

 Page 111

Design and Implementation of High Speed and Low Power Adder

by Using Prefix Tree Structure
Ganji Anitha

Department of Electronics and

Communication Engineering,

Holymary Institute of Technology

and Science, Bogaram, Keesara,

Medchal, Telangana 501301,

India.

Neelapala Sai Sruthi

Department of Electronics and

Communication Engineering,

Holymary Institute of Technology

and Science, Bogaram, Keesara,

Medchal, Telangana 501301,

India.

Savitha Suman

Department of Electronics and

Communication Engineering,

Holymary Institute of Technology

and Science, Bogaram, Keesara,

Medchal, Telangana 501301,

India.

Abstract:

Parallel-prefix adders (also known as carry-tree

adders) are known to have the best performance in

VLSI designs compared to that of conventional Ripple

Carry Adder (RCA). However, each type of parallel

prefix adder has its own pros and cons and are chosen

according to the design requirement of the application.

This paper investigates mainly two types of carry-tree

adders, the brent kungg adder and the Kogge-Stone

adder and compares them. These designs were

implemented on a Xilinx Virtex 5 FPGA and found

that brent kungg adder occupies less area compared to

that of the koggestone adder because of its minimal

number of usage of nodes and lesser wiring

interconnects. And 128 and 144 bit widths of the

Koggestone adder were also designed and compared to

the corresponding bitwidths of the ripplecarry adder

and found ripple carry performs faster up to 128 bit

and as bitwidths increase beyond 128 bits parallel

pefix adders performs faster.

Keywords:

RCA, FPGA, ASIC, VLSI

INTRODUCTION:

The binary adder is the critical element in most digital

and microprocessor data path units. As such, extensive

research continues to be focused on improving the

power-delay performance of the adder. In VLSI

implementations, parallel-prefix adders are known to

have the best performance.

Reconfigurable logic such as Field Programmable

Gate Arrays (FPGAs) has been gaining in popularity in

recent years because it offers improved performance in

terms of speed and power over DSP-based and

microprocessor based solutions for many practical

designs involving mobile DSP and

telecommunications applications and a significant

reduction in development time and cost over

Application Specific Integrated Circuit (ASIC)

designs. The power advantage is especially important

with the growing popularity of mobile and portable

electronics, which make extensive use of DSP

functions. However, because of the structure of the

configurable logic and routing resources in FPGAs,

parallel-prefix adders will have a different

performance than VLSI implementations. In particular,

most modern FPGAs employ a fast-carry chain which

optimizes the carry path for the simple Ripple Carry

Adder (RCA). In this paper, the practical issues

involved in designing and implementing tree-based

adders on FPGAs are described. Several tree-based

adder structures are implemented and characterized on

a FPGA and compared with the Ripple Carry Adder

(RCA). Finally, some conclusions and suggestions for

improving FPGA designs to enable better tree-based

adder performance are given.

Cite this article as: Ganji Anitha, Neelapala Sai Sruthi & Savitha

Suman, "Design and Implementation of High Speed and Low

Power Adder by Using Prefix Tree Structure", International

Journal & Magazine of Engineering, Technology, Management

and Research, Volume 6, Issue 1, 2019, Page 111-115.

 Page 112

Carry-Tree Adder Designs Parallel-prefix adders, also

known as carry-tree adders, precompute the propagate

and generate signals [1]. These signals are variously

combined using the fundamental carry operator (fco)

[2]. (gL , pL) ο (gR, pR) = (gL + pL •gR, pL • pR) (1)

Due to associative property of the fco, these operators

can be combined in different ways to form various

adder structures. For, example the four-bit carry-

lookahead generator is given by: c4 = (g4, p4) ο [(g3,

p3) ο [(g2, p2) ο (g1, p1)]] (2).

A simple rearrangement of the order of operations

allows parallel operation, resulting in a more efficient

tree structure for this four bit example: c4 = [(g4, p4) ο

(g3, p3)] ο [(g2, p2) ο (g1, p1)] (3) It is readily

apparent that a key advantage of the tree-structured

adder is that the critical path due to the carry delay is

on the order of log2N for an N-bit wide adder. The

arrangement of the prefix network gives rise to various

families of adders. For a discussion of the various

carry-tree structures, see [1, 3]. For this study, the

focus is on the Kogge-Stone adder [4], known for

having minimal logic depth and fanout (see Fig. 1(a)).

Here we designate BC as the black cell which

generates the ordered pair in equation (1); the Gray

Cell (GC) generates the left signal only, following [1].

