

 Page 81

Scan Based Built-In Self-Repair (BISR) For Embedded Memories

B. Navya

Department of Electronics &

Communication Engineering,

HITAM, Hyderabad, Telangana-

502401, India.

K. Bindumadhavi

Department of Electronics &

Communication Engineering,

HITAM, Hyderabad, Telangana-

502401, India.

K. Anil Kumar

Department of Electronics &

Communication Engineering,

HITAM, Hyderabad, Telangana-

502401, India.

ABSTRACT

The production of better power droop (PD) during at-

speed analysis conducted by Logic Built-In Self test

(LBIST) is a big problem for latest ICs. In fact, the PD

based during analysis may lag signal transitions of the

circuit under test (CUT): an aftereffect that may be

afield accustomed as delay faults, with consistent

erroneous production of analysis fails and increase in

yield loss. In this paper, we addressed a atypical

scalable access to compress the PD during at-speed

analysis of sequential circuits with scan-based LBIST

application the launch-oncapture method. This is

accomplished by decreasing the action factor of the

CUT, by able changing of the test vectors produced by

the LBIST of sequential ICs. Our scalable solution

allows us to abate PD to a value same as that occurring

at the time of CUT in field work, without multiplying

the amount of test vectors needed to accomplish

required fault coverage (FC).

INTRODUCTION

The advancing ascent of microelectronic technology is

enabling the artifact of added circuitous ICs. Together

with several allowances (improved performance,

decreased amount per function, etc.), this poses austere

challenges in agreement of analysis and believability [1].

In particular, during at-speed analysis of high-

performance microprocessors, the IC action agency (AF)

induced by the activated analysis vectors is decidedly

college than that accomplished during in acreage

operation [2]. Consequently, boundless ability bend (PD)

may be generated, which will apathetic down the ambit

beneath analysis (CUT) arresting transitions. This

abnormality is acceptable to be afield accustomed as due

to adjournment faults.

As a result, a apocryphal analysis abort will be

generated, with consistent access in crop accident [3].At-

speed analysis of argumentation blocks is nowadays

frequently performed application Argumentation BIST

(LBIST) [4], which can yield the anatomy of either

combinational LBIST or scan-based LBIST, depending

on whether the CUT is a combinational ambit or a

consecutive one with browse [5, 6],

In case of scan-based LBIST, two basal capture-clocking

schemes abide:

the launch-on-shift (LOS) arrangement and

the launch-on-capture (LOC) scheme

In LOS schemes, analysis vectors are activated to the

CUT at the endure alarm (CK) of the about-face phase,

and the CUT acknowledgment is sampled on the browse

chains at the afterward abduction CK. In the LOC

scheme, instead, analysis vectors are aboriginal loaded

into the scan-chains during the about-face phase; then, in

a afterward abduction phase, they are aboriginal

activated to the CUT at a barrage CK, and the CUT

acknowledgment is captured on the browse chains in a

afterward abduction CK [7, 8].

In this paper, we accede the case of consecutive CUTs

with scan-based LBIST adopting an LOC scheme, which

is frequently adopted for high-performance

microprocessors. They ache from the PD problems

discussed above, abnormally during the abduction phase,

due to the top AF of the CUT induced by the activated

analysis patterns.

Cite this article as: B. Navya, K. Bindumadhavi & K. Anil Kumar,

"Scan Based Built-In Self-Repair (BISR) For Embedded Memories",

International Journal & Magazine of Engineering, Technology,

Management and Research, Volume 6 Issue 1, 2019, Page 81-88.

 Page 82

Solutions acceptance designers to abate PD during the

abduction appearance in scan-based LBIST are

accordingly needed. While several approaches accept

been proposed to abate PD for combinational LBIST,

alone a few solutions abide for scan-based LBIST. In [2],

PD is bargain by a multicycle BIST arrangement with

fractional observation. This access does not appulse on

accountability advantage (FC) (actually, it presents a

slight FC access of 5% compared with accepted scan-

based-LBIST), but enables abridgement of PD by 33%

only, compared with accepted scan-based-LBIST.

PROPOSED ARCHITECTURE

Fig 1: Block diagram illustrating presented method

The method presented in this paper is similar to the

traditional scan design in that is provides a simple way

of setting and observing each flip-flop in a circuit.

However, unlike in scan, we do not connect flip-flops in

scan chains. Instead, to support the test mode, we modify

the original FSR as follows

1) The input of the original flip flop becomes the

functional input of the multiplexer (MUX). The test

input of MUX is connected to the Test Pattern Generator

(TPG).

