

 Page 90

Implementation of Single Precision Floating Point Multiplier Unit

Using Verilog HDL
J.Ranjani

Department of Electronics &

Communication Engineering,

St. Mary’s College of Engineering

& Technology,

Hyderabad, Telangana-502 319,

India.

K.Aksa Rani

Department of Electronics &

Communication Engineering,

St. Mary’s College of Engineering

& Technology,

Hyderabad, Telangana-502 319,

India.

M.S.Shyam

Department of Electronics &

Communication Engineering,

St. Mary’s College of Engineering

& Technology,

Hyderabad, Telangana-502 319,

India.

ABSTRACT:

Floating point numbers are one possible way of

representing real numbers in binary format; the IEEE

754 standard presents two different floating point

formats, Binary interchange format and Decimal

interchange format. Multiplying floating point

numbers is a critical requirement for DSP applications

involving large dynamic range. This paper focuses

only on single precision normalized binary interchange

format. Shows the IEEE 754 single precision binary

format representation; it consists of a one bit sign (S),

an eight bit exponent (E), and a twenty three bit

fraction (M or Mantissa).

An extra bit is added to the fraction to form what is

called the significand1. If the exponent is greater than

0 and smaller than 255, and there is 1 in the MSB of

the significant then the number is said to be a

normalized number. Multiplying two numbers in

floating point format is done by 1- adding the exponent

of the two numbers then subtracting the bias from their

result, 2- multiplying the significant of the two

numbers, and 3- calculating the sign by XORing the

sign of the two numbers. In order to represent the

multiplication result as a normalized number there

should be 1 in the MSB of the result (leading one).

Floating-point implementation on FPGAs has been the

interest of many researchers.

Keywords:

Floating point number, normalization, exceptions,

overflow, underflow, etc.

I. INTRODUCTION:

Floating point numbers are one possible way of

representing real numbers in binary format; the IEEE

754 [1] standard presents two different floating point

formats, Binary interchange format and Decimal

interchange format. Multiplying floating point

numbers is a critical requirement for DSP applications

involving large dynamic range. This paper focuses

only on single precision normalized binary interchange

format. Fig. 1 shows the IEEE 754 single precision

binary format representation; it consists of a one bit

sign (S), an eight bit exponent (E), and a twenty three

bit fraction (M or Mantissa). An extra bit is added to

the fraction to form what is called the significand1. If

the exponent is greater than 0 and smaller than 255,

and there is 1 in the MSB of the significand then the

number is said to be a normalized number; in this case

the real number is represented by (1)

Figure 1. IEEE single precision floating point

format

Z = (-1S) * 2 (E - Bias) * (1.M)__

Where M = m22 2-1 + m21 2-2 + m20 2-3+…+ m1 2-

22+ m0 2-23;

Bias = 127.

Cite this article as: J.Ranjani, K.Aksa Rani & M.S.Shyam,

"Implementation of Single Precision Floating Point Multiplier Unit

Using Verilog HDL", International Journal & Magazine of

Engineering, Technology, Management and Research, Volume 5,

Issue 1, 2018, Page 90-94.

 Page 91

Multiplying two numbers in floating point format is

done by 1- adding the exponent of the two numbers

then subtracting the bias from their result, 2-

multiplying the significand of the two numbers, and 3-

calculating the sign by XORing the sign of the two

numbers. In order to represent the multiplication result

as a normalized number there should be 1 in the MSB

of the result (leading one). Floating-point

implementation on FPGAs has been the interest of

many researchers. In [2], an IEEE 754 single precision

pipelined floating point multiplier was implemented on

multiple FPGAs .

II. FLOATING POINT MULTIPLIER UNIT:

In this project we present a floating point multiplier in

which rounding support isn’t implemented. Rounding

support can be added as a separate unit that can be

accessed by the multiplier or by a floating point adder,

thus accommodating for more precision if the

multiplier is connected directly to an adder in a MAC

unit. Fig. 2 shows the multiplier structure; Exponents

addition, Significand multiplication, and Result’s sign

calculation are independent and are done in parallel.

