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Abstract 

On-chip interconnects are the achievement aqueduct in 

latest system-on-chips. Code-division multiple access 

(CDMA) has been proposed to apparatus on-chip 

crossbars due to its anchored latency, decreased 

adjudication overhead, and large bandwidth. In 

CDMA, average administration is enabled in the code 

amplitude by allotment a bound amount of N-chip 

length erect overextension codes to the processing 

elements administration the interconnect. In this paper, 

we improved overloaded CDMA interconnect (OCI) to 

enhance the accommodation of CDMA network-on-

chip (NoC) crossbars by accretion the amount of 

accessible overextension codes. Consecutive and 

alongside OCI architectonics variants are presented to 

attach to altered area, delay, and power requirements. 

Compared with the accepted CDMA crossbar, on a 

Xilinx Artix-7 AC701 FPGA kit, the consecutive OCI 

batten achieves 100% high bandwidth, 31% low power 

utilization, and 45% power saving, while the alongside 

OCI batten achieves N times higher bandwidth 

compared with the consecutive OCI batten at the 

amount of added length and power consumption. A 65- 

node OCI-based brilliant NoC is implemented, 

evaluated, and compared with an agnate amplitude 

analysis assorted admission based torus NoC for 

assorted constructed traffic patterns. The appraisal 

after-effects in agreement of the power appliance and 

throughput highlight the OCI as a able technology to 

design the physical layer of NoC routers. 

 

INTRODUCTION 

System on chip (SOC) is a complex interconnection of 

various functional elements. It creates communication 

bottleneck in the gigabit communication due to its bus 

based architecture [1]. Thus there was need of system 

that explicit modularity and parallelism, network on chip 

possess many such attractive properties and solve the 

problem of communication bottleneck. It basically works 

on the idea of interconnection of cores using on chip 

network. 

 

The communication on network on chip is carried out by 

means of router, so for implementing better NOC, the 

router should be efficiently design [2]. This router 

supports four parallel connections at the same time. It 

uses store and forward type of flow control and Fsm 

Controller deterministic routing which improves the 

performance of router. The switching mechanism used 

here is packet switching which is generally used on 

network on chip [3]. 

 

In packet switching the data the data transfers in the 

form of packets between cooperating routers and 

independent routing decision is taken. The store and 

forward flow mechanism is best because it does not 

reserve channels and thus does not lead to idle physical 

channels. The arbiter is of rotating priority scheme so 

that every channel once get chance to transfer its data. In 

this router both input and output buffering is used so that 

congestion can be avoided at both sides. 

 

FOUR PORT ROUTER ARCHITECTURE 

Router Architecture:   

The Four Router Design is done by using of the three 

blocks .the blocks are 8-Bit Register, Router controller 

and output block. the router controller is design by using 

FSM design and the output block consists of  three fifo’s  
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combined together the fifo’s are store packet of data and 

when u want to data that time the data read from the 

FIFO’s [4]. In this router design has three outputs that is 

8-Bit size and one 8_bit data port it using to drive the 

data into router we are using the global clock and reset 

signals, and the err signal and suspended data signals are 

output’s of the router .the FSM controller gives the err 

and suspended_data_in signals .this functions are 

discussed clearly in below FSM description. 

 
Figure 1: Four Port Router Architecture 

 

The router_reg module contains the status, data and 

parity registers for the Network router_1x3. 

These registers are latched to new status or input data 

through the control signals provided by the fsm_router 

[5]. 

There are 3 FIFO for each output port, which stores the 

data coming from input port based on the control signals 

provided by fsm_router module. 

The fsm_router block provides the control signals to the 

fifo, and router_reg module. The Router blocks Diagram 

shown below fig… 

Router blocks are  

 Register 

 Router controller(FSM) 

 FIFO Output Block 

 

Register Block: 

This module contains status, data and parity registers 

required by router. All the registers in this module are 

latched on rising edge of the clock. 

Data registers latches the data from data input based on 

state and status control signals, and this latched data is 

sent to the fifo for storage [6]. Apart from it, data is also 

latched into the parity registers for parity calculation and 

it is compared with the parity byte of the packet [7]. An 

error signal is generated if packet parity is not equal to 

the calculated parity. 