2) The duplicated output is connected to the Test

Response Analyzer (TRA) through a switch. When the

test mode is selected, the flip-flops with multiplexed

inputs become inputs to the combinational logic. The

flip-flops which have a switch on the output become

outputs of the combinational logic. As in a scan design,

this increases controllability and observability, making

possible testing a sequential circuit with tests for

combinational logic.

Fig 2: Modifications of FSR flip-flops to support test

mode.

Note that such a technique does not affect the

propagation delay of the original circuit. In the

traditional scan, the propagation delay is always

increased by the delay of a MUX. We add MUX’es only

to the controllable cells, whose feedback functions are

trivial. Therefore, the propagation delay is still

determined by the observable cells, whose feedback

functions are non-trivial.

The following signals are added to the FSR to control

and observe its cells:

1) Test in enable signal controls the application of test

vectors. When it is asserted, controllable cells are

connected to the TPG and TPG is connected to the clock.

Otherwise, controllable cells are connected to their

predecessor cells and TPG is not connected to the clock.

2) Test out enable signal controls output response

analysis. When it is asserted, observable cells are

connected to both the TRA and their successor cells and

TRA is connected to the clock. Otherwise, observable

cells are connected to their successor cells only, and

TRA is not connected to the clock.

For each observable cell i, the value at the test output is

compared to the expected value of fi using an XOR gate.

The outputs of all XORs are fed into an OR gate the

output of which indicates the presence/absence of a fault.

Fig 3: The structure of the TRA

 Page 83

Detecting faults in the combinational logic

1) Assert the test in enable signal to connect test inputs

of controllable cells controllable cells to the TPG.

2) Apply one clock to load the test vector ti 2 T, i 2

{1,2, . . . ,k+3}, from the TPG to all controllable cells in

parallel.

3) Apply one clock to evaluate the non-trivial feedback

functions for the input assignment defined by ti. The

resulting output responses are captured at the observable

cells. At the same clock cycle, the next test vector ti+1

from T is loaded from the TPG to the controllable cells.

4) Assert the test out enable signal to connect test

outputs of observable cells to the TRA.

5) Apply one clock to upload the responses to ti from all

observable cells to the TRA in parallel. The TRA

compares the computed responses to the expected

responses. If they agree, TRA outputs ”passed”.

Otherwise, it outputs ”not passed”. At the same clock

cycle, non-trivial feedback functions are evaluated for

the input assignment defined by ti+1. The resulting

output responses are captured at the observable cells.

The next test vector ti+2 from T is loaded from TPG to

the controllable cells.

6) Repeat the steps 2, 3 and 5 until all test vectors from T

are applied.

This Procedure completes the application of all tests

from T and evaluation of all output responses in k+5

clock cycles.

Detecting remaining faults in FSR

1) Set the test out enable signal low to disconnect test

outputs of observable cells from the TRA.

2) Assert the test in enable signal to connect test inputs

of controllable cells to the TPG.

3) Apply one clock to load the test vector t1 2 T1 from

the TPG into all controllable cells in parallel.

4) Repeat d−1 times: Apply one clock to evaluate the

non-trivial feedback functions for the input assignment

defined by t1. The resulting output responses are

captured at the observable cells. All internal cells capture

the value of their predecessors. At the same clock cycle,

the same test vector t1 from T is loaded again from the

TPG to the controllable cells.

5) Set the test in enable signal low to connect functional

inputs of controllable cells to their predecessors.

6) Apply one clock to capture the value of the

predecessors of controllable cells into the controllable

cells.

7) Apply one clock to evaluate the non-trivial feedback

functions for the input assignment defined by the

controllable cells. The resulting output responses are

captured at the output flip-flops.

8) Assert the test out enable signal to connect test

outputs of observable cells to the TRA.

9) Apply one clock to upload the responses from all

observable cells to the TRA in parallel. The TRA

compares the computed responses to the expected

responses. If the two responses agree,

10) Repeat the steps 1-9 for the test vector t2 € T1.

This Procedure completes the application of tests and

evaluation of all output responses in 2d+6 clock cycles.

Detection of faults in the TPG

Consider the case when a single stuck-at fault occurs of

the output j of the TPG, j 2 {0E,0D,1, . . .,k}. Such a

fault will manifest itself as a multiple stuck-at fault at the

controllable cells connected to the output j. Since none

of the state variables occurs in more than one ANF, each

faulty input will affect only one fi. Therefore, the change

in values caused by the fault will not be cancelled out

and the fault will be detected by the Procedure 1.

