

 Page 70

Encoding and Decoding of T-OCI Codes on NoC Router

G. Sravanthy

Department of Electronics & Communication

Engineering,

HITAM, Hyderabad, Telangana-502401, India.

K. Anil Kumar

Department of Electronics & Communication

Engineering,

HITAM, Hyderabad, Telangana-502401, India.

Abstract

On-chip interconnects are the achievement aqueduct in

latest system-on-chips. Code-division multiple access

(CDMA) has been proposed to apparatus on-chip

crossbars due to its anchored latency, decreased

adjudication overhead, and large bandwidth. In

CDMA, average administration is enabled in the code

amplitude by allotment a bound amount of N-chip

length erect overextension codes to the processing

elements administration the interconnect. In this paper,

we improved overloaded CDMA interconnect (OCI) to

enhance the accommodation of CDMA network-on-

chip (NoC) crossbars by accretion the amount of

accessible overextension codes. Consecutive and

alongside OCI architectonics variants are presented to

attach to altered area, delay, and power requirements.

Compared with the accepted CDMA crossbar, on a

Xilinx Artix-7 AC701 FPGA kit, the consecutive OCI

batten achieves 100% high bandwidth, 31% low power

utilization, and 45% power saving, while the alongside

OCI batten achieves N times higher bandwidth

compared with the consecutive OCI batten at the

amount of added length and power consumption. A 65-

node OCI-based brilliant NoC is implemented,

evaluated, and compared with an agnate amplitude

analysis assorted admission based torus NoC for

assorted constructed traffic patterns. The appraisal

after-effects in agreement of the power appliance and

throughput highlight the OCI as a able technology to

design the physical layer of NoC routers.

INTRODUCTION

System on chip (SOC) is a complex interconnection of

various functional elements. It creates communication

bottleneck in the gigabit communication due to its bus

based architecture [1]. Thus there was need of system

that explicit modularity and parallelism, network on chip

possess many such attractive properties and solve the

problem of communication bottleneck. It basically works

on the idea of interconnection of cores using on chip

network.

The communication on network on chip is carried out by

means of router, so for implementing better NOC, the

router should be efficiently design [2]. This router

supports four parallel connections at the same time. It

uses store and forward type of flow control and Fsm

Controller deterministic routing which improves the

performance of router. The switching mechanism used

here is packet switching which is generally used on

network on chip [3].

In packet switching the data the data transfers in the

form of packets between cooperating routers and

independent routing decision is taken. The store and

forward flow mechanism is best because it does not

reserve channels and thus does not lead to idle physical

channels. The arbiter is of rotating priority scheme so

that every channel once get chance to transfer its data. In

this router both input and output buffering is used so that

congestion can be avoided at both sides.

FOUR PORT ROUTER ARCHITECTURE

Router Architecture:

The Four Router Design is done by using of the three

blocks .the blocks are 8-Bit Register, Router controller

and output block. the router controller is design by using

FSM design and the output block consists of three fifo’s

Cite this article as: G. Sravanthy & K. Anil Kumar, "Encoding and

Decoding of T-OCI Codes on NoC Router", International Journal &

Magazine of Engineering, Technology, Management and Research,

Volume 6 Issue 1, 2018, Page 70-80.

 Page 71

combined together the fifo’s are store packet of data and

when u want to data that time the data read from the

FIFO’s [4]. In this router design has three outputs that is

8-Bit size and one 8_bit data port it using to drive the

data into router we are using the global clock and reset

signals, and the err signal and suspended data signals are

output’s of the router .the FSM controller gives the err

and suspended_data_in signals .this functions are

discussed clearly in below FSM description.

Figure 1: Four Port Router Architecture

The router_reg module contains the status, data and

parity registers for the Network router_1x3.

These registers are latched to new status or input data

through the control signals provided by the fsm_router

[5].

There are 3 FIFO for each output port, which stores the

data coming from input port based on the control signals

provided by fsm_router module.

The fsm_router block provides the control signals to the

fifo, and router_reg module. The Router blocks Diagram

shown below fig…

Router blocks are

 Register

 Router controller(FSM)

 FIFO Output Block

Register Block:

This module contains status, data and parity registers

required by router. All the registers in this module are

latched on rising edge of the clock.