 
Figure 2- Register Block 

 

 If  reset is low then output (dout, err, parity_done and 

low_packet_valid) are low. 

The output  parity_done is high  

When the input ld_state is high and (fifo-full and 

packet_valid) is low or when the input laf_state and 

output low_packet_valid both are high and the previous 

value of parity_done is low. It is reseted to low value by 

reset_int_reg signal. 

 

The output low_packet_valid is high.  

When the input ld_state is high and packet_valid is 

low.It is reseted to low by reset_int_reg signal. 

  

First data byte i.e., header is latched inside the internal 

register first_byte when detect_add and packet_valid 

signals are high, So that it can be latched to output dout 

when lfd_state signal goes high. 

Then the input data i.e., payload is latched to output dout 

if ld_state signal is high and fifo_full is low. 

Then the input data i.e., parity is latched to output dout if 

ld_state signal is high and fifo_full is low.  

The input data is latched to internal register 

full_state_byte when ld_state and fifo_full are high; this 

full_state_byte data is latched inside the output dout 

when laf_state goes high. 
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Internal parity register stores the parity calculated for 

packet data, when packet is transmitted fully, the internal 

calculated parity is compared with parity byte of the 

packet. An error signal is generated if packet parity is not 

equal to the calculated parity. 

 
Figure 3-Register block synchronization 

In the above figure register block is synchronize with the 

fsm to latch input data to it. Here, clk, resetn signals are 

synchronous with the entire module. 

Eg: We are giving packet data as input to it and making 

read single (re1, re2, re3) as high w.r.t input first data 

byte of the packet. The receiving data is driven to the 

Router Controller for reaching its destination port. 

Which has 11 input pins (data_in [7:0],packet_valid , 

clk, reset).       

Eg: data_in=8’b10101010, clk, reset, packet_valid are 

HIGH 

 

Router Controller (FSM): 

This module generates all the control signals when new 

packet is sent to router. These control signals are used by 

other modules to send data at output, writing data into 

the fifo. 

 
Figure 4- Router Controller Block 

 
Figure 5 - Router Controller State diagram 

 

STATE – CHECK_PARITY_ERROR1 

In this state reset_int_reg signal is generated, which 

resets the status and parity registers inside the 

router_reg module. Neither any data is latched nor any 

input data is accepted. Router_reg compares the data 

parity from packet with calculated parity during this 

state.This state changes to default state 

DECODE_ADDRESS with next clock edge. 

 
Figure 6 FSM synchronization block 

Fsm block will synchronize register and fifo modules. 

The function of fsm is it taken data from data register 

and input data is latched to respective output based on 

header address which controls the function of design. So, 

it is called Router controller. 

 

It has 17 inputs and 32outputs. For designing it we 

having 14 
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states(decode_address,wait_till_empty,load_data0,load_

data1,load_data2,fifo_full0,fifo_full1,fifo_full2,load_par

ity0,load_parity1,load_parity2,check_parity0,check_pari

ty1,check_parity2).By this it takes independent decision 

for the data to reach its destination port. 

Eg: INPUT:  data_in from Registerblock=8’b10101010, 

fifo_full0, fifo_full1,fifo_full2 are LOW and fifo_emp0, 

fifo_emp1, fifo_emp2 are HIGH. 

OUPUT:data_out1,data_out2,wr_enb1,wr_enb2,suspend

_data,err,valid_ch1,valid_ch2   are LOW and 

data_out3,we_enb3,valid_ch3 are HIGH. 

 

Router Output Block:   

There are 3 fifos used in the router design. Each fifo is of 

8 bit width and 16 bit depth. 

The fifo works on system clock. It has synchronous input 

signal reset. 

If resetn is low then full =0, empty = 1 and data_out = 0 

 The FIFO has doing 3 deferent operations 

 Write Operation 

 Read operation 

 Read and Write Operation. 

 
Figure 7 FIFO Block 

 

The functionality of FIFO explain below: 

Write operation: 

The FIFO write operation is done by when the data from 

input data_in is sampled at rising edge of the clock when 

input write_enb is high and fifo is not full.in this 

condition onaly FIFO Write operation is done. 