Detection of faults in the TRA

TRA stores the expected responses to the tests and

compares them to the computed responses. We have

shown in the previous Section that for T2 the expected

responses may differ for functions whose dependence set

have different sizes. In the worse case, all non-trivial

functions may have dependence sets of different sizes.

Then, in order to store the expected responses, we need

(k+3)×m bits, where m is the number of non-trivial

feedback functions.

Note that the TRA circuit shown in Fig.3.4 handles not

only single stuck-at faults in the FSR, but also single

stuck-at faults which occurs in the TRA itself, except the

stuck-at-0 and stuck-at-1 fault at the output of the OR

 Page 84

gate. To allow for detection of these faults, the OR gate

can be duplicated.

Proposed Model with CUT

Fig 4: Proposed Model with CUT

Test Pattern Generator (TPG)

This module generates the test patterns required to

sensitize the faults and propagate the effect to the outputs

(of the CUT). As the test pattern generator is a circuit

(not equipment) its area is limited. So storing and then

generating test patterns obtained by ATPG algorithms on

the CUT using the hardware test pattern generator is not

feasible. In other words, the test pattern generator cannot

be a memory where all test patters obtained by running

ATPG algorithms (or random pattern generation

algorithms) on the CUT are stored and applied during

execution of the BIST. Instead, the test pattern generator

is basically a type of register which generates random

patterns which act as test patterns. The main emphasis of

the register design is to have low area yet generate as

many different patterns (from 0 to 2n, if there are n flip-

flops in the register) as possible.

The proposed low power LFSR technique uses bit

swapping technique to reduce the peak power. By

connecting multiplexers on the LFSR register. The

numbers of transitions are decreased for that cell which

are under bit swapping. The number of transitions in

each register in LFSR without applying bit swapping

technique here two cells in an nbit LFSR are considered

to be adjacent if the output of one cell feeds the input of

the second directly (i.e., without an intervening XOR

gate). Each cell in a maximal-length n-stage LFSR

(internal or external) will produce a number of

transitions equal to 2n-1 after going through a sequence

of 2n clock cycles.

The sequence of 1s and 0s that is followed by one bit

position of a maximal-length LFSR is commonly

referred to as an m sequence. Each bit within the LFSR

will follow the same m sequence with a one-time-step

delay. The m-sequence generated by an LFSR of length

n has a periodicity of 2n-1. It is a well-known standard

property of an m-sequence of length n that the total

number of runs of consecutive occurrences of the same

binary digit is 2n-1.The beginning of each run is marked

by a transition between 0 and 1.Therefore, the total

number of transitions for each stage of the LFSR is 2n-1.

Test Response Analysis (TRA): It analyses the value

sequence on PO and compares it with the expected

output.

BIST Controller Unit (BCU):

It controls the test execution; it manages the TPG, TRA

and reconfigures the CUT and the multiplexer.

Basic BIST architecture includes functions which are

necessary to execute the self-testing feature so that

testing is accomplished without the aid of external

hardware. It has two major components named Hardware

or Test Pattern Generator (TPG) and Output Response

Compacter or Analyzer (ORA).

The TPG produces a sequence of patterns for testing the

Circuit Under Test (CUT) while the ORA compacts the

output responses of the CUT into some type of pass/fail

indication which decides good or faulty result. The other

two functions needed for system-level use of BIST

include the test controller and input MUX. Besides the

normal input/output (I/O) pins, the incorporation of

BIST may also require additional I/O pins for activating

the BIST sequence and to give valid results. The input

test patterns can be stored in a Read Only Memory

(ROM). Expected responses are read from ORA ROM

and are compared to the actual output response of the

CUT for each test vector. Any mismatch detected by the

 Page 85

comparator is latched to indicate a failure has occurred

during the BIST sequencing.

Circuit under Test (CUT):

It is the portion of the circuit tested in BIST mode. It can

be sequential, combinational or a memory. It is delimited

by their Primary Input (PI) and Primary Output (PO).

In CUT we are using UART (Universal Asynchronous

receiver/Transmitter). Serial data is transmitted via its

serial port. A serial port is one of the most universal

parts of a computer. It is a connector where serial line is

attached and connected to peripheral devices such as

mouse, modem, and printer and even to another

computer. In contrast to parallel communication, these

peripheral devices communicate using a serial bit

stream.

