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ABSTRACT 

The production of better power droop (PD) during at-

speed analysis conducted by Logic Built-In Self test 

(LBIST) is a big problem for latest ICs. In fact, the PD 

based during analysis may lag signal transitions of the 

circuit under test (CUT): an aftereffect that may be 

afield accustomed as delay faults, with consistent 

erroneous production of analysis fails and increase in 

yield loss. In this paper, we addressed a atypical 

scalable access to compress the PD during at-speed 

analysis of sequential circuits with scan-based LBIST 

application the launch-oncapture method. This is 

accomplished by decreasing the action factor of the 

CUT, by able changing of the test vectors produced by 

the LBIST of sequential ICs. Our scalable solution 

allows us to abate PD to a value same as that occurring 

at the time of CUT in field work, without multiplying 

the amount of test vectors needed to accomplish 

required fault coverage (FC). 

 

INTRODUCTION 

The advancing ascent of microelectronic technology is 

enabling the artifact of added circuitous ICs. Together 

with several allowances (improved performance, 

decreased amount per function, etc.), this poses austere 

challenges in agreement of analysis and believability [1]. 

In particular, during at-speed analysis of high-

performance microprocessors, the IC action agency (AF) 

induced by the activated analysis vectors is decidedly 

college than that accomplished during in acreage 

operation [2]. Consequently, boundless ability bend (PD) 

may be generated, which will apathetic down the ambit 

beneath analysis (CUT) arresting transitions. This 

abnormality is acceptable to be afield accustomed as due 

to adjournment faults. 

 

As a result, a apocryphal analysis abort will be 

generated, with consistent access in crop accident [3].At-

speed analysis of argumentation blocks is nowadays 

frequently performed application Argumentation BIST 

(LBIST) [4], which can yield the anatomy of either 

combinational LBIST or scan-based LBIST, depending 

on whether the CUT is a combinational ambit or a 

consecutive one with browse [5, 6], 

 

In case of scan-based LBIST, two basal capture-clocking 

schemes abide: 

the launch-on-shift (LOS) arrangement and
 

the launch-on-capture (LOC) scheme
 

In LOS schemes, analysis vectors are activated to the 

CUT at the endure alarm (CK) of the about-face phase, 

and the CUT acknowledgment is sampled on the browse 

chains at the afterward abduction CK. In the LOC 

scheme, instead, analysis vectors are aboriginal loaded 

into the scan-chains during the about-face phase; then, in 

a afterward abduction phase, they are aboriginal 

activated to the CUT at a barrage CK, and the CUT 

acknowledgment is captured on the browse chains in a 

afterward abduction CK [7, 8]. 

 

In this paper, we accede the case of consecutive CUTs 

with scan-based LBIST adopting an LOC scheme, which 

is frequently adopted for high-performance 

microprocessors. They ache from the PD problems 

discussed above, abnormally during the abduction phase, 

due to the top AF of the CUT induced by the activated 

analysis patterns. 
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Solutions acceptance designers to abate PD during the 

abduction appearance in scan-based LBIST are 

accordingly needed. While several approaches accept 

been proposed to abate PD for combinational LBIST, 

alone a few solutions abide for scan-based LBIST. In [2], 

PD is bargain by a multicycle BIST arrangement with 

fractional observation. This access does not appulse on 

accountability advantage (FC) (actually, it presents a 

slight FC access of 5% compared with accepted scan-

based-LBIST), but enables abridgement of PD by 33% 

only, compared with accepted scan-based-LBIST. 

 

PROPOSED ARCHITECTURE 

 
Fig 1: Block diagram illustrating presented method 

 

The method presented in this paper is similar to the 

traditional scan design in that is provides a simple way 

of setting and observing each flip-flop in a circuit. 

However, unlike in scan, we do not connect flip-flops in 

scan chains. Instead, to support the test mode, we modify 

the original FSR as follows 

1) The input of the original flip flop becomes the 

functional input of the multiplexer (MUX). The test 

input of MUX is connected to the Test Pattern Generator 

(TPG). 