Read Operation: 

The FIFO Read Operation is  The data is read from 

output data_out at rising edge of the clock, when 

read_enb is high and fifo is not empty. 

Read and Write operation can be done simultaneously. 

Full – it indicates that all the locations inside fifo has 

been written. 

Empty – it indicates that all the locations of fifo are 

empty. 

The Output Block of Network Router conisistes of three 

FIFO.Each FIFO is a 8-Bit data  Width and 16 bit data 

depth .the strcture of OUTPUT Block is shown in below 

fig.. 

 
Figure-8 Synchronization of Output Block with FSM 

 

This module provides synchronization between fsm and 

fifo modules. It provides faithful communication 

between single input port and three output ports.  

 

It will detect the address of channel and will latch it till 

packet_valid is asserted, address and write_enb_sel will 

be used for latching the incoming data into the fifo of 

that particular channel.A fifo_full output signal is 

generated, when the present fifo is full, and fifo_empty 

output signal is generated by the present fifo when it is 

empty.The output vld_out signal is generated when 

empty of present fifo goes low, that means present fifo is 

ready to read(vld_out_0 = ~empty_0,vld_out_1 = 

~empty, vld_out_2 = ~empty_2). 

The write_enb_reg signal which comes from the fsm is 

used to generate write_enb signal for the present fifo 

which is selected by present address. 

Eg: INPUT: clk,reset,read_enb are HIGH ,write_enb are 

LOW and data_in=8’b10101010. 

OUTPUT:full is LOW,empty is HIGH and 

data_out=10101010. 
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DESIGN ASPECTS AND APPROACH 

Register:  

It holds 8-bit values.Writing verilog code it should be 

declared as 8-bit width. 

Router Controller: 

For designing it we need finite state machine which 

controls all signals and we need states for 

controlling.The states should be for initializing data,wait 

for data until empty, loading data to respective port,if 

fifo is full w.r.t  port it  have to wait until empty,for 

parity byte loading and parity calculation.For initializing 

decode_state,for data waiting till empty 

wait_till_empty,for loading data load_data0, load_data1, 

load_data2,for checking  fifo is full   fifo_full0, 

fifo_full1, fifo_full2,for loading parity load_parity0, 

load_parity1, load_parity2    and for parity calculation 

check_parity0, check_parity01,check_parity2 totally we 

need 14 states having 4-bit width.But 4-bit it will give 16 

states i.e full case.So, we are using only 14 states i.e 

parallel case. States represent as parameter keyword by 

this state value can’t change throughout the design.For 

this design block we written in verilog code in 

behavioral model. 

 

First we verifying whether it is reseting or not and when 

packet_valid signal is the data(10101010) is driving to 

w.r.t output port(fifo2) when it making low data is 

loading to load parity for parity calculation.And also 

verified whether it is switching to another port  with 

another data(10101000) when reseting and also driven 

some bytes of data to the port.Testbench is written in 

verilog code. 

 

FIFO: 

It is 8-bit width and 16-bit depth.For fifo full or empty 

we are taking fifo_full and fifo_empty signals.For the 

status of full or empty of fifo we need a internal counter 

for counting it locations upto 16 locations it mean it is 4-

bit wide.Input signals.          

 

They are data_in(8-bit),were,clk,resetn and output 

signals are data_ou(8-bit),t,fifo_empty,fifo_full.Data is 

driven when write and not fifo full and  it read when read 

and not fifo empty.RTL code it is written in verilog code 

in behavioral model. 

 

It is verified by giving 16 bytes of data in data_in ,we is 

high then fifo_full becomes  high.When it is high data 

can’t be written into it.We get output in data_out and re 

is high it given all 16 bytes of data which we had driven 

after that fifo_empty is high then we can’t read data and 

we also verified when both we and re signals are high it 

is written in verilog code. 

