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ABSTRACT 

VLSI realizations of digit-recurrence binary division 

usually use redundant representation of partial 

remainders and quotient digits. The former allows for 

fast carry-free computation of the next partial 

remainder, and the latter leads to less number of the 

required divisor multiples. In studying the previous 

relevant works, we have noted that the binary carry 

save (CS) number system is prevalent in the 

representation of partial remainders, and redundant 

high radix representation of quotient digits is popular 

in order to reduce the cycle count. In this paper, we 

explore a design space containing four division 

architectures. These are based on binary CS or radix-

16 signed digit (SD) representations of partial 

remainders. On the other hand, they use full or partial 

pre-computation of divisor multiples. The latter uses 

smaller multiplexer at the cost two extra adders, where 

one of the operands is constant within all cycles. The 

quotient digits are represented by radix-16 [−9, 9] SDs. 

Our synthesis-based evaluation of VLSI realizations of 

the best previous relevant work and the four proposed 

designs show reduced power and energy figures in the 

proposed designs at the cost of more silicon area and 

delay measures. However, our energy-delay product is 

26%–35% less than that of the reference work. 

 

I. INTRODUCTION 

Division is the less frequent operation among the four 

basic arithmetic operations that are carried out within the 

execution of a typical task on digital processors. On the 

other hand, it is the most complex and time consuming 

operation. VLSI realization of dividers is generally based 

on two classes of algorithms, namely, subtractive (aka 

digit recurrence) and multiplicative (aka functional). The 

former is less costly, but slower, such that obtaining each 

digit of the quotient requires a separate recurrence cycle, 

while the number of iterations in the latter is 

logarithmically proportional to the number of quotient 

digits [1]. Quotient digit selection (QDS) is very simple 

in conventional binary division algorithms, such as no 

restoring division scheme, where the next quotient bit is 

obtained just by examining the sign of partial remainder. 

 

However, in order to reduce the number of recurrences, 

radix-2h (e.g., h = 4) division schemes have been 

proposed at the cost of more complex QDS, since one 

out of 2h possible digit values is to be selected. This is 

undertaken via comparing the partial remainder with a 

set of divisor multiples. 

 

In order to reduce the generation cost of such multiples, 

the quotient digits are often selected from a signed digit 

(SD) set [3] (e.g., [−2h−1, 2h−1]), and converted on the 

fly into the desired binary output. Another cost reducing 

technique is to perform the comparison only via the few 

most significant digits, whose number is determined via 

a fairly complex error analysis [2]. On the other hand, 

the SD representation of partial remainders has been 

employed to enable borrow free subtraction that shortens 

the cycle time. However, sign detection of SD numbers, 

which is required in QDS, is not a trivial operation. 

 

Despite the less frequent occurrence of division in 

comparison with other basic operations, the several 

addition operations that are embedded within a digit  
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recurrence division contribute to extra energy 

consumption. On the other hand, given the popularity of 

portable devices and prominence of green computing, 

the current trend in VLSI design favors low-power 

products that are often more reliable due to the reduction 

of die temperature. In addition, the reduction of power 

dissipation is considerably influential within the 

arithmetic/logic units, which is often recognized as the 

hot spot of digital processors. 

The commonly used redundant number system that is 

required for the representation of partial remainders is 

the binary carry save (CS), which roughly doubles the 

required number of bits for representing the same value. 

Although the extra register cost might be affordable, the 

corresponding extra power dissipation could be in 

question [3]. On the other hand, there are less costly 

redundant number systems that represent the same range 

of numbers via exploiting less number of additional bits. 

For example, the case of redundant digit floating point 

arithmetic uses the radix-16 maximally redundant SD 

(MRSD) representation that requires only 25% extra bits. 

 

Efficient radix-16 MRSD addition and subtraction have 

been offered. The choice of SD set for the representation 

of quotient digits is critical, since narrower digit sets 

(e.g., the minimally redundant digit set [−2h−1, 2h−1]) 

that are desirable for reducing the cost of divisor 

multiple generation (DMG) tend to require more number 

of digits for comparing them with partial remainders. 

Given the aforementioned design space parameters (i.e., 

the choice of SD or CS for partial remainders and 

quotient digits), we are motivated to study and explore 

the low power possibilities in the design and 

implementation of new binary digit recurrence dividers. 

 

The Ancient Indian Vedic Mathematics comprises of 

sixteen Sutras and thirteen corollaries. The four 

elementary operations of a processor, the addition, 

subtraction, multiplication and the division have been 

extensively dealt with in the sixteen sutras of Vedic 

Mathematics. The work in this paper involves the 

Nikhilam and the Paravartya Sutra which deal with the 

division [4]. The Nikhilam Sutra also deals with 

multiplication and some amount of work has been done 

using another sutra known as the UrdhvaTiryakbhyam 

Sutra. The novelty of the Vedic division lies in the fact 

that the procedure incorporates addition and negation 

operations, both of which are much faster than the 

traditional successive subtraction methods. The 

Nikhilam Sutra can be stated as follows:  

 

1.1. The Nikhilam Sutra : 

1. This Sutra breaks up the dividend into two parts, one 

part resembling the Quotient and the other part 

resembling the Remainder. The number of digits in the 

Remainder part equals the number of digits in the 

divisor. For example, if the dividend and divisor are 

2002002 and 89998 respectively, then 2002002 is broken 

up into two parts, 20 (part 1) and 02002 (part 2).  