2) The duplicated output is connected to the Test 

Response Analyzer (TRA) through a switch. When the 

test mode is selected, the flip-flops with multiplexed 

inputs become inputs to the combinational logic. The 

flip-flops which have a switch on the output become 

outputs of the combinational logic. As in a scan design, 

this increases controllability and observability, making 

possible testing a sequential circuit with tests for 

combinational logic. 

 
Fig 2: Modifications of FSR flip-flops to support test 

mode. 

Note that such a technique does not affect the 

propagation delay of the original circuit. In the 

traditional scan, the propagation delay is always 

increased by the delay of a MUX. We add MUX’es only 

to the controllable cells, whose feedback functions are 

trivial. Therefore, the propagation delay is still 

determined by the observable cells, whose feedback 

functions are non-trivial. 

The following signals are added to the FSR to control 

and observe its cells: 

1) Test in enable signal controls the application of test 

vectors. When it is asserted, controllable cells are 

connected to the TPG and TPG is connected to the clock. 

Otherwise, controllable cells are connected to their 

predecessor cells and TPG is not connected to the clock. 

2) Test out enable signal controls output response 

analysis. When it is asserted, observable cells are 

connected to both the TRA and their successor cells and 

TRA is connected to the clock. Otherwise, observable 

cells are connected to their successor cells only, and 

TRA is not connected to the clock. 

For each observable cell i, the value at the test output is 

compared to the expected value of fi using an XOR gate. 

The outputs of all XORs are fed into an OR gate the 

output of which indicates the presence/absence of a fault. 

 
Fig 3: The structure of the TRA 
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Detecting faults in the combinational logic 

1) Assert the test in enable signal to connect test inputs 

of controllable cells controllable cells to the TPG. 

2) Apply one clock to load the test vector ti 2 T, i 2 

{1,2, . . . ,k+3}, from the TPG to all controllable cells in 

parallel. 

3) Apply one clock to evaluate the non-trivial feedback 

functions for the input assignment defined by ti. The 

resulting output responses are captured at the observable 

cells. At the same clock cycle, the next test vector ti+1 

from T is loaded from the TPG to the controllable cells. 

4) Assert the test out enable signal to connect test 

outputs of observable cells to the TRA. 

5) Apply one clock to upload the responses to ti from all 

observable cells to the TRA in parallel. The TRA 

compares the computed responses to the expected 

responses. If they agree, TRA outputs ”passed”. 

Otherwise, it outputs ”not passed”. At the same clock 

cycle, non-trivial feedback functions are evaluated for 

the input assignment defined by ti+1. The resulting 

output responses are captured at the observable cells. 

The next test vector ti+2 from T is loaded from TPG to 

the controllable cells. 

6) Repeat the steps 2, 3 and 5 until all test vectors from T 

are applied. 

This Procedure completes the application of all tests 

from T and evaluation of all output responses in k+5 

clock cycles. 

 

Detecting remaining faults in FSR 

1) Set the test out enable signal low to disconnect test 

outputs of observable cells from the TRA. 

2) Assert the test in enable signal to connect test inputs 

of controllable cells to the TPG. 

3) Apply one clock to load the test vector t1 2 T1 from 

the TPG into all controllable cells in parallel. 

4) Repeat d−1 times: Apply one clock to evaluate the 

non-trivial feedback functions for the input assignment 

defined by t1. The resulting output responses are 

captured at the observable cells. All internal cells capture 

the value of their predecessors. At the same clock cycle, 

the same test vector t1 from T is loaded again from the 

TPG to the controllable cells. 

5) Set the test in enable signal low to connect functional 

inputs of controllable cells to their predecessors. 

6) Apply one clock to capture the value of the 

predecessors of controllable cells into the controllable 

cells. 

7) Apply one clock to evaluate the non-trivial feedback 

functions for the input assignment defined by the 

controllable cells. The resulting output responses are 

captured at the output flip-flops. 

8) Assert the test out enable signal to connect test 

outputs of observable cells to the TRA. 

9) Apply one clock to upload the responses from all 

observable cells to the TRA in parallel. The TRA 

compares the computed responses to the expected 

responses. If the two responses agree, 

10) Repeat the steps 1-9 for the test vector t2 € T1. 

This Procedure completes the application of tests and 

evaluation of all output responses in 2d+6 clock cycles. 

