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Abstract:  

Parallel-prefix adders (also known as carry-tree 

adders) are known to have the best performance in 

VLSI designs compared to that of conventional Ripple 

Carry Adder (RCA). However, each type of parallel 

prefix adder has its own pros and cons and are chosen 

according to the design requirement of the application. 

This paper investigates mainly two types of carry-tree 

adders, the brent kungg adder and the Kogge-Stone 

adder and compares them. These designs were 

implemented on a Xilinx Virtex 5 FPGA and found 

that brent kungg adder occupies less area compared to 

that of the koggestone adder because of its minimal 

number of usage of nodes and lesser wiring 

interconnects. And 128 and 144 bit widths of the 

Koggestone adder were also designed and compared to 

the corresponding bitwidths of the ripplecarry adder 

and found ripple carry performs faster up to 128 bit 

and as bitwidths increase beyond 128 bits parallel 

pefix adders performs faster. 
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INTRODUCTION: 

The binary adder is the critical element in most digital 

and microprocessor data path units. As such, extensive 

research continues to be focused on improving the 

power-delay performance of the adder. In VLSI 

implementations, parallel-prefix adders are known to 

have the best performance.  

 

 

Reconfigurable logic such as Field Programmable 

Gate Arrays (FPGAs) has been gaining in popularity in 

recent years because it offers improved performance in 

terms of speed and power over DSP-based and 

microprocessor based solutions for many practical 

designs involving mobile DSP and 

telecommunications applications and a significant 

reduction in development time and cost over 

Application Specific Integrated Circuit (ASIC) 

designs. The power advantage is especially important 

with the growing popularity of mobile and portable 

electronics, which make extensive use of DSP 

functions. However, because of the structure of the 

configurable logic and routing resources in FPGAs, 

parallel-prefix adders will have a different 

performance than VLSI implementations. In particular, 

most modern FPGAs employ a fast-carry chain which 

optimizes the carry path for the simple Ripple Carry 

Adder (RCA). In this paper, the practical issues 

involved in designing and implementing tree-based 

adders on FPGAs are described. Several tree-based 

adder structures are implemented and characterized on 

a FPGA and compared with the Ripple Carry Adder 

(RCA). Finally, some conclusions and suggestions for 

improving FPGA designs to enable better tree-based 

adder performance are given.  
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Carry-Tree Adder Designs Parallel-prefix adders, also 

known as carry-tree adders, precompute the propagate 

and generate signals [1]. These signals are variously 

combined using the fundamental carry operator (fco) 

[2]. (gL , pL ) ο (gR, pR) = (gL + pL •gR, pL • pR) (1) 

Due to associative property of the fco, these operators 

can be combined in different ways to form various 

adder structures. For, example the four-bit carry-

lookahead generator is given by: c4 = (g4, p4) ο [(g3, 

p3) ο [(g2, p2) ο (g1, p1)] ] (2).  

 

A simple rearrangement of the order of operations 

allows parallel operation, resulting in a more efficient 

tree structure for this four bit example: c4 = [(g4, p4) ο 

(g3, p3)] ο [(g2, p2) ο (g1, p1)] (3) It is readily 

apparent that a key advantage of the tree-structured 

adder is that the critical path due to the carry delay is 

on the order of log2N for an N-bit wide adder. The 

arrangement of the prefix network gives rise to various 

families of adders. For a discussion of the various 

carry-tree structures, see [1, 3]. For this study, the 

focus is on the Kogge-Stone adder [4], known for 

having minimal logic depth and fanout (see Fig. 1(a)).  

 

Here we designate BC as the black cell which 

generates the ordered pair in equation (1); the Gray 

Cell (GC) generates the left signal only, following [1]. 