Data registers latches the data from data input based on

state and status control signals, and this latched data is

sent to the fifo for storage [6]. Apart from it, data is also

latched into the parity registers for parity calculation and

it is compared with the parity byte of the packet [7]. An

error signal is generated if packet parity is not equal to

the calculated parity.

Figure 2- Register Block

 If reset is low then output (dout, err, parity_done and

low_packet_valid) are low.

The output parity_done is high

When the input ld_state is high and (fifo-full and

packet_valid) is low or when the input laf_state and

output low_packet_valid both are high and the previous

value of parity_done is low. It is reseted to low value by

reset_int_reg signal.

The output low_packet_valid is high.

When the input ld_state is high and packet_valid is

low.It is reseted to low by reset_int_reg signal.

First data byte i.e., header is latched inside the internal

register first_byte when detect_add and packet_valid

signals are high, So that it can be latched to output dout

when lfd_state signal goes high.

Then the input data i.e., payload is latched to output dout

if ld_state signal is high and fifo_full is low.

Then the input data i.e., parity is latched to output dout if

ld_state signal is high and fifo_full is low.

The input data is latched to internal register

full_state_byte when ld_state and fifo_full are high; this

full_state_byte data is latched inside the output dout

when laf_state goes high.

 Page 72

Internal parity register stores the parity calculated for

packet data, when packet is transmitted fully, the internal

calculated parity is compared with parity byte of the

packet. An error signal is generated if packet parity is not

equal to the calculated parity.

Figure 3-Register block synchronization

In the above figure register block is synchronize with the

fsm to latch input data to it. Here, clk, resetn signals are

synchronous with the entire module.

Eg: We are giving packet data as input to it and making

read single (re1, re2, re3) as high w.r.t input first data

byte of the packet. The receiving data is driven to the

Router Controller for reaching its destination port.

Which has 11 input pins (data_in [7:0],packet_valid ,

clk, reset).

Eg: data_in=8’b10101010, clk, reset, packet_valid are

HIGH

Router Controller (FSM):

This module generates all the control signals when new

packet is sent to router. These control signals are used by

other modules to send data at output, writing data into

the fifo.

Figure 4- Router Controller Block

Figure 5 - Router Controller State diagram

STATE – CHECK_PARITY_ERROR1

In this state reset_int_reg signal is generated, which

resets the status and parity registers inside the

router_reg module. Neither any data is latched nor any

input data is accepted. Router_reg compares the data

parity from packet with calculated parity during this

state.This state changes to default state

DECODE_ADDRESS with next clock edge.

Figure 6 FSM synchronization block

Fsm block will synchronize register and fifo modules.

The function of fsm is it taken data from data register

and input data is latched to respective output based on

header address which controls the function of design. So,

it is called Router controller.

It has 17 inputs and 32outputs. For designing it we

having 14

 Page 73

states(decode_address,wait_till_empty,load_data0,load_

data1,load_data2,fifo_full0,fifo_full1,fifo_full2,load_par

ity0,load_parity1,load_parity2,check_parity0,check_pari

ty1,check_parity2).By this it takes independent decision

for the data to reach its destination port.

Eg: INPUT: data_in from Registerblock=8’b10101010,

fifo_full0, fifo_full1,fifo_full2 are LOW and fifo_emp0,

fifo_emp1, fifo_emp2 are HIGH.

OUPUT:data_out1,data_out2,wr_enb1,wr_enb2,suspend

_data,err,valid_ch1,valid_ch2 are LOW and

data_out3,we_enb3,valid_ch3 are HIGH.

Router Output Block:

There are 3 fifos used in the router design. Each fifo is of

8 bit width and 16 bit depth.

The fifo works on system clock. It has synchronous input

signal reset.

If resetn is low then full =0, empty = 1 and data_out = 0

 The FIFO has doing 3 deferent operations

 Write Operation

 Read operation

 Read and Write Operation.

Figure 7 FIFO Block

The functionality of FIFO explain below:

Write operation:

The FIFO write operation is done by when the data from

input data_in is sampled at rising edge of the clock when

input write_enb is high and fifo is not full.in this

condition onaly FIFO Write operation is done.