 

Detection of faults in the TPG 

Consider the case when a single stuck-at fault occurs of 

the output j of the TPG, j 2 {0E,0D,1, . . .,k}. Such a 

fault will manifest itself as a multiple stuck-at fault at the 

controllable cells connected to the output j. Since none 

of the state variables occurs in more than one ANF, each 

faulty input will affect only one fi. Therefore, the change 

in values caused by the fault will not be cancelled out 

and the fault will be detected by the Procedure 1. 

 

Detection of faults in the TRA 

TRA stores the expected responses to the tests and 

compares them to the computed responses. We have 

shown in the previous Section that for T2 the expected 

responses may differ for functions whose dependence set 

have different sizes. In the worse case, all non-trivial 

functions may have dependence sets of different sizes. 

Then, in order to store the expected responses, we need 

(k+3)×m bits, where m is the number of non-trivial 

feedback functions. 

Note that the TRA circuit shown in Fig.3.4 handles not 

only single stuck-at faults in the FSR, but also single 

stuck-at faults which occurs in the TRA itself, except the 

stuck-at-0 and stuck-at-1 fault at the output of the OR 
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gate. To allow for detection of these faults, the OR gate 

can be duplicated. 

 

Proposed Model with CUT 

 
Fig 4: Proposed Model with CUT 

 

Test Pattern Generator (TPG) 

This module generates the test patterns required to 

sensitize the faults and propagate the effect to the outputs 

(of the CUT). As the test pattern generator is a circuit 

(not equipment) its area is limited. So storing and then 

generating test patterns obtained by ATPG algorithms on 

the CUT using the hardware test pattern generator is not 

feasible. In other words, the test pattern generator cannot 

be a memory where all test patters obtained by running 

ATPG algorithms (or random pattern generation 

algorithms) on the CUT are stored and applied during 

execution of the BIST. Instead, the test pattern generator 

is basically a type of register which generates random 

patterns which act as test patterns. The main emphasis of 

the register design is to have low area yet generate as 

many different patterns (from 0 to 2n, if there are n flip-

flops in the register) as possible. 

 

The proposed low power LFSR technique uses bit 

swapping technique to reduce the peak power. By 

connecting multiplexers on the LFSR register. The 

numbers of transitions are decreased for that cell which 

are under bit swapping. The number of transitions in 

each register in LFSR without applying bit swapping 

technique here two cells in an nbit LFSR are considered 

to be adjacent if the output of one cell feeds the input of 

the second directly (i.e., without an intervening XOR 

gate). Each cell in a maximal-length n-stage LFSR 

(internal or external) will produce a number of 

transitions equal to 2n-1 after going through a sequence 

of 2n clock cycles. 

 

The sequence of 1s and 0s that is followed by one bit 

position of a maximal-length LFSR is commonly 

referred to as an m sequence. Each bit within the LFSR 

will follow the same m sequence with a one-time-step 

delay. The m-sequence generated by an LFSR of length 

n has a periodicity of 2n-1. It is a well-known standard 

property of an m-sequence of length n that the total 

number of runs of consecutive occurrences of the same 

binary digit is 2n-1.The beginning of each run is marked 

by a transition between 0 and 1.Therefore, the total 

number of transitions for each stage of the LFSR is 2n-1. 

 

Test Response Analysis (TRA): It analyses the value 

sequence on PO and compares it with the expected 

output. 

 

BIST Controller Unit (BCU): 

It controls the test execution; it manages the TPG, TRA 

and reconfigures the CUT and the multiplexer. 

Basic BIST architecture includes functions which are 

necessary to execute the self-testing feature so that 

testing is accomplished without the aid of external 

hardware. It has two major components named Hardware 

or Test Pattern Generator (TPG) and Output Response 

Compacter or Analyzer (ORA). 

 

The TPG produces a sequence of patterns for testing the 

Circuit Under Test (CUT) while the ORA compacts the 

output responses of the CUT into some type of pass/fail 

indication which decides good or faulty result. The other 

two functions needed for system-level use of BIST 

include the test controller and input MUX. Besides the 

normal input/output (I/O) pins, the incorporation of 

BIST may also require additional I/O pins for activating 

the BIST sequence and to give valid results. The input 

test patterns can be stored in a Read Only Memory 

(ROM). Expected responses are read from ORA ROM 

and are compared to the actual output response of the 

CUT for each test vector. Any mismatch detected by the 
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comparator is latched to indicate a failure has occurred 

during the BIST sequencing.  