The interconnect area is known to be high, but for an 

FPGA with large routing overhead to begin with, this 

is not as important as in a VLSI implementation. The 

regularity of the Kogge-Stone prefix network has built 

in redundancy which has implications for fault-tolerant 

designs [5]. The sparse Kogge-Stone adder, shown in 

Fig 1(b), is also studied. This hybrid design completes 

the summation process with a 4 bit RCA allowing the 

carry prefix network to be simplified. Another kind of 

carry tree adder, brent kungg adder is also 

implemented as shown in fig. 2. 

 
 

The general form of the koggestone adder and Sparse 

koggestone adder is shown in fig. 2(a), 2(b). Another 

kind of carry tree for general consideration we have is 

Spanning tree Carry-Lookahead (CLA) Adder. Like 

the sparse Kogge-Stone adder, this design terminates 

with a 4-bit RCA. 

 
The implementation structure of sparse koggestone 

adder is shown in fig. 2(b). Sparse kogge stone has 

RCA’s and redundancy is reduced compared to its 

previous adder. 

  

In  the authors considered several parallel prefix 

adders implemented on a Xilinx Virtex 5 FPGA. It is 

found that the simple RCA adder is superior to the 

parallel prefix designs because the RCA can take 

advantage of the fast carry chain on the FPGA. This 

study focuses on carry-tree adders implemented on a 

Xilinx Virtex 5 FPGA.  
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Here we consider tree-based adders and a hybrid form 

which combines a tree structure with a ripple-carry 

design. The Kogge-Stone adder is chosen as a 

representative of the former type and the sparse 

Kogge-Stone and spanning tree adder are 

representative of the latter category. However for 

designing 128 bit width koggestone adder a series of 

16 bit koggestone adders of eight number are placed in 

parallel.The operation between these stages are 

maintained by connecting the carry out of the present 

stage to the next stage and so on for each stage until 

the final eighth stage of adder.The output carry of the 

final stage is considered as the total carry out of the 

128 bit adder and hence intermediate carry’s are not 

vital in this scenario. Similarly the same is the case for 

designing 144 bit adder where the difference is it has 

an extra 16 bit stage compared to the 128 bit adder.  

 

Similarly the designing of other carry tree adders like 

sparse kogge stone adder and spanning tree adder for 

various bit widths can also be studied. Another kind of 

parallel prefix adder proposed in this paper is brent 

kungg adder. The 16 bit architecture of the brent 

kungg adder is shown in fig. 3.This adder is a 

combination of forward carry tree and an inverse carry 

tree .Forward carry tree is same as sparsekogge stone 

adder. Compared to the koggestone adder it has the 

advantage of occupying lesser area which has become 

possible because of the reduced number of black cells 

and grey cells and interconnects as well.The logic 

levels are also reduced.Power consumption is also 

comparatively low in brent kungg adder.  

 

However as the bitwidth increases Brentkungg adder 

would not be a preferred choice in the perspective of 

speed(delay is increased) because of its routing 

complexity which increases proportional to the 

bitwidth.Sparsekogge stone adder and spanning tree 

adder has reduced redundancy compared to 

koggestone . But our focus in this paper is with brent 

kungg and koggestone adder. 

 
 

Method of Study  

The adders to be studied were designed with varied bit 

widths of 16 bits, 128 bits and 144 bits coded in 

Verilog. The functionality of the designs were verified 

via simulation with ModelSim. The Xilinx ISE 10.1 

software was used to synthesize the designs onto the 

Virtex 5 FPGA and delay measurements are made 

using quartus software. The parallel prefix network 

was analyzed to determine if a specific pattern could 

be used to extract the worst case delay. Considering 

the structure of the Generate- Propagate (GP) blocks 

(i.e., the BC and GC cells), we were able to develop 

the following scheme, by considering the following 

subset of input values to the GP blocks 

 
If we arbitrarily assign the (g, p) ordered pairs the 

values (1,0) = True and (0, 1) = False, then the table is 

self-contained and forms an OR truth table. 