Read Operation:

The FIFO Read Operation is The data is read from

output data_out at rising edge of the clock, when

read_enb is high and fifo is not empty.

Read and Write operation can be done simultaneously.

Full – it indicates that all the locations inside fifo has

been written.

Empty – it indicates that all the locations of fifo are

empty.

The Output Block of Network Router conisistes of three

FIFO.Each FIFO is a 8-Bit data Width and 16 bit data

depth .the strcture of OUTPUT Block is shown in below

fig..

Figure-8 Synchronization of Output Block with FSM

This module provides synchronization between fsm and

fifo modules. It provides faithful communication

between single input port and three output ports.

It will detect the address of channel and will latch it till

packet_valid is asserted, address and write_enb_sel will

be used for latching the incoming data into the fifo of

that particular channel.A fifo_full output signal is

generated, when the present fifo is full, and fifo_empty

output signal is generated by the present fifo when it is

empty.The output vld_out signal is generated when

empty of present fifo goes low, that means present fifo is

ready to read(vld_out_0 = ~empty_0,vld_out_1 =

~empty, vld_out_2 = ~empty_2).

The write_enb_reg signal which comes from the fsm is

used to generate write_enb signal for the present fifo

which is selected by present address.

Eg: INPUT: clk,reset,read_enb are HIGH ,write_enb are

LOW and data_in=8’b10101010.

OUTPUT:full is LOW,empty is HIGH and

data_out=10101010.

 Page 74

DESIGN ASPECTS AND APPROACH

Register:

It holds 8-bit values.Writing verilog code it should be

declared as 8-bit width.

Router Controller:

For designing it we need finite state machine which

controls all signals and we need states for

controlling.The states should be for initializing data,wait

for data until empty, loading data to respective port,if

fifo is full w.r.t port it have to wait until empty,for

parity byte loading and parity calculation.For initializing

decode_state,for data waiting till empty

wait_till_empty,for loading data load_data0, load_data1,

load_data2,for checking fifo is full fifo_full0,

fifo_full1, fifo_full2,for loading parity load_parity0,

load_parity1, load_parity2 and for parity calculation

check_parity0, check_parity01,check_parity2 totally we

need 14 states having 4-bit width.But 4-bit it will give 16

states i.e full case.So, we are using only 14 states i.e

parallel case. States represent as parameter keyword by

this state value can’t change throughout the design.For

this design block we written in verilog code in

behavioral model.

First we verifying whether it is reseting or not and when

packet_valid signal is the data(10101010) is driving to

w.r.t output port(fifo2) when it making low data is

loading to load parity for parity calculation.And also

verified whether it is switching to another port with

another data(10101000) when reseting and also driven

some bytes of data to the port.Testbench is written in

verilog code.

FIFO:

It is 8-bit width and 16-bit depth.For fifo full or empty

we are taking fifo_full and fifo_empty signals.For the

status of full or empty of fifo we need a internal counter

for counting it locations upto 16 locations it mean it is 4-

bit wide.Input signals.

They are data_in(8-bit),were,clk,resetn and output

signals are data_ou(8-bit),t,fifo_empty,fifo_full.Data is

driven when write and not fifo full and it read when read

and not fifo empty.RTL code it is written in verilog code

in behavioral model.

It is verified by giving 16 bytes of data in data_in ,we is

high then fifo_full becomes high.When it is high data

can’t be written into it.We get output in data_out and re

is high it given all 16 bytes of data which we had driven

after that fifo_empty is high then we can’t read data and

we also verified when both we and re signals are high it

is written in verilog code.

Top module:

In this module we synchronized register, router

controller, fifo blocks for that we calling all the modules

with .name instance declaration and developing a design

plan with these blocks as data_in is driven to register

block, routing data to respective port decision taken by

router controller and we are considering three fifo as

output port. Same clock is given to all blocks i.e clock is

synchronous. Code it is written in verilog code.

Fig 9: Block diagram of top module

CDMA Transmitter

The eight bit input data corresponding to a particular

user is converted into serial form by an eight bit PISO.

The PISO is clocked by Fmaster divided by 15 clock

where Fmaster is 0.5GHz. Then it is spreaded by the 15

bit PN code. The PN code generator is clocked by

Fmaster. Spreaded data of all the four users are summed

up and generated the signal to be transmitted.