 

Top module:  

In this module we synchronized register, router 

controller, fifo blocks for that we calling all the modules 

with .name instance declaration and developing a design 

plan with these blocks as data_in is driven to register 

block, routing data to respective port decision taken by 

router controller and we are considering three fifo as 

output port. Same clock is given to all blocks i.e clock is 

synchronous. Code it is written in verilog code.  

 
Fig 9: Block diagram of top module 

 

CDMA Transmitter 

The eight bit input data corresponding to a particular 

user is converted into serial form by an eight bit PISO. 

The PISO is clocked by Fmaster divided by 15 clock 

where Fmaster is 0.5GHz. Then it is spreaded by the 15 

bit PN code. The PN code generator is clocked by 

Fmaster. Spreaded data of all the four users are summed 

up and generated the signal to be transmitted. 
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Fig 10: CDMA Transmitter 

 

CDMA Receiver:  

After de spreading the received signal with the 

corresponding code, it is compared with the same PN 

code, which is converted into parallel, using an 8 bit 

comparator. The comparator uses 0.33GHz clock 

frequency. If the actual transmitted data was a high then 

the de spread output will be same as that of the PN 

sequence. So the comparison function is performed in 

such a way that, it compares the de spread output with 

PN sequence. If it is same, then it can be concluded that 

the data send is a high and if it is not, then the data will 

be a low. So the comparator output corresponds to the 

actual transmitted data of a particular user. Thus it is able 

to reconstruct the original data from the spreaded output. 

 
Fig 11: CDMA Receiver 

PN sequence generator 

Linear feedback shift registers are used for generating 

PN sequences. Components of D ip ops are used for this 

since structural modeling is used. To generate the 

sequence, rst it is necessary to initialize the ip ops to a 

particular value. Since 15 bit long PN sequence is being 

used, four ip ops are required and these four ip ops are 

required to be initialized. For that purpose, init signals 

are used. After the initialization, the xor feedback logic 

will provide a method to generate a PN sequence. 

Orthogonal sequences are required in this system. Time 

shifted versions of a PN sequence will be nearly 

orthogonal. So to shift the sequences, shift registers are 

used in which the sequence is given as input to the 

registers. The outputs from intermediate ip ops are taken 

which will be time shifted. So at the output of PN 

generator four PN sequences are obtained. 

 
Fig. 12. High-level architecture and building blocks 

of the OCI crossbar. (a) TOCI/P-OCI hybrid 

encoder. (b) T-OCI nonorthogonal decoder. (c) P-

OCI nonorthogonal decoder. (d) T-OCI pipelined 

crossbar tree adder, in which the adder is replicated 

N times for P-OCI crossbar. (e) P-OCI orthogonal 

decoder. (f) T-OCI orthogonal decoder. 
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The CDMA router has M transmit/receive ports. The 

main difference between the overloaded and classical 

CDMA routers is that M > N −1 for the former due to 

channel overloading. Each PE is connected to two 

network interfaces (NIs), transmit and receive NI 

modules.  

 

During packet transmission from a PE, the packet is 

divided into flits to be stored in the transmit NI first-

input first output (FIFO). The router arbiter then selects 

M winning flits at most from the top of the NI FIFOs to 

be transmitted during the current transaction.  

 

The selected flits must all have an exclusive destination 

address to prevent conflicts, and a winner from two 

conflicting flits is selected according to the router’s 

priority scheme. The employed priority scheme is the 

fixed winner that takes all priority schemes; only one of 

the transmitters is given a spreading code and is 

acknowledged to start encoding. Once done, the router 

assigns CDMA codes to each transmit and receive NI. 

NIs with empty FIFOs or conflicting destinations are 

assigned all-zero CDMA codes such that they do not 

contribute MAI to the CDMA channel sum. Afterward, 

flits from each NI are spread by the CDMA codes in the 

encoder module. 