Design with BIST Capability protocol (where data is

sent one bit at a time). The serial port is usually

connected to UART, an integrated circuit which handles

the conversion between serial and parallel data.

Fig 5: BISR Architecture

BASIC ARCHITECTURE

The basic architecture of a static RAM includes one or

more rectangular arrays of memory cells with support

circuitry to decode addresses, and implement the

required read and write operations. Additional support

circuitry used to implement special features, such as

burst operation, may also be present on the chip. Figure

shows a basic block diagram of a synchronous SRAM.

As you read, you may wish to refer to the diagram to

help you visualize how the SRAM works.

Fig 6: Basic Architecture

Memory Arrays:

SRAM memory arrays are arranged in rows and columns

of memory cells called word lines and bit lines,

respectively. In IBM SRAMs, the word lines are made

from poly silicon while the bit lines are metal. Each

memory cell has a unique location or address defined by

the intersection of a row and column. Each address is

linked to a particular data input/output pin. The number

of arrays on a memory chip is determined by the total

size of the memory, the speed at which the memory must

operate layout and testing requirements, and the number

of data I /Os on the chip.

Memory Cell:

An SRAM memory cell is a bi-stable flip-flop made up

of four to six transistors. The flip-flop may be in either

of two states that can be interpreted by the support

circuitry to be a 1 or a 0. Many of the SRAMs on the

market use a four transistor cell with a poly silicon load.

Suitable for medium to high performance, this design has

a relatively high leakage current, and consequently high

standby current. Four transistor designs may also be

more susceptible to various types of radiation induced

soft errors. IBM's SRAMs all use a six transistor

memory cell (also called a six-device cell) that is highly

stable, relatively impervious to soft errors, and has low

leakage and standby currents.

 Page 86

BIAA

Fig 7: BIAA Architecture

If The BISR_H=0 then initially BIAA stores 0 address

when the compare_h=0 then comparator can take

address from the mux and directly it will given to the

counter. If The BISR_H=1 then counter increments the

values from 0 t0 8 why because in the bist comparator

and test_v_ram having 0 t0 8 addresses only.

The proposed SRAM BISR strategy is flexible. The

SRAM users can decide whether to use it by setting a

signal. So the redundancy of the SRAM is designed to be

selectable. In another word, some normal words in

SRAM can be selected as redundancy if the SRAM

needs to repair itself. We call these words Normal-

Redundant words to distinguish them from the real

normal ones. We take a 64 × 4 SRAM for example, as

shown in Figure 1. There are 60 normal words and 4

Normal-Redundant words. When the BISR is used, the

Normal-Redundant words are accessed as normal ones.

Otherwise, the Normal-Redundant words can only be

accessed when there are faults in normal words. In this

case, the SRAM can only offer capacity of 60 words to

users. This should be referred in SRAM manual in

details.

BISR PROCEDURE

Figure 8 shows the proposed BISR block diagram. The

BISR starts by resetting the system (rst_l = 0). After that

if the system work in test mode, it goes into TEST phase.

During this phase, the BIST module and BIAA module

work in parallel.

Fig 8: Block Diagram of BISR

The BIST use March C- to test the normal addresses of

SRAM. As long as any fault is detected by the BIST

module, the faulty address will be sent to the BIAA

module. Then the BIAA module checks whether the

faulty address has been already stored in Fault-A-Mem.

If the faulty address has not been stored, the BIAA stores

it and the faulty address counter adds 1. Otherwise, the

faulty address can be ignored. When the test is

completed, there will be two conditions. If there is no

fault or there are too many faults that overflow the

redundancy capacity, BISR goes into COMPLETE

phase. If there are faults in SRAM but without

overflows, the system goes into REPAIR&TEST phase.

The same as during TEST phase, the BIST module and

BIAA module work at the same time in REPAIR&TEST

phase. The BIAA module replaces the faulty addresses

stored in Fault-A-Mem with redundant ones and the

BIST module tests the SRAM again. There will be two

results: repair fail or repair pass. By using the BISR, the

users can pick out the SRAMs that can be repaired with

redundancy or the ones with no fault.

BISR Features

Firstly, the BISR strategy is flexible. TABLE I lists the

operation modes of SRAM. In access mode, SRAM

users can decide whether the BISR is used base on their

needs. If the BISR is needed, the Normal-Redundant

words will be taken as redundancy to repair fault. If not,

they can be accessed as normal words.