 Page 75

Fig 10: CDMA Transmitter

CDMA Receiver:

After de spreading the received signal with the

corresponding code, it is compared with the same PN

code, which is converted into parallel, using an 8 bit

comparator. The comparator uses 0.33GHz clock

frequency. If the actual transmitted data was a high then

the de spread output will be same as that of the PN

sequence. So the comparison function is performed in

such a way that, it compares the de spread output with

PN sequence. If it is same, then it can be concluded that

the data send is a high and if it is not, then the data will

be a low. So the comparator output corresponds to the

actual transmitted data of a particular user. Thus it is able

to reconstruct the original data from the spreaded output.

Fig 11: CDMA Receiver

PN sequence generator

Linear feedback shift registers are used for generating

PN sequences. Components of D ip ops are used for this

since structural modeling is used. To generate the

sequence, rst it is necessary to initialize the ip ops to a

particular value. Since 15 bit long PN sequence is being

used, four ip ops are required and these four ip ops are

required to be initialized. For that purpose, init signals

are used. After the initialization, the xor feedback logic

will provide a method to generate a PN sequence.

Orthogonal sequences are required in this system. Time

shifted versions of a PN sequence will be nearly

orthogonal. So to shift the sequences, shift registers are

used in which the sequence is given as input to the

registers. The outputs from intermediate ip ops are taken

which will be time shifted. So at the output of PN

generator four PN sequences are obtained.

Fig. 12. High-level architecture and building blocks

of the OCI crossbar. (a) TOCI/P-OCI hybrid

encoder. (b) T-OCI nonorthogonal decoder. (c) P-

OCI nonorthogonal decoder. (d) T-OCI pipelined

crossbar tree adder, in which the adder is replicated

N times for P-OCI crossbar. (e) P-OCI orthogonal

decoder. (f) T-OCI orthogonal decoder.

 Page 76

The CDMA router has M transmit/receive ports. The

main difference between the overloaded and classical

CDMA routers is that M > N −1 for the former due to

channel overloading. Each PE is connected to two

network interfaces (NIs), transmit and receive NI

modules.

During packet transmission from a PE, the packet is

divided into flits to be stored in the transmit NI first-

input first output (FIFO). The router arbiter then selects

M winning flits at most from the top of the NI FIFOs to

be transmitted during the current transaction.

The selected flits must all have an exclusive destination

address to prevent conflicts, and a winner from two

conflicting flits is selected according to the router’s

priority scheme. The employed priority scheme is the

fixed winner that takes all priority schemes; only one of

the transmitters is given a spreading code and is

acknowledged to start encoding. Once done, the router

assigns CDMA codes to each transmit and receive NI.

NIs with empty FIFOs or conflicting destinations are

assigned all-zero CDMA codes such that they do not

contribute MAI to the CDMA channel sum. Afterward,

flits from each NI are spread by the CDMA codes in the

encoder module.

The data are spread into N chips, where N is the CDMA

code length that equals the number of clock cycles in a

single crossbar transaction. Spread data chips from all

encoders are summed by the CDMA crossbar adder and

the sum is sent out serially to all decoders. The

encoding/decoding process lasts for N clock cycles

synchronized via a counter. At each decoder, the

assigned code is cross correlated with the received sum

to decode the data from the summed chips. The decoded

flits are stored in the receive NI FIFOs until they are read

by the PEs. In this paper, we focus on the high-level

architecture and implementation details of the

overloaded CDMA crossbar represented by the gray

block in Fig. 1(a). A store and forward flow control and

a deterministic routing algorithm are employed in the

OCI router. The routing algorithm lies at the network

layer, which is a higher layer than the physical layer

containing the crossbar switch. According to the OSI

model design principles, each layer of the model exists

as an independent layer. Theoretically, one can substitute

one protocol for another at any given layer without

affecting the operation of layers above or below. Thus,

using the same flow control protocol and routing

algorithm enables comparing the OCI-based router with

SDMA- and TDMA-based routers.