 

The data are spread into N chips, where N is the CDMA 

code length that equals the number of clock cycles in a 

single crossbar transaction. Spread data chips from all 

encoders are summed by the CDMA crossbar adder and 

the sum is sent out serially to all decoders. The 

encoding/decoding process lasts for N clock cycles 

synchronized via a counter. At each decoder, the 

assigned code is cross correlated with the received sum 

to decode the data from the summed chips. The decoded 

flits are stored in the receive NI FIFOs until they are read 

by the PEs. In this paper, we focus on the high-level 

architecture and implementation details of the 

overloaded CDMA crossbar represented by the gray 

block in Fig. 1(a). A store and forward flow control and 

a deterministic routing algorithm are employed in the 

OCI router. The routing algorithm lies at the network 

layer, which is a higher layer than the physical layer 

containing the crossbar switch. According to the OSI 

model design principles, each layer of the model exists 

as an independent layer. Theoretically, one can substitute 

one protocol for another at any given layer without 

affecting the operation of layers above or below. Thus, 

using the same flow control protocol and routing 

algorithm enables comparing the OCI-based router with 

SDMA- and TDMA-based routers. 

 

A. OCI Crossbar High-Level Architecture 

The main objective of this paper is increasing the 

number of ports sharing the ordinary CDMA crossbar 

presented, while keeping the system complexity 

unchanged using simple encoding circuitry and relying 

on the accumulator decoder with minimal changes. To 

achieve this goal, some modifications to the classical 

CDMA crossbar are advanced. Fig. 2 depicts the high-

level architecture of the OCI crossbar for a single-bit 

interconnection. The same architecture is replicated for a 

multibit CDMA router.  

 

M TX-RX ports share the CDMA router, where spread 

data from the transmit ports are added using an 

arithmetic binary adder having M binary inputs and an 

m-bit output, where m = _log2 M_. The adder is 

implemented in both the reference and pipelined 

architectures. 

 

A controller block is used for code assignment and 

arbitration tasks. Each PE is interfaced to an 

encoder/decoder wrapper enabling data 

spreading/despreading. Unlike orthogonal spreading 

codes, which are XORed with the binary data bit, an 

AND gate is utilized to spread data using nonorthogonal 

spreading codes. The AND gate encoder works as 

follows: if the transmitted data bit is “0,” it sends a 

stream of zeros during the whole spreading cycle, which 

does not cause MAI on the channel; if the transmitted 

data bit is “1,” the encoder sends a nonorthogonal 

spreading code. Therefore, the additional MAI spreading 

code will either contribute an MAI value of one or zero 

each clock cycle because the encoder is an AND gate. 
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The XOR encoder of the ordinary CDMA crossbar 

cannot be used to encode the OCI codes because it only 

complements the spreading code chips, so an XOR gate 

will cause MAI to the crossbar whether the data bit is 

“0” or “1.” A hybrid encoder is developed for both 

orthogonal and nonorthogonal spreading with an XOR 

gate, an AND gate, and a multiplexer unit, as shown in 

Fig. 2. Two decoder types are implemented for 

orthogonal and nonorthogonal data. More details about 

each component of the OCI crossbar will be presented. 

 

B. OCI Code Design 

The Walsh–Hadamard spreading code family has a 

featured property that enables CDMA interconnect 

overloading. The difference between any consecutive 

channel sums of data spread by the orthogonal spreading 

codes for an odd number of TX-RX pairs M is always 

even, regardless of the spread data. This property means 

that for the N − 1 TX-RX pairs using the Walsh 

orthogonal codes, one can encode additional N − 1 data 

bits in consecutive differences between the N chips 

composing the orthogonal code. Thus, exploiting this 

property enables adding 100% nonorthogonal spreading 

codes, which can double the capacity of the ordinary 

CDMA crossbar. 

 

In this section, the code design methodology, 

mathematical foundations, and the decoding details of 

the OCI codes are providedS. An AND gate encoder is 

used to encode data with nonorthogonal spreading codes 

as shown in Fig. 2(a).  

Therefore, for a nonorthogonal encoder, if data to 

transmit are one, a single spreading chip at a specific 

time slot in the spreading cycle is added to the channel 

sum, which causes the consecutive sum difference to 

deviate. The nonorthogonal codes imitate the TDMA 

signaling scheme as each code is composed of a single 

chip of “1” sent in a specific time slot. 

 

The encoding/decoding scheme presented in this paper 

provide a novel approach that enables coexistence 

between CDMA and TDMA signals in the same shared 

medium. Therefore, the developed encoder is called 

TDMA overloaded on CDMA interconnect (T-OCI). 