 

Circuit under Test (CUT): 

It is the portion of the circuit tested in BIST mode. It can 

be sequential, combinational or a memory. It is delimited 

by their Primary Input (PI) and Primary Output (PO). 

 

In CUT we are using UART (Universal Asynchronous 

receiver/Transmitter). Serial data is transmitted via its 

serial port. A serial port is one of the most universal 

parts of a computer. It is a connector where serial line is 

attached and connected to peripheral devices such as 

mouse, modem, and printer and even to another 

computer. In contrast to parallel communication, these 

peripheral devices communicate using a serial bit 

stream. 

 

Design with BIST Capability protocol (where data is 

sent one bit at a time). The serial port is usually 

connected to UART, an integrated circuit which handles 

the conversion between serial and parallel data. 

 
Fig 5: BISR Architecture 

 

BASIC ARCHITECTURE 

The basic architecture of a static RAM includes one or 

more rectangular arrays of memory cells with support 

circuitry to decode addresses, and implement the 

required read and write operations. Additional support 

circuitry used to implement special features, such as 

burst operation, may also be present on the chip. Figure 

shows a basic block diagram of a synchronous SRAM. 

As you read, you may wish to refer to the diagram to 

help you visualize how the SRAM works. 

 
Fig 6: Basic Architecture 

 

Memory Arrays: 

SRAM memory arrays are arranged in rows and columns 

of memory cells called word lines and bit lines, 

respectively. In IBM SRAMs, the word lines are made 

from poly silicon while the bit lines are metal. Each 

memory cell has a unique location or address defined by 

the intersection of a row and column. Each address is 

linked to a particular data input/output pin. The number 

of arrays on a memory chip is determined by the total 

size of the memory, the speed at which the memory must 

operate layout and testing requirements, and the number 

of data I /Os on the chip. 

 

Memory Cell: 

An SRAM memory cell is a bi-stable flip-flop made up 

of four to six transistors. The flip-flop may be in either 

of two states that can be interpreted by the support 

circuitry to be a 1 or a 0. Many of the SRAMs on the 

market use a four transistor cell with a poly silicon load. 

Suitable for medium to high performance, this design has 

a relatively high leakage current, and consequently high 

standby current. Four transistor designs may also be 

more susceptible to various types of radiation induced 

soft errors. IBM's SRAMs all use a six transistor 

memory cell (also called a six-device cell) that is highly 

stable, relatively impervious to soft errors, and has low 

leakage and standby currents. 
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BIAA 

 
Fig 7: BIAA Architecture 

 

If The BISR_H=0 then initially BIAA stores 0 address 

when the compare_h=0 then comparator can take 

address from the mux and directly it will given to the 

counter. If The BISR_H=1 then counter increments the 

values from 0 t0 8 why because in the bist comparator 

and test_v_ram having 0 t0 8 addresses only. 

 

The proposed SRAM BISR strategy is flexible. The 

SRAM users can decide whether to use it by setting a 

signal. So the redundancy of the SRAM is designed to be 

selectable. In another word, some normal words in 

SRAM can be selected as redundancy if the SRAM 

needs to repair itself. We call these words Normal-

Redundant words to distinguish them from the real 

normal ones. We take a 64 × 4 SRAM for example, as 

shown in Figure 1. There are 60 normal words and 4 

Normal-Redundant words. When the BISR is used, the 

Normal-Redundant words are accessed as normal ones. 

Otherwise, the Normal-Redundant words can only be 

accessed when there are faults in normal words. In this 

case, the SRAM can only offer capacity of 60 words to 

users. This should be referred in SRAM manual in 

details. 

 

BISR PROCEDURE 

Figure 8 shows the proposed BISR block diagram. The 

BISR starts by resetting the system (rst_l = 0). After that 

if the system work in test mode, it goes into TEST phase. 

During this phase, the BIST module and BIAA module 

work in parallel. 

 
Fig 8: Block Diagram of BISR 

 

The BIST use March C- to test the normal addresses of 

SRAM. As long as any fault is detected by the BIST 

module, the faulty address will be sent to the BIAA 

module. Then the BIAA module checks whether the 

faulty address has been already stored in Fault-A-Mem. 