A. OCI Crossbar High-Level Architecture

The main objective of this paper is increasing the

number of ports sharing the ordinary CDMA crossbar

presented, while keeping the system complexity

unchanged using simple encoding circuitry and relying

on the accumulator decoder with minimal changes. To

achieve this goal, some modifications to the classical

CDMA crossbar are advanced. Fig. 2 depicts the high-

level architecture of the OCI crossbar for a single-bit

interconnection. The same architecture is replicated for a

multibit CDMA router.

M TX-RX ports share the CDMA router, where spread

data from the transmit ports are added using an

arithmetic binary adder having M binary inputs and an

m-bit output, where m = _log2 M_. The adder is

implemented in both the reference and pipelined

architectures.

A controller block is used for code assignment and

arbitration tasks. Each PE is interfaced to an

encoder/decoder wrapper enabling data

spreading/despreading. Unlike orthogonal spreading

codes, which are XORed with the binary data bit, an

AND gate is utilized to spread data using nonorthogonal

spreading codes. The AND gate encoder works as

follows: if the transmitted data bit is “0,” it sends a

stream of zeros during the whole spreading cycle, which

does not cause MAI on the channel; if the transmitted

data bit is “1,” the encoder sends a nonorthogonal

spreading code. Therefore, the additional MAI spreading

code will either contribute an MAI value of one or zero

each clock cycle because the encoder is an AND gate.

 Page 77

The XOR encoder of the ordinary CDMA crossbar

cannot be used to encode the OCI codes because it only

complements the spreading code chips, so an XOR gate

will cause MAI to the crossbar whether the data bit is

“0” or “1.” A hybrid encoder is developed for both

orthogonal and nonorthogonal spreading with an XOR

gate, an AND gate, and a multiplexer unit, as shown in

Fig. 2. Two decoder types are implemented for

orthogonal and nonorthogonal data. More details about

each component of the OCI crossbar will be presented.

B. OCI Code Design

The Walsh–Hadamard spreading code family has a

featured property that enables CDMA interconnect

overloading. The difference between any consecutive

channel sums of data spread by the orthogonal spreading

codes for an odd number of TX-RX pairs M is always

even, regardless of the spread data. This property means

that for the N − 1 TX-RX pairs using the Walsh

orthogonal codes, one can encode additional N − 1 data

bits in consecutive differences between the N chips

composing the orthogonal code. Thus, exploiting this

property enables adding 100% nonorthogonal spreading

codes, which can double the capacity of the ordinary

CDMA crossbar.

In this section, the code design methodology,

mathematical foundations, and the decoding details of

the OCI codes are providedS. An AND gate encoder is

used to encode data with nonorthogonal spreading codes

as shown in Fig. 2(a).

Therefore, for a nonorthogonal encoder, if data to

transmit are one, a single spreading chip at a specific

time slot in the spreading cycle is added to the channel

sum, which causes the consecutive sum difference to

deviate. The nonorthogonal codes imitate the TDMA

signaling scheme as each code is composed of a single

chip of “1” sent in a specific time slot.

The encoding/decoding scheme presented in this paper

provide a novel approach that enables coexistence

between CDMA and TDMA signals in the same shared

medium. Therefore, the developed encoder is called

TDMA overloaded on CDMA interconnect (T-OCI).

Fig. 3 shows an encoding/decoding example of two T-

OCI codes for a spreading code of length N = 8. An odd

number of orthogonal codes must be used

simultaneously to preserve the even difference property

of Walsh codes.

where S is the N-cycle waveform of the channel sum,

dC(j) is the orthogonal CDMA data bit sent by the j th

user, dT (j) is the nonorthogonal TDMA data bit sent by

the j th, Co(j) is the orthogonal code assigned to the j th

user, and T (j−N +1) is the TDMA code assigned to the j

th user. The TDMA code T (i) is a single chip of “1”

assigned at the i th time slot.

The TDMA term of the equation is the sum of products

of TDMA chips and their corresponding data bits. This

term can be viewed as another N-chip spreading code

added to the orthogonal spread data represented by the

first term of the equation. It should be indicated that the

first chip of the TDMA MAI code is always set to zero

(T (1) = 0), and the remaining N − 1 chips are assigned

according to the encoded data bits; this note is the key to

properly decode both orthogonal and nonorthogonal

spread data.