Fig. 3 shows an encoding/decoding example of two T-

OCI codes for a spreading code of length N = 8. An odd 

number of orthogonal codes must be used 

simultaneously to preserve the even difference property 

of Walsh codes.  

 

where S is the N-cycle waveform of the channel sum, 

dC( j ) is the orthogonal CDMA data bit sent by the j th 

user, dT ( j ) is the nonorthogonal TDMA data bit sent by 

the j th, Co( j ) is the orthogonal code assigned to the j th 

user, and T ( j−N +1) is the TDMA code assigned to the j 

th user. The TDMA code T (i ) is a single chip of “1” 

assigned at the i th time slot. 

 

The TDMA term of the equation is the sum of products 

of TDMA chips and their corresponding data bits. This 

term can be viewed as another N-chip spreading code 

added to the orthogonal spread data represented by the 

first term of the equation. It should be indicated that the 

first chip of the TDMA MAI code is always set to zero 

(T (1) = 0), and the remaining N − 1 chips are assigned 

according to the encoded data bits; this note is the key to 

properly decode both orthogonal and nonorthogonal 

spread data.  

 

C. OCI Crossbar Building Blocks 

Two variants are realized for each OCI crossbar, 

reference and pipelined architectures. The pipelined 

architecture is implemented to increase the crossbar 

operating frequency, and consequently, bandwidth by 

adding nonfunctional pipelining registers to reduce the 

crossbar critical path. The OCI crossbar shown in Fig. 2 

is basically composed of three main building blocks: 1) 

the encoder wrappers; 2) the decoder wrappers; and 3) 

the crossbar adder blocks, which are described in the 

following. 

1) Crossbar Controller: At the beginning of each 

crossbar transaction, the controller assigns spreading 

codes to different encoders. 

 

The assignment of orthogonal dispreading codes to 

receive ports is fixed, i.e., does not change between the 
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crossbar transactions. Therefore, for a router port to 

initiate the communication with the receive port .    

 

Encoder must be assigned a spreading code that matches 

the destined decoder. If two different ports request to 

address the same decoder, the controller allows one 

access and suspends the other according to a predefined 

arbitration scheme. This code assignment scheme is 

called receiver-based protocol. In this paper, a static 

allocation scheme that allocates fixed spreading codes to 

all encoders is used. To interconnect a large number of 

PEs, a torus, star, or hybrid NoC topology can be 

realized where the assignment of spreading codes is local 

to each router. Consequently, each new packet arriving 

at a router is assigned a spreading code corresponding to 

its exit port decoder. The crossbar controller issues 

handshake signals to the transmit and receive ports with 

matching spreading codes to enable the transmitter 

encoders and receiver decoders. 

 

2) Hybrid Encoder: The encoder is hybrid, it can 

encode both orthogonal and nonorthogonal data. A 

transmitted data bit is XORed/ANDed with the spreading 

code to produce the orthogonal/nonorthogonal spread 

data, respectively. A multiplexer chooses between the 

orthogonal and nonorthogonal inputs according to the 

code type assigned to the encoder as depicted by Fig. 

2(a). The encoder is replicated N times for the P-OCI 

crossbar. 

 

3) Crossbar Adder: For a spreading code set of length 

N, the number of crossbar TX-RX ports is equal to M 

=2(N − 1). In the T-OCI crossbar, sending a “1” chip to 

the adder is mutually exclusive between nonorthogonal 

transmit ports according to the T-OCI encoding scheme. 

This indicates that among the 2(N−1) inputs to the adder, 

there are guaranteed (N − 2) zeros, while the maximum 

number of “1” chips is N. Therefore, a multiplexer is 

instantiated to select only a single input of the 

nonorthogonal TDMA encoded data bits and discard the 

remaining bits that are guaranteed to be “0.” Thus, the 

adder has only N-bit inputs, N−1 from orthogonal 

encoders, and 1 from the multiplexer, as shown in Fig. 