The significand multiplication is done on two 24 bit

numbers and results in a 48 bit product, which we will

call the intermediate product (IP). The IP is

represented as (47 downto 0) and the decimal point is

located between bits 46 and 45 in the IP. The

following sections detail each block of the floating

point multiplier

Figure 2. Floating point multiplier block diagram

1) Algorithm:

Figure 2 shows a algorithm flow chart for multiplier.

The mantissa of two numbers are multiplied, and the

exponent are added. For floating-point multiplication,

a easy algorithm is proposed

1. Add the exponents portion and subtract bias portion.

2. Multiply the mantissas portion and calculate the sign

bit.

3. The output will be normalized to the prefer number

of bits.

2) Multiplier Flow:

Multiplication of floating point number can be carried

out in 3 parts [5] In the I st part, the sign product will

be perform a XOR operation. In the 2nd part, the

exponent bits operands are passed to an adder stage

and a bias 127 is subtracted from the output. 8-bit

kogge-stone adder is used for implement the addition

and 2s complement addition for subtraction operations.

Sign Bit Calculation:

Multiplying two numbers results in a negative sign

number If one of the multiplied numbers is of a

negative value. By the aid of a truth table we find that

this can be obtained by XORing the sign of two inputs.

Koggestone Adder:

Kogge stone adder [7] is a related prefix form of carry

look ahead adder. It create the carry in a logarithmic

order. since logarithmic order it fastest adder when

compared to other and also taking extra area but has

lesser fan out at each stage which make better

performance of adder. Order of kogge stone adder is 0

(logn) [8].Figure 3 shows the structure of KoggeStone

adder.

Figure 3: Koggestone adder

 Page 92

In the 3rd stage, find the product of the mantissa

portion and the multiplication of mantissa portion is

carry out in the following steps.

A. Partial product generator:

For a given multiplier [6] there are many ways to

generate partial products. The radix-4 booth

programming was found to be quicker in which we had

found out, so it will be put into operation in the final

multiplier architecture. Twelve partial products are the

output of this stage. Radix 4 booth encoder To recode

the terms, divide it into block of three and in that every

one block overlaps the prior block by one bit. The bits

are grouped from the LSB, and I st block only takes 2

bits of the multiplier for grouping (no prior block to

overlap): Two bits the multiplier have been in use by

the least significant block, and consider a 0 for the

third bit.

B. Partial result accumulator:

The partial result obtained from the proposed

multiplier will be used in the Wallace tree structure

which is 4:2compressors. The propagation carry time

is less in 4:2 compressor technique, used in carry save

adders.

Wallace tree structure:

Partial results is added in Wallace tree which is a new

technique to propagate the carry that is ;sed in the

carry save adders [4]. The 4:2 compressor structures

compresses five partial products bits into three. Figure

4 shows the block diagram for the data distribution

among a tree architecture that utilizes 4:2 compressors.

Figure 4.Data distribution among tree architecture

Each packet consists of the bits that fed into a 4:2

compressor group. The partial products result can be

reduce by ratio of 2: 1 for two stages of 4:2

compressors. Figure 5 show the cutback tree of 8

partial products to form two operands, added in to

form a final product by using a speedy carry propagate

adder.

C. Final stage adder:

The products of mantissas are specified by the 48-bit

sum and carry outputs obtained from the partial

product are added in the final stage adder. This stage

adders should have a small amount delay and high

speed. After research, comparing and implementing

the power and delay uniqueness of various adders, we

found out that the KoggeStone adder is the fastest

among of all the adder.

D. Normalization and rounding:

The product of mantissas is normalized and round off.

The excess one is detected and the exponent is

adjusted for normalization. We are reducing the

implied bit which is foremost one [3]. The left over

bits are reduced to a 26-bit value. For precision a few

extra bits is added to the reduced value. The reduced

value is finally rounded off using the rounding to

nearest value to give the 23 bit mantissa of the product.

A zero detect block is used in the multiplier

architecture to avoid unnecessary calculations of zero

in the input.

UNDERFLOW/OVERFLOW DETECTION:

Overflow/underflow means that the result’s exponent

is too large/small to be represented in the exponent

field. The exponent of the result must be 8 bits in size,

and must be between 1 and 254 otherwise the value is

not a normalized one. An overflow may occur while

adding the two exponents or during normalization.