C. OCI Crossbar Building Blocks

Two variants are realized for each OCI crossbar,

reference and pipelined architectures. The pipelined

architecture is implemented to increase the crossbar

operating frequency, and consequently, bandwidth by

adding nonfunctional pipelining registers to reduce the

crossbar critical path. The OCI crossbar shown in Fig. 2

is basically composed of three main building blocks: 1)

the encoder wrappers; 2) the decoder wrappers; and 3)

the crossbar adder blocks, which are described in the

following.

1) Crossbar Controller: At the beginning of each

crossbar transaction, the controller assigns spreading

codes to different encoders.

The assignment of orthogonal dispreading codes to

receive ports is fixed, i.e., does not change between the

 Page 78

crossbar transactions. Therefore, for a router port to

initiate the communication with the receive port .

Encoder must be assigned a spreading code that matches

the destined decoder. If two different ports request to

address the same decoder, the controller allows one

access and suspends the other according to a predefined

arbitration scheme. This code assignment scheme is

called receiver-based protocol. In this paper, a static

allocation scheme that allocates fixed spreading codes to

all encoders is used. To interconnect a large number of

PEs, a torus, star, or hybrid NoC topology can be

realized where the assignment of spreading codes is local

to each router. Consequently, each new packet arriving

at a router is assigned a spreading code corresponding to

its exit port decoder. The crossbar controller issues

handshake signals to the transmit and receive ports with

matching spreading codes to enable the transmitter

encoders and receiver decoders.

2) Hybrid Encoder: The encoder is hybrid, it can

encode both orthogonal and nonorthogonal data. A

transmitted data bit is XORed/ANDed with the spreading

code to produce the orthogonal/nonorthogonal spread

data, respectively. A multiplexer chooses between the

orthogonal and nonorthogonal inputs according to the

code type assigned to the encoder as depicted by Fig.

2(a). The encoder is replicated N times for the P-OCI

crossbar.

3) Crossbar Adder: For a spreading code set of length

N, the number of crossbar TX-RX ports is equal to M

=2(N − 1). In the T-OCI crossbar, sending a “1” chip to

the adder is mutually exclusive between nonorthogonal

transmit ports according to the T-OCI encoding scheme.

This indicates that among the 2(N−1) inputs to the adder,

there are guaranteed (N − 2) zeros, while the maximum

number of “1” chips is N. Therefore, a multiplexer is

instantiated to select only a single input of the

nonorthogonal TDMA encoded data bits and discard the

remaining bits that are guaranteed to be “0.” Thus, the

adder has only N-bit inputs, N−1 from orthogonal

encoders, and 1 from the multiplexer, as shown in Fig.

2(d). The sum produced by the adder circuit needs (log2

N) wires. The number of needed stages of registers to

pipeline the adder is (log2 N), as depicted in Fig. 2(d). N

replicas of the crossbar adder are instantiated for the

parallel encoding adopted in the P-OCI crossbar.

4) Custom Decoder: There are four decoder types for

different CDMA decoding techniques: the orthogonal T-

OCI and P-OCI decoders and the overloaded T-OCI and

P-OCI decoders.

The orthogonal T-OCI decoder is an accumulator

implementation of the correlator receiver. N − 1

accumulator decoders are instantiated in all CDMA

crossbar types for orthogonal data despreading. Instead

of implementing two different accumulators (the zero

and one accumulator), an up–down accumulator is

implemented and the accumulated result is the difference

between the two accumulators of the conventional

CDMA decoder as shown in Fig. 2(f). The accumulator

adds or subtracts the crossbar sum values according to

the despreading code chip and resets every N cycles. The

sign bit of the accumulated value directly indicates the

decoded data bit, where the positive sign is decoded as

“1,” while the negative sign is decoded as “0.” The P-

OCI orthogonal decoder shown in Fig. 2(e) differs from

the T-OCI orthogonal decoder in receiving the adder

sum values concurrently not sequentially; therefore, the

accumulator loop is unrolled into a parallel adder.

