column-bypassing multiplicand and row-bypassing 

multiplier excellent candidates for the variable latency 

design since we can simply examine the number of 

zeros in the multiplicand or multiplicator to predict 

whether the operation requires one cycle or two cycles 

to complete. 

 

IV. Proposed Aging-Aware Multiplier 

Proposed Architecture: 

Fig. 5 shows our proposed aging-aware multiplier 

architecture, which includes two m-bit inputs (mis a 

positive number), one 2m-bit output, one column- or 

row-bypassing multiplier, 2m1-bit Razor flip-flops 

[27], and an AHL circuit. 

 
Fig. 5. Proposed architecture (md means 

multiplicand; mr means multiplicator). 

 

Hence, the two aging-aware multipliers can be 

implemented using similar architecture, and the 

difference between the two bypassing multipliers lies 

in the input signals of the AHL. According to the 

bypassing selection in the columnor row-bypassing 

multiplier, the input signal of the AHL in the 

architecture with the column-bypassing multiplier is 

the multiplicand, whereas that ofthe row-bypassing 

multiplier is the multiplicator. Razor flip-flops can be 

used to detect Fig. 6. Razor flip flops. whether timing 

violations occur before the next input pattern arrives. 

 
Fig. 6. Razor flip flops 

 

Fig. 6 shows the details of Razor flip-flops. A 1-bit 

Razor flip-flop contains a main flip-flop, shadow 

latch,XORgate, and mux. The main flip-flop catches 

the execution result for the combination circuit using a 

normal clock signal, and the shadow latch catches the 

execution result using a delayed clock signal, which is 

slower than the normal clock signal. If the latched bit 

of the shadow latch is different from that of the main 

flip-flop, this means the path delay of the current 

operation exceeds the cycle period, and the main flip-

flop catches an incorrect result.  
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If errors occur, the Razor flip-flop will set the error 

signal to 1 to notify the system to reexecute the 

operation and notify the AHL circuit that an error has 

occurred. We use Razor flip-flops to detect whether an 

operation that is considered to be a one-cycle pattern 

can really finish in a cycle. If not, the operation is 

reexecuted with two cycles. Although the reexecution 

may seem costly, the overall cost is low because the 

reexecution frequency is low.  

 
Fig. 7. Diagram of AHL (md means multiplicand; 

mr means multiplicator). 

 

The AHL circuit is the key component in the aging-

ware variable-latency multiplier. Fig. 12 shows the 

details of the AHL circuit. The AHL circuit contains 

an aging indicator, two judging blocks, one mux, and 

one D flip-flop. The aging indicator indicates whether 

the circuit has suffered significant performance 

degradation due to  he aging effect. The aging 

indicator is implemented in a simple counter that 

counts the number of errors over a certain amount of 

operations and is reset to zero at the end of those 

operations. If the cycle period is too short, the column- 

or row-bypassing multiplier is not able to complete 

these operations successfully, causing timing 

violations. These timing violations will be caught by 

the Razor flip-flops, which generate error signals. If 

errors happen frequently and exceed a predefined 

threshold, it means the circuit has suffered significant 

timing degradation due to the aging effect, and the 

aging indicator will output signal 1; otherwise, it will 

output 0 to indicate the aging effect is still not 

significant, and no actions are needed. 

 

V.SIMULATION RESULTS: 

 
 

 
 

 
 

 
 

VI.CONCLUSION: 

This paper proposed an aging-aware variable-latency 

multiplier design with the AHL.  



 

  
                                                                                                                                                                                                                    Page 513 

 

The multiplier is able to adjust the AHL  to  mitigate  

performance  degradation  due  to  increased  delay.  

The  experimental  results  show  that  our  proposed  

architecture with  4x4 multiplication with CLA as last 

stage instead of Normal RCA adder it will decrease the 

delay and  improve the performance compared with 

previous designs. 
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