 Page 87

TABLE 1: SRAM OPERATION MODES

Secondly, the BISR strategy is efficient. On one hand,

the efficiency reflects on the selectable redundancy

which is described as flexible above. No matter the BISR

is applied or not, the Normal-Redundant words are used

in the SRAM. It saves area and has high utilization. On

the other hand, each fault address can be stored only

once into Fault-A-Mem. As said before, March C- has 6

steps. In another word, the addresses will be read 5 times

in one test. Some faulty addresses can be detected in

more than one step. Take Stuckat- 0 fault for example, it

can be detected in both 3rd and 5
th
 steps. But the fault

address shouldn’t be stored twice. So we propose an

efficient method to solve the problem in BIAA module.

Figure 3.4 shows the flows of storing fault addresses.

BIST detects whether the current address is faulty. If it

is, BIAA checks whether the Fault-A-Mem overflows. If

not, the current fault address should be compared with

those already stored in Fault-A-Mem. Only if the faulty

address isn’t equal to any address in Fault-A-Mem, it can

be stored. To simplify the comparison, write a redundant

address into Fault-A-Mem as background. In this case,

the fault address can be compared with all the data stored

in Fault-A-Mem no matter how many fault addresses

have been stored.

Fig 9: Flows of Storing Fault Addresses

At last, the BISR strategy is high-speed. Once a fault

address is stored in Fault-A-Mem, it points to a certain

redundant address. The fault addresses and redundant

ones form a one-to-one mapping. Using this method, the

BISR can quickly get the corresponding redundant

address to replace the faulty one.

RESULTS AND ANALYSIS

In this initially we can give rst=0 then we are not getting

any output we can get xxxx and also we can give

tm_nm=0 then the circuit works under normal mode

condition means output depends on user giving input.

Fig 10: Simulation Result for top module

(rst=0,tm_nm=0)

Fig 11: Simulation Result for top module

(rst=1,tm_nm=0)

In this we can change rst=1 then we are not getting any

output we can get xxxx because of CUT. In CUT we can

get output when baud_div value reaches to 9,600 bps

means we can give baud_div=4’h000f.

Fig 12: Simulation Result for top module

(rst=1,tm_nm=1)

 Page 88

Fig 13: Simulation Results for BISR rst=0(rd=0,

wr=1)

Fig 14: Simulation Results for BISR rst=1(rd=1,

wr=0)

CONCLUSION

An efficient BISR strategy for SRAM IP with selectable

redundancy has been presented in this paper. It is

designed flexible that users can select operation modes

of SRAM. The BIAA module can avoid storing fault

addresses more than once and can repair fault address

quickly. The function of BISR has been verified by the

post simulation. The BISR can work at up to 150MHz at

the expense of 20% greater area.

REFFERENCES

[1] J. Rajski, J. Tyszer, G. Mrugalski, and B. Nadeau-

Dostie, “Test generator with preselected toggling for low

power built-in self-test,” in Proc. Eur.Test Symp., May

2012, pp. 1–6.

[2] Y. Sato, S. Wang, T. Kato, K. Miyase, and S.

Kajihara, “Low power BIST for scan-shift and capture

power,” in Proc. IEEE 21st Asian Test Symp., Nov.

2012, pp. 173–178.

[3] E. K. Moghaddam, J. Rajski, M. Kassab, and S. M.

Reddy, “At-speed scan test with low switching activity,”

in Proc. IEEE VLSI Test Symp., Apr. 2010, pp. 177–

182.

[4] S. Balatsouka, V. Tenentes, X. Kavousianos, and K.

Chakrabarty, “Defect aware X-filling for low-power scan

testing,” in Proc. Design, Autom. Test Eur. Conf.

Exhibit., Mar. 2010, pp. 873–878.

[5] I. Polian, A. Czutro, S. Kundu, and B. Becker,

“Power droop testing,” IEEE Design Test Comput., vol.

24, no. 3, pp. 276–284, May/Jun. 2007.

[6] X. Wen et al., “On pinpoint capture power

management in at-speed scan test generation,” in Proc.

IEEE Int. Test Conf., Nov. 2012,pp. 1–10.

[7] S. Kiamehr, F. Firouzi, and M. B. Tahoori, “A

layout-aware X-filling approach for dynamic power

supply noise reduction in at-speed scan testing,” in Proc.

IEEE Eur. Test Symp., May 2013, pp. 1–6.

[8] M. Nourani, M. Tehranipoor, and N. Ahmed, “Low-

transition test pattern generation for BIST-based

applications,” IEEE Trans. Comput., vol. 57, no. 3, pp.

303–315, Mar. 2008.