The interconnect area is known to be high, but for an

FPGA with large routing overhead to begin with, this

is not as important as in a VLSI implementation. The

regularity of the Kogge-Stone prefix network has built

in redundancy which has implications for fault-tolerant

designs [5]. The sparse Kogge-Stone adder, shown in

Fig 1(b), is also studied. This hybrid design completes

the summation process with a 4 bit RCA allowing the

carry prefix network to be simplified. Another kind of

carry tree adder, brent kungg adder is also

implemented as shown in fig. 2.

The general form of the koggestone adder and Sparse

koggestone adder is shown in fig. 2(a), 2(b). Another

kind of carry tree for general consideration we have is

Spanning tree Carry-Lookahead (CLA) Adder. Like

the sparse Kogge-Stone adder, this design terminates

with a 4-bit RCA.

The implementation structure of sparse koggestone

adder is shown in fig. 2(b). Sparse kogge stone has

RCA’s and redundancy is reduced compared to its

previous adder.

In the authors considered several parallel prefix

adders implemented on a Xilinx Virtex 5 FPGA. It is

found that the simple RCA adder is superior to the

parallel prefix designs because the RCA can take

advantage of the fast carry chain on the FPGA. This

study focuses on carry-tree adders implemented on a

Xilinx Virtex 5 FPGA.

 Page 113

Here we consider tree-based adders and a hybrid form

which combines a tree structure with a ripple-carry

design. The Kogge-Stone adder is chosen as a

representative of the former type and the sparse

Kogge-Stone and spanning tree adder are

representative of the latter category. However for

designing 128 bit width koggestone adder a series of

16 bit koggestone adders of eight number are placed in

parallel.The operation between these stages are

maintained by connecting the carry out of the present

stage to the next stage and so on for each stage until

the final eighth stage of adder.The output carry of the

final stage is considered as the total carry out of the

128 bit adder and hence intermediate carry’s are not

vital in this scenario. Similarly the same is the case for

designing 144 bit adder where the difference is it has

an extra 16 bit stage compared to the 128 bit adder.

Similarly the designing of other carry tree adders like

sparse kogge stone adder and spanning tree adder for

various bit widths can also be studied. Another kind of

parallel prefix adder proposed in this paper is brent

kungg adder. The 16 bit architecture of the brent

kungg adder is shown in fig. 3.This adder is a

combination of forward carry tree and an inverse carry

tree .Forward carry tree is same as sparsekogge stone

adder. Compared to the koggestone adder it has the

advantage of occupying lesser area which has become

possible because of the reduced number of black cells

and grey cells and interconnects as well.The logic

levels are also reduced.Power consumption is also

comparatively low in brent kungg adder.

However as the bitwidth increases Brentkungg adder

would not be a preferred choice in the perspective of

speed(delay is increased) because of its routing

complexity which increases proportional to the

bitwidth.Sparsekogge stone adder and spanning tree

adder has reduced redundancy compared to

koggestone . But our focus in this paper is with brent

kungg and koggestone adder.

Method of Study

The adders to be studied were designed with varied bit

widths of 16 bits, 128 bits and 144 bits coded in

Verilog. The functionality of the designs were verified

via simulation with ModelSim. The Xilinx ISE 10.1

software was used to synthesize the designs onto the

Virtex 5 FPGA and delay measurements are made

using quartus software. The parallel prefix network

was analyzed to determine if a specific pattern could

be used to extract the worst case delay. Considering

the structure of the Generate- Propagate (GP) blocks

(i.e., the BC and GC cells), we were able to develop

the following scheme, by considering the following

subset of input values to the GP blocks

If we arbitrarily assign the (g, p) ordered pairs the

values (1,0) = True and (0, 1) = False, then the table is

self-contained and forms an OR truth table.

Furthermore, if both inputs to the GP block are False,

then the output is False; conversely, if both inputs are

True, then the output is True. Hence, an input pattern

that alternates between generating the (g, p) pairs of (1,

0) and (0, 1) will force its GP pair block to alternate

states. Likewise, it is easily seen that the GP blocks

being fed by its predecessors will also alternate states.

Therefore, this scheme will ensure that a worse case

delay will be generated in the parallel prefix network

since every block will be active.

 Page 114

In order to ensure this scheme works, the parallel

prefix adders were synthesized with the “Keep

Hierarchy” design setting turned on (otherwise, the

FPGA compiler attempts to reorganize the logic

assigned to each LUT). With this option turned on, it

ensures that each GP block is mapped to one LUT,

preserving the basic parallel prefix structure, and

ensuring that this test strategy is effective for

determining the critical delay.

Discussion of Results

The design summary of brentkungg adder obtained

from the Xilinx ISE synthesis reports are shown in Fig.

5.The number of slice Look Up Tables(LUT’s) utilized

is 29 where as the koogestone adder utilizes 68 slice

LUT’s.Hence there is a drastic reduction in number of

slices that a brentkungg adder utilize for

implementation.