2(d). The sum produced by the adder circuit needs (log2 

N) wires. The number of needed stages of registers to 

pipeline the adder is (log2 N), as depicted in Fig. 2(d). N 

replicas of the crossbar adder are instantiated for the 

parallel encoding adopted in the P-OCI crossbar. 

 

4) Custom Decoder: There are four decoder types for 

different CDMA decoding techniques: the orthogonal T-

OCI and P-OCI decoders and the overloaded T-OCI and 

P-OCI decoders.  

 

The orthogonal T-OCI decoder is an accumulator 

implementation of the correlator receiver. N − 1 

accumulator decoders are instantiated in all CDMA 

crossbar types for orthogonal data despreading. Instead 

of implementing two different accumulators (the zero 

and one accumulator), an up–down accumulator is 

implemented and the accumulated result is the difference 

between the two accumulators of the conventional 

CDMA decoder as shown in Fig. 2(f). The accumulator 

adds or subtracts the crossbar sum values according to 

the despreading code chip and resets every N cycles. The 

sign bit of the accumulated value directly indicates the 

decoded data bit, where the positive sign is decoded as 

“1,” while the negative sign is decoded as “0.” The P-

OCI orthogonal decoder shown in Fig. 2(e) differs from 

the T-OCI orthogonal decoder in receiving the adder 

sum values concurrently not sequentially; therefore, the 

accumulator loop is unrolled into a parallel adder. 

 

The T-OCI overloaded decoder depicted in Fig. 2(b) is 

composed of a 2-bit register to store the LSBs of two 

sum values, first of which is S(0) and the second is S( j − 

N + 1), where j is the number of the T-OCI decoders (N 

≤ j ≤ 2N − 2). The two bits are fed to the XOR gate, 

which decodes nonorthogonal spread data. The T-OCI 

decoder is replicated N times to implement the P-OCI 

decoder of Fig. 2(c). The 2-bit register is not needed 

anymore because the S(0) and S( j−N+1) values exist in 

the same cycle. The T-OCI and P-OCI crossbar 

architectures contain (N − 1) orthogonal decoders and (N 

− 1) overloaded decoders. 
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SIMULATION AND SYNTHSIS RESULTS 

OUTPUT WAVEFORM: 

 
Fig 13: Simulation results of scheme1 

 
Fig 14: Simulation results of scheme2 

 
Fig 15: Simulation results of scheme3 

 

CONCLUSION 

The designed system can be used to implement a secure 

centralized data transfer in a local network. The 

transmitter receiver module to use can be RF, Bluetooth, 

zigbee or any other techniques which can be selected on 

the basis of range requirement. Also the system can be 

used to transfer s ensed data inside an industry, where 

the environment is comparatively noise free and 

insecure. Since the design and hardware can be improved 

easily with low cost the idea of this project is very much 

suitable for such situation. The security and capacity of 

the system can be improved by using the techniques such 

as dynamic CDMA and code hopping. Thus this system 

can be easily implemented, improved and used for secure 

networks. 

 

In this paper, we introduced the concept of overloaded 

CDMA crossbars as the physical layer enabler of NoC 

routers. In overloaded CDMA, the communication 

channel is overloaded with nonorthogonal codes to 

increase the channel capacity. Two crossbar architectures 

that leverage the overloaded CDMA concept, namely, T-

OCI and P-OCI, are advanced to increase the CDMA 

crossbar capacity, we exploited featured properties of the 

Walsh spreading code family employed in the classical 

CDMA crossbar to increase the number of router ports 

sharing the crossbar without altering the simple 

accumulator decoder architecture of the conventional 

CDMA crossbar. Generation procedures of non-

orthogonal spreading codes are presented along with the 

reference and pipelined architectures for each crossbar 

variant. The T-/P-OCI crossbars were implemented.  

 

Many future work directions are inspired by this paper 

including exploiting the mathematical properties of the 

code space to find additional nonorthogonal codes and 

boost the CDMA interconnect capacity and exploring 

more architectural optimizations of the OCI crossbar. 

Moreover, we plan to investigate using the OCI-based 

routers in different network topologies, evaluate their 

performance using standard benchmarks, and study their 

suitability for various applications. 
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