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ABSTRACT: 

Floating point numbers are one possible way of 

representing real numbers in binary format; the IEEE 

754 standard presents two different floating point 

formats, Binary interchange format and Decimal 

interchange format. Multiplying floating point 

numbers is a critical requirement for DSP applications 

involving large dynamic range. This paper focuses 

only on single precision normalized binary interchange 

format. Shows the IEEE 754 single precision binary 

format representation; it consists of a one bit sign (S), 

an eight bit exponent (E), and a twenty three bit 

fraction (M or Mantissa).  

 

An extra bit is added to the fraction to form what is 

called the significand1. If the exponent is greater than 

0 and smaller than 255, and there is 1 in the MSB of 

the significant then the number is said to be a 

normalized number. Multiplying two numbers in 

floating point format is done by 1- adding the exponent 

of the two numbers then subtracting the bias from their 

result, 2- multiplying the significant of the two 

numbers, and 3- calculating the sign by XORing the 

sign of the two numbers. In order to represent the 

multiplication result as a normalized number there 

should be 1 in the MSB of the result (leading one). 

Floating-point implementation on FPGAs has been the 

interest of many researchers. 
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I. INTRODUCTION: 

Floating point numbers are one possible way of 

representing real numbers in binary format; the IEEE 

754 [1] standard presents two different floating point 

formats, Binary interchange format and Decimal 

interchange format. Multiplying floating point 

numbers is a critical requirement for DSP applications 

involving large dynamic range. This paper focuses 

only on single precision normalized binary interchange 

format. Fig. 1 shows the IEEE 754 single precision 

binary format representation; it consists of a one bit 

sign (S), an eight bit exponent (E), and a twenty three 

bit fraction (M or  Mantissa). An extra bit is added to 

the fraction to form what is called the significand1. If 

the exponent is greater than 0 and smaller than 255, 

and there is 1 in the MSB of the significand then the 

number is said to be a normalized number; in this case 

the real number is represented by (1) 

 
Figure 1. IEEE single precision floating point 

format 

Z = (-1S) * 2 (E - Bias) * (1.M)__ 

Where M = m22 2-1 + m21 2-2 + m20 2-3+…+ m1 2-

22+ m0 2-23; 

Bias = 127. 
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Multiplying two numbers in floating point format is 

done by 1- adding the exponent of the two numbers 

then subtracting the bias from their result, 2- 

multiplying the significand of the two numbers, and 3- 

calculating the sign by XORing the sign of the two 

numbers. In order to represent the multiplication result 

as a normalized number there should be 1 in the MSB 

of the result (leading one). Floating-point 

implementation on FPGAs has been the interest of 

many researchers. In [2], an IEEE 754 single precision 

pipelined floating point multiplier was implemented on 

multiple FPGAs . 

 

II. FLOATING POINT MULTIPLIER UNIT: 

In this project  we present a floating point multiplier in 

which rounding support isn’t implemented. Rounding 

support can be added as a separate unit that can be 

accessed by the multiplier or by a floating point adder, 

thus accommodating for more precision if the 

multiplier is connected directly to an adder in a MAC 

unit. Fig. 2 shows the multiplier structure; Exponents 

addition, Significand multiplication, and Result’s sign 

calculation are independent and are done in parallel. 

The significand multiplication is done on two 24 bit 

numbers and results in a 48 bit product, which we will 

call the intermediate product (IP). The IP is 

represented as (47 downto 0) and the decimal point is 

located between bits 46 and 45 in the IP. The 

following sections detail each block of the floating 

point multiplier 

 
Figure 2. Floating point multiplier block diagram 

1) Algorithm: 

Figure 2 shows a algorithm flow chart for multiplier. 

The mantissa of two numbers are multiplied, and the 

exponent are added. For floating-point multiplication, 

a easy algorithm is proposed 

1. Add the exponents portion and subtract bias portion. 

2. Multiply the mantissas portion and calculate the sign 

bit. 

3. The output will be normalized to the prefer number 

of bits. 

 

2) Multiplier Flow: 

Multiplication of floating point number can be carried 

out in 3 parts [5] In the I st part, the sign product will 

be perform a XOR operation. In the 2nd part, the 

exponent bits operands are passed to an adder stage 

and a bias 127 is subtracted from the output. 8-bit 

kogge-stone adder is used for implement the addition 

and 2s complement addition for subtraction operations. 

 

Sign Bit Calculation: 

Multiplying two numbers results in a negative sign 

number If one of the multiplied numbers is of a 

negative value. By the aid of a truth table we find that 

this can be obtained by XORing the sign of two inputs. 

 

Koggestone Adder: 

Kogge stone adder [7] is a related prefix form of carry 

look ahead adder. It create the carry in a logarithmic 

order. since logarithmic order it fastest adder when 

compared to other and also taking extra area but has 

lesser fan out at each stage which make better 

performance of adder. Order of kogge stone adder is 0 

(logn) [8].Figure 3 shows the structure of KoggeStone 

adder. 

 
Figure 3: Koggestone adder 
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In the 3rd stage, find the product of the mantissa 

portion and the multiplication of mantissa portion is 

carry out in the following steps.  