The T-OCI overloaded decoder depicted in Fig. 2(b) is

composed of a 2-bit register to store the LSBs of two

sum values, first of which is S(0) and the second is S(j −

N + 1), where j is the number of the T-OCI decoders (N

≤ j ≤ 2N − 2). The two bits are fed to the XOR gate,

which decodes nonorthogonal spread data. The T-OCI

decoder is replicated N times to implement the P-OCI

decoder of Fig. 2(c). The 2-bit register is not needed

anymore because the S(0) and S(j−N+1) values exist in

the same cycle. The T-OCI and P-OCI crossbar

architectures contain (N − 1) orthogonal decoders and (N

− 1) overloaded decoders.

 Page 79

SIMULATION AND SYNTHSIS RESULTS

OUTPUT WAVEFORM:

Fig 13: Simulation results of scheme1

Fig 14: Simulation results of scheme2

Fig 15: Simulation results of scheme3

CONCLUSION

The designed system can be used to implement a secure

centralized data transfer in a local network. The

transmitter receiver module to use can be RF, Bluetooth,

zigbee or any other techniques which can be selected on

the basis of range requirement. Also the system can be

used to transfer s ensed data inside an industry, where

the environment is comparatively noise free and

insecure. Since the design and hardware can be improved

easily with low cost the idea of this project is very much

suitable for such situation. The security and capacity of

the system can be improved by using the techniques such

as dynamic CDMA and code hopping. Thus this system

can be easily implemented, improved and used for secure

networks.

In this paper, we introduced the concept of overloaded

CDMA crossbars as the physical layer enabler of NoC

routers. In overloaded CDMA, the communication

channel is overloaded with nonorthogonal codes to

increase the channel capacity. Two crossbar architectures

that leverage the overloaded CDMA concept, namely, T-

OCI and P-OCI, are advanced to increase the CDMA

crossbar capacity, we exploited featured properties of the

Walsh spreading code family employed in the classical

CDMA crossbar to increase the number of router ports

sharing the crossbar without altering the simple

accumulator decoder architecture of the conventional

CDMA crossbar. Generation procedures of non-

orthogonal spreading codes are presented along with the

reference and pipelined architectures for each crossbar

variant. The T-/P-OCI crossbars were implemented.

Many future work directions are inspired by this paper

including exploiting the mathematical properties of the

code space to find additional nonorthogonal codes and

boost the CDMA interconnect capacity and exploring

more architectural optimizations of the OCI crossbar.

Moreover, we plan to investigate using the OCI-based

routers in different network topologies, evaluate their

performance using standard benchmarks, and study their

suitability for various applications.

REFERENCES

[1] K. Asanovic et al., “The landscape of parallel

computing research: A view from berkeley,” Dept.

EECS, Univ. California, Berkeley, CA, USA, Tech. Rep.

UCB/EECS-2006-183, 2006.

[2] P. Bogdan, “Mathematical modeling and control of

multifractal workloads for data-center-on-a-chip

optimization,” in Proc. 9th Int. Symp. Netw.-Chip, New

York, NY, USA, 2015, pp. 21:1–21:8.

[3] Z. Qian, P. Bogdan, G. Wei, C.-Y. Tsui, and R.

Marculescu, “A trafficaware adaptive routing algorithm

on a highly reconfigurable network-onchip architecture,”

in Proc. 8th IEEE/ACM/IFIP Int. Conf. Hardw./Softw.

Codesign, Syst. Synth., New York, NY, USA, Oct. 2012,

pp. 161–170.

[4] Y. Xue and P. Bogdan, “User cooperation network

coding approach for NoC performance improvement,” in

Proc. 9th Int. Symp. Netw.-Chip, New York, NY, USA,

Sep. 2015, pp. 17:1–17:8.

[5] T. Majumder, X. Li, P. Bogdan, and P. Pande, “NoC-

enabled multicore architectures for stochastic analysis of

 Page 80

biomolecular reactions,” in Proc. Design, Autom. Test

Eur. Conf. Exhibit. (DATE), San Jose, CA, USA, Mar.

2015, pp. 1102–1107.

[6] S. J. Hollis, C. Jackson, P. Bogdan, and R.

Marculescu, “Exploiting emergence in on-chip

interconnects,” IEEE Trans. Comput., vol. 63, no. 3, pp.

570–582, Mar. 2014.

[7] S. Kumar et al., “A network on chip architecture and

design methodology,” in Proc. IEEE Comput. Soc.

Annu. Symp. (VLSI), Apr. 2002, pp. 105–112.