If the faulty address has not been stored, the BIAA stores 

it and the faulty address counter adds 1. Otherwise, the 

faulty address can be ignored. When the test is 

completed, there will be two conditions. If there is no 

fault or there are too many faults that overflow the 

redundancy capacity, BISR goes into COMPLETE 

phase. If there are faults in SRAM but without 

overflows, the system goes into REPAIR&TEST phase. 

The same as during TEST phase, the BIST module and 

BIAA module work at the same time in REPAIR&TEST 

phase. The BIAA module replaces the faulty addresses 

stored in Fault-A-Mem with redundant ones and the 

BIST module tests the SRAM again. There will be two 

results: repair fail or repair pass. By using the BISR, the 

users can pick out the SRAMs that can be repaired with 

redundancy or the ones with no fault. 

 

BISR Features 

Firstly, the BISR strategy is flexible. TABLE I lists the 

operation modes of SRAM. In access mode, SRAM 

users can decide whether the BISR is used base on their 

needs. If the BISR is needed, the Normal-Redundant 

words will be taken as redundancy to repair fault. If not, 

they can be accessed as normal words. 



 
 

 Page 87 
 

TABLE 1: SRAM OPERATION MODES 

 
Secondly, the BISR strategy is efficient. On one hand, 

the efficiency reflects on the selectable redundancy 

which is described as flexible above. No matter the BISR 

is applied or not, the Normal-Redundant words are used 

in the SRAM. It saves area and has high utilization. On 

the other hand, each fault address can be stored only 

once into Fault-A-Mem. As said before, March C- has 6 

steps. In another word, the addresses will be read 5 times 

in one test. Some faulty addresses can be detected in 

more than one step. Take Stuckat- 0 fault for example, it 

can be detected in both 3rd and 5
th
 steps. But the fault 

address shouldn’t be stored twice. So we propose an 

efficient method to solve the problem in BIAA module. 

 

Figure 3.4 shows the flows of storing fault addresses. 

BIST detects whether the current address is faulty. If it 

is, BIAA checks whether the Fault-A-Mem overflows. If 

not, the current fault address should be compared with 

those already stored in Fault-A-Mem. Only if the faulty 

address isn’t equal to any address in Fault-A-Mem, it can 

be stored. To simplify the comparison, write a redundant 

address into Fault-A-Mem as background. In this case, 

the fault address can be compared with all the data stored 

in Fault-A-Mem no matter how many fault addresses 

have been stored. 

 
Fig 9: Flows of Storing Fault Addresses 

At last, the BISR strategy is high-speed. Once a fault 

address is stored in Fault-A-Mem, it points to a certain 

redundant address. The fault addresses and redundant 

ones form a one-to-one mapping. Using this method, the 

BISR can quickly get the corresponding redundant 

address to replace the faulty one. 

 

RESULTS AND ANALYSIS 

In this initially we can give rst=0 then we are not getting 

any output we can get xxxx and also we can give 

tm_nm=0 then the circuit works under normal mode 

condition means output depends on user giving input. 

 
Fig 10: Simulation Result for top module 

(rst=0,tm_nm=0) 

 
Fig 11: Simulation Result for top module 

(rst=1,tm_nm=0) 

In this we can change rst=1 then we are not getting any 

output we can get xxxx because of CUT. In CUT we can 

get output when baud_div value reaches to 9,600 bps 

means we can give baud_div=4’h000f. 

 
Fig 12: Simulation Result for top module 

(rst=1,tm_nm=1) 
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Fig 13: Simulation Results for BISR rst=0(rd=0, 

wr=1) 

 
Fig 14: Simulation Results for BISR rst=1(rd=1, 

wr=0) 

 

CONCLUSION 

An efficient BISR strategy for SRAM IP with selectable 

redundancy has been presented in this paper. It is 

designed flexible that users can select operation modes 

of SRAM. The BIAA module can avoid storing fault 

addresses more than once and can repair fault address 

quickly. The function of BISR has been verified by the 

post simulation. The BISR can work at up to 150MHz at 

the expense of 20% greater area. 
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