The other carry tree adders also requires more area

compared to brent kungg adder. The table 2 shows the

percentage reduction in the area in the perspective of

slice LUT’s occupancy of various parallel prefix

adders.

The dealy measurement for ripple carry adder and

koggestone adder are made with quartus software for

varied bit widths of 16 bits, 128 bits and 144 bits.It is

observed that ripple carry adder performs faster up to

128 bits and as the bitwidth goes beyond koggestone

adder operates faster.The figure 6 depicts the plot of

bitwidth vs delay.

However, the spanning tree adder is significantly

slower at higher bit widths. The structure of the

spanning tree adder results in an extra stage of logic

for some adder outputs compared to the Kogge-

StoneThe delay of ripple carry adder for 16 bit is

obtained as 9.166ns which is comparatively less than a

delay of Carry tree adder(Koggestone adder) which is

9.563 ns. And similarly same is the case with 128 bit

adders whose delays are registered as 113.224ns and

133.701ns for RCA and KSA adders respectively. But

for 144 bitwidth they are obtained as 138.243ns for

RCAand 130.389ns for KSA. Hence for 144 bit adders

Carry tree adders(Kogge stone adder) has lesser delay

than RCA and therefore performs faster.The table 3

shows the delays of all adders with varied btwidths.

Summary and Future Work

The koggestone adder and brentkungg adder have been

designed and synthesized.The adder of latter type is

found to occupy lessslice of LUT’s compared to

former type.The delay however brent kunng adder is

not a preferred choice in case of higher bitwidths.

 Page 115

Throughout, there were several adder topologies with

different advantages and disadvantages and I finally

came to the decision to choose Brentkung adder

architecture. Its implementation was simpler than

Radix-4 Kogge-Stonetree.As a result the layout of the

circuit would be less complicated. Even though it is

almost equals koggestone adder in terms of dealy it

can be used for lesser routing complexity applications.

The carry-tree adders eventually surpass the

performance of the linear adder designs at high

bitwidths,expected to be in the 128 to 256 bit range.

To make the brentkungg adder to operate as fast as

possible, we can look into some ideas to minimize the

propagation delay such as modifying the Brent-Kung

tree, added 3 more dot products and cut the number of

stages for the critical path from 7 to 5. For the Brent-

Kung tree in order to get the carryout C14, the adder

has to wait for the product of C7&C11, then C11&13

and finally C13&P14. On the other hand for the idea of

making Brent-Kung tree C7 directly producted with

C13 at the fourth stage. This helps the C14 to be

available at the fifth stage. This can be a topic of future

research and should understand how good this can be

implemented retaining its original properties.

References:

[1] N. H. E. Weste, D. Harris,"CMOS VLSI Design",

4th edition, Pearson–Addison-Wesley, 2011.

[2] R. P. Brent, H. T. Kung,“A regular layout for

parallel adders”, IEEE Trans. Comput., vol. C-31, pp.

260-264, 1982.

[3] S. Knowles,“A Family of Adders”, Proc. 15th

IEEE Symposium onComputer Arithmetic, pp 277-

281, 2001.

[4] M. M. Ziegler, M. R. Stan,“A Unified Design

Space for Regular Parallel Prefix Adders”, IEEE

Journal of Design, Automation and Test in Europe

Conference and Exhibition, Vol. 2, pp 1386 - 1387,

2004.

[5] T. Hans, D. A Carlson,“Fast Area-Efficient VLSI

Adders”, Proc. 8thIEEE Symposium on Computer

Arithmetic, pp 49- 56, 1987.

[6] Y. Choi,“Parallel Prefix Adder Design”, Proc. 17th

IEEE Symposium onComputer Arithmetic, pp 90-98,

27th June 2005.

[7] V. Ionescu, I. Bostan, L. Ionescu,“Systematic

Design for IntegratedDigital Circuit Structures”, IEEE

Journal of Semiconductor Conference,2004, Vol. 2, pp

467 – 470, 2004.

[8] R. E. Ladner, M. J. Fischer, “Parallel Prefix

Computation”, JACM, Vol. 27-4, pp 831-838, 1980.

[9] P. M. Kogge, H. S. Stone,“A Parallel Algorithm for

the Efficient Solution of a General Class of Recurrence

Equations”, IEEE Trans. on Computers, Vol. C-22,

No. 8, August 1973.

[10] K. Vitoroulis, A. J. Al-Khalili,“Performance of

Parallel Prefix Adders Implemented with FPGA

technology”, IEEE Northeast Workshop on Circuits

and Systems, pp. 498-501, Aug. 2007. 172.