 

2. The next step in the Sutra adjusts the divisor by 

complimenting it using the procedure “subtract all from 

9 and the last from 10” in which all the digits in the 

divisor are subtracted from 9 barring the last significant 

digit which is subtracted from 10 [5].Therefore, the 

divisor 89998 after adjustment becomes 10002.  

 

3. Next, the first digit of the quotient part (part 1 of the 

dividend) is divided by the first digit of the actual 

divisor. This is the only step where division is 

unavoidable, but in this case also the maximum division 

is that of a single digit number by a single digit number. 

In our work a look-up table has been created which 

stores all the single digit division results in the form of 

quotient and remainder, and accessed on demand. The 

first digit of the quotient part „2‟is divided by „8‟ (the 

first digit of the actual divisor) and the remainder „2‟ is 

noted down.  

 

In the third step of the sutra, a single digit division has 

been done that can be performed using a look-up table. 

The division process has been performed with 

multiplication process in subsequent steps and addition. 

Multiplication is a relatively faster and cheaper operation 

than division [6]. Also the largest multiplication that 

may be required is multiplying 9 by 9.  
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1.2 The Paravartya Sutra : 

The Paravartya Sutra is suitable for divisions including 

large as well as small divisors. The sutra is actually 

known as “Paravartya Yojayet” which means “Transpose 

and Apply”. The Paravartya Sutra can be easily 

explained using the famous Remainder Theorem as 

follows: 

1. If E = Dividend, D = Divisor, Q = Quotient and R = 

Remainder and if the divisor is taken to be (x-p), then a 

relationship can be stated as follows: E = D.Q + R, or E 

= Q.(x-p) + R.  

2. Now, if „x‟ is substituted by „p‟ then the identity 

becomes E = R, thus the expression E automatically 

becomes the remainder as „p‟ is achieved by equating x-

p to zero. Hence, actually the sign of „p‟ is reversed.  

 

II. BACKGROUND AND THE RELATED WORKS 

The balance w[j] is stored in carry-save representation 

(wS and wC ) [7]. The signed- digit representation of the 

caliber is adapted to accepted two‟s accompaniment 

representation and angled by the on-the-fly convert-and-

round unit. The accomplishing of the accepted divider, 

optimized for beeline latency, is apparent in Figure 2. 

The ceremony is implemented with the alternative action 

(SEL), two assorted generators (MULT), two carry-save 

adders (CSA)2 and two registers (REG) to abundance 

the carry-save representation of the residual. Because of 

the carry-save representation of the residual, the 

alternative action (SEL R-4) in Figure 1 is composed by 

a 7-bit carry-propagate adder and a action implemented 

with argumentation gates. 

 
Figure 1: Selection function for radix-16 

The advocate performs the about-face and the rounding 

according to the assurance of th -16 nal balance and the 

arresting that detects if it is zero, which are produced by 

a sign-zero-detector (SZD). Table 1 shows the 

adjournment through the two locations of SEL. Note that 

the beyond adjournment of SELqL is compensated by 

the added CSA that exists in the aisle from SELqH [8] . 

The analytical aisle post-layout is 9.2 ns and 16 

iterations are appropriate to complete the operation, 

agnate to a cessation of 15ns. 

 
Table 1. Critical path through qL and qH 

 

 
Figure 2. Implementation radix-16 
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Figure 3. Retiming the reccurence of Low power 

Implementing 

 

Low-power architecture techniques are activated to the 

accepted accomplishing of the affiliate to abate the 

activity burning after chastening the latency. The 

techniques, advised below, were originally developed for 

radix-4 [7] and are actuality acclimatized to the radix-16 

case. 

 

Retiming of the recurrence: 

The retiming of the ceremony is done by affective the 

alternative action from the aboriginal allotment of the 

aeon to the endure allotment of the antecedent cycle. 

This is apparent in Figure 3 for a radix-r divider. A new 

annals is bare to abundance the caliber digit. This 

retiming has the advantage of attachedtheanalytical aisle 

to the b most-significant $.25 of the ceremony (b = 10 

for radix- 16), so that the blow can be redesigned for low 

power. For instance, for the aisle through SELqL, the 

two paths are as adumbrated in the antecedent section, 

and apparent in Figure 4a, the beyond adjournment of 

SELqL is compensated by the added carry-save adder in 

the aisle of SELqH. This advantage is alone by the 

retiming, as apparent in Figure 4b. Consequently, in 

adjustment not to access the aeon delay, the alarm of 

annals qLis skewed, consistent in the paths of Figure 4c. 

The alarm can be skewed by abacus the adapted 

adjournment (e.g. some buffers) in the alarm 

administrationtree. 

 

Since in the retimed accomplishing the alternative action 

is placed afterwards the additional CSA, instead of anon 

afterwards the registers, there is a ample access in the 

amount of glitches, which are amenable for the added 

amusement of the alternative function. One way to 

clarify those glitches is to absorber the alternative action 

with multiplexers acting as latches, as declared in Figure 

5