Overflow due to exponent addition may be

compensated during subtraction of the bias; resulting

in a normal output value (normal operation). An

underflow may occur while subtracting the bias to

form the intermediate exponent.

 Page 93

If the intermediate exponent < 0 then it’s an underflow

that can never be compensated; if the intermediate

exponent = 0 then it’s an underflow that may be

compensated during normalization by adding 1 to it.

When an overflow occurs an overflow flag signal goes

high and the result turns to ±Infinity (sign determined

according to the sign of the floating point multiplier

inputs). When an underflow occurs an underflow flag

signal goes high and the result turns to ±Zero (sign

determined according to the sign of the floating point

multiplier inputs). Denormalized numbers are signaled

to Zero with the appropriate sign calculated from the

inputs and an underflow flag is raised. Assume that E1

and E2 are the exponents of the two numbers A and B

respectively; the result’s exponent is calculated by (6)

Eresult = E1 + E2 - 127 (6)

E1 and E2 can have the values from 1 to 254; resulting

in Eresult having values from -125 (2-127) to 381

(508-127); but for normalized numbers, Eresult can

only have the values from 1 to 254.

III. PIPELINING THE MULTIPLIER:

In order to enhance the performance of the multiplier,

three pipelining stages are used to divide the critical

path thus increasing the maximum operating frequency

of the multiplier.

The pipelining stages are imbedded at the following

locations:

1. In the middle of the significand multiplier, and in

the middle of the exponent adder (before the bias

subtraction).

2. After the significand multiplier, and after the

exponent adder.

3. At the floating point multiplier outputs (sign,

exponent and mantissa bits).

Figure 5 shows the pipelining stages as dotted lines.

Three pipelining stages mean that there is latency in

the output by three clocks. The synthesis tool

“retiming” option was used so that the synthesizer uses

its optimization logic to better place the pipelining

registers across the critical path.

IV. RESULTS:

Figure 6. Simulation results for Floating point

multiplication

Here

a=11.2(41333333(Hexadecimal)) and

b=15.6(4179999a(Hexadecimal) then result

y=174.72(432EB852(Hexadecimal).

Figure 7 Top module Schematic of FPMUL

 Page 94

V. CONCLUSION:

This paper presents an implementation of a floating

point multiplier that supports the IEEE 754-2008

binary interchange format; the multiplier doesn’t

implement rounding and just presents the significand

multiplication result as is (48 bits); this gives better

precision if the whole 48 bits are utilized in another

unit; i.e. a floating point adder to form a MAC unit.

The design has three pipelining stages and after

implementation.

REFERENCES:

[l] Anna Jain, Baisakhy Dash, Ajit Kumar

Panda,"FPGA Design of a Fast 32-bit Floating Point

Multiplier Unit", International Conference on Devices

Circuits and Systems(lCDCS)-2012.

[2] BJeevan, S.Narender, Dr.C.V Krishna Reddy,

K.Sivani, "A high speed binary floating point

multiplier using Dadda algorithm" Automation

Computing , Communication, Control and Compressed

sensing - International Multi Conference -2013

[3] Mohammed AI Ashrafy, Asharf Salem, Wagdy

Anis, "An efficient implementation of floating point

multiplier" Electronics, Communications and

Photonics Conference (SIECPC)-2012

[4] Jung-Yup Kang, Jean-Luc Gaudiot, "A Simple

High Speed Multiplier" IEEE Transactions On

Computers, Vol. 55, No. 10, October 2006

[5] S.Paschalakis, P.Lee, "Double Precision Floating-

Point Arithmetic on FPGAs", In Proc. 2003, 2nd IEEE

International Conference on Field Programmable

Technology (FPT '03), Tokyo, Japan, Dec. 15-17,

pp.352-358, 2003.

[6] Hamacher, Carl, Vranesic, Zvonko, Zaky, SafWat,

"Computer Organization" Fifth Edition, pp. 367-390.

[7] Neil H Weste, David Harris,Ayan Bamujee,

"CMOS VLSI DESIGN", Pearson Education,3'd

Edition,2009

[8] Gong Renxi, Zhang Hainan, Meng Xiaobi,Gong

Wenying, "Hardware Implementation of a High Speed

Floating Point Multiplier Based on FPGA,"2009 4th

International Conference on Computer Science &

Education.