 

A. Partial product generator: 

For a given multiplier [6] there are many ways to 

generate partial products. The radix-4 booth 

programming was found to be quicker in which we had 

found out, so it will be put into operation in the final 

multiplier architecture. Twelve partial products are the 

output of this stage. Radix 4 booth encoder To recode 

the terms, divide it into block of three and in that every 

one block overlaps the prior block by one bit. The bits 

are grouped from the LSB, and I st block only takes 2 

bits of the multiplier for grouping (no prior block to 

overlap): Two bits the multiplier have been in use by 

the least significant block, and consider a 0 for the 

third bit. 

 
B. Partial result accumulator: 

The partial result obtained from the proposed 

multiplier will be used in the Wallace tree structure 

which is 4:2compressors. The propagation carry time 

is less in 4:2 compressor technique, used in carry save 

adders. 

 

Wallace tree structure: 

Partial results is added in Wallace tree which is a new 

technique to propagate the carry that is ;sed in the 

carry save adders [4]. The 4:2 compressor structures 

compresses five partial products bits into three. Figure 

4 shows the block diagram for the data distribution 

among a tree architecture that utilizes 4:2 compressors. 

 
Figure 4.Data distribution among tree architecture 

Each packet consists of the bits that fed into a 4:2 

compressor group. The partial products result can be 

reduce by ratio of 2: 1 for two stages of 4:2 

compressors. Figure 5 show the cutback tree of 8 

partial products to form two operands, added in to 

form a final product by using a speedy carry propagate 

adder. 

 

C. Final stage adder: 

The products of mantissas are specified by the 48-bit 

sum and carry outputs obtained from the partial 

product are added in the final stage adder. This stage 

adders should have a small amount delay and high 

speed. After research, comparing and implementing 

the power and delay uniqueness of various adders, we 

found out that the KoggeStone adder is the fastest 

among of all the adder. 

 

D. Normalization and rounding: 

The product of mantissas is normalized and round off. 

The excess one is detected and the exponent is 

adjusted for normalization. We are reducing the 

implied bit which is foremost one [3]. The left over 

bits are reduced to a 26-bit value. For precision a few 

extra bits is added to the reduced value. The reduced 

value is finally rounded off using the rounding to 

nearest value to give the 23 bit mantissa of the product. 

A zero detect block is used in the multiplier 

architecture to avoid unnecessary calculations of zero 

in the input. 

 

UNDERFLOW/OVERFLOW DETECTION: 

Overflow/underflow means that the result’s exponent 

is too large/small to be represented in the exponent 

field. The exponent of the result must be 8 bits in size, 

and must be between 1 and 254 otherwise the value is 

not a normalized one. An overflow may occur while 

adding the two exponents or during normalization. 

Overflow due to exponent addition may be 

compensated during subtraction of the bias; resulting 

in a normal output value (normal operation). An 

underflow may occur while subtracting the bias to 

form the intermediate exponent.  
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If the intermediate exponent < 0 then it’s an underflow 

that can never be compensated; if the intermediate 

exponent = 0 then it’s an underflow that may be 

compensated during normalization by adding 1 to it. 

When an overflow occurs an overflow flag signal goes 

high and the result turns to ±Infinity (sign determined 

according to the sign of the floating point multiplier 

inputs). When an underflow occurs an underflow flag 

signal goes high and the result turns to ±Zero (sign 

determined according to the sign of the floating point 

multiplier inputs). Denormalized numbers are signaled 

to Zero with the appropriate sign calculated from the 

inputs and an underflow flag is raised. Assume that E1 

and E2 are the exponents of the two numbers A and B 

respectively; the result’s exponent is calculated by (6) 

 

Eresult = E1 + E2 - 127              (6) 

 

E1 and E2 can have the values from 1 to 254; resulting 

in Eresult having values from -125 (2-127) to 381 

(508-127); but for normalized numbers, Eresult can 

only have the values from 1 to 254. 

 

III. PIPELINING THE MULTIPLIER: 

In order to enhance the performance of the multiplier, 

three pipelining stages are used to divide the critical 

path thus increasing the maximum operating frequency 

of the multiplier. 

 

The pipelining stages are imbedded at the following 

locations: 

1. In the middle of the significand multiplier, and in 

the middle of the exponent adder (before the bias 

subtraction). 

 

2. After the significand multiplier, and after the 

exponent adder. 

 

3. At the floating point multiplier outputs (sign, 

exponent and mantissa bits). 

 

 
Figure 5 shows the pipelining stages as dotted lines. 

 

Three pipelining stages mean that there is latency in 

the output by three clocks. The synthesis tool 

“retiming” option was used so that the synthesizer uses 

its optimization logic to  better place the pipelining 

registers across the critical path. 

 

IV. RESULTS: 

 
Figure 6. Simulation results for Floating point 

multiplication 

 

Here 

a=11.2(41333333(Hexadecimal)) and  

b=15.6(4179999a(Hexadecimal) then result  

y=174.72(432EB852(Hexadecimal). 

 
Figure 7 Top module Schematic of FPMUL 
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V. CONCLUSION: 

This paper presents an implementation of a floating 

point multiplier that supports the IEEE 754-2008 

binary interchange format; the multiplier doesn’t 

implement rounding and just presents the significand 

multiplication result as is (48 bits); this gives better 

precision if the whole 48 bits are utilized in another 

unit; i.e. a floating point adder to form a MAC unit. 

The design has three pipelining stages and after 

implementation. 
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