Furthermore, if both inputs to the GP block are False, 

then the output is False; conversely, if both inputs are 

True, then the output is True. Hence, an input pattern 

that alternates between generating the (g, p) pairs of (1, 

0) and (0, 1) will force its GP pair block to alternate 

states. Likewise, it is easily seen that the GP blocks 

being fed by its predecessors will also alternate states. 

Therefore, this scheme will ensure that a worse case 

delay will be generated in the parallel prefix network 

since every block will be active.  
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In order to ensure this scheme works, the parallel 

prefix adders were synthesized with the “Keep 

Hierarchy” design setting turned on (otherwise, the 

FPGA compiler attempts to reorganize the logic 

assigned to each LUT). With this option turned on, it 

ensures that each GP block is mapped to one LUT, 

preserving the basic parallel prefix structure, and 

ensuring that this test strategy is effective for 

determining the critical delay. 

 
 

Discussion of Results 

The design summary of brentkungg adder obtained 

from the Xilinx ISE synthesis reports are shown in Fig. 

5.The number of slice Look Up Tables(LUT’s) utilized 

is 29 where as the koogestone adder utilizes 68 slice 

LUT’s.Hence there is a drastic reduction in number of 

slices that a brentkungg adder utilize for 

implementation. 

 
 

The other carry tree adders also requires more area 

compared to brent kungg adder. The table 2 shows the 

percentage reduction in the area in the perspective of 

slice LUT’s occupancy of various parallel prefix 

adders. 

 

The dealy measurement for ripple carry adder and 

koggestone adder are made with quartus software for 

varied bit widths of 16 bits, 128 bits and 144 bits.It is 

observed that ripple carry adder performs faster up to 

128 bits and as the bitwidth goes beyond koggestone 

adder operates faster.The figure 6 depicts the plot of 

bitwidth vs delay. 

 
 

However, the spanning tree adder is significantly 

slower at higher bit widths. The structure of the 

spanning tree adder results in an extra stage of logic 

for some adder outputs compared to the Kogge-

StoneThe delay of ripple carry adder for 16 bit is 

obtained as 9.166ns which is comparatively less than a 

delay of Carry tree adder(Koggestone adder) which is 

9.563 ns. And similarly same is the case with 128 bit 

adders whose delays are registered as 113.224ns and 

133.701ns for RCA and KSA adders respectively. But 

for 144 bitwidth they are obtained as 138.243ns for 

RCAand 130.389ns for KSA. Hence for 144 bit adders 

Carry tree adders(Kogge stone adder) has lesser delay 

than RCA and therefore performs faster.The table 3 

shows the delays of all adders with varied btwidths. 

 

 
 

Summary and Future Work  

The koggestone adder and brentkungg adder have been 

designed and synthesized.The adder of latter type is 

found to occupy lessslice of LUT’s compared to 

former type.The delay however brent kunng adder is 

not a preferred choice in case of higher bitwidths.  
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Throughout, there were several adder topologies with 

different advantages and disadvantages and I finally 

came to the decision to choose Brentkung adder 

architecture. Its implementation was simpler than 

Radix-4 Kogge-Stonetree.As a result the layout of the 

circuit would be less complicated. Even though it is 

almost equals koggestone adder in terms of dealy it 

can be used for lesser routing complexity applications. 

The carry-tree adders eventually surpass the 

performance of the linear adder designs at high 

bitwidths,expected to be in the 128 to 256 bit range.  

 

To make the brentkungg adder to operate as fast as 

possible, we can look into some ideas to minimize the 

propagation delay such as modifying the Brent-Kung 

tree, added 3 more dot products and cut the number of 

stages for the critical path from 7 to 5. For the Brent-

Kung tree in order to get the carryout C14, the adder 

has to wait for the product of C7&C11, then C11&13 

and finally C13&P14. On the other hand for the idea of 

making Brent-Kung tree C7 directly producted with 

C13 at the fourth stage. This helps the C14 to be 

available at the fifth stage. This can be a topic of future 

research and should understand how good this can be 

implemented retaining its original properties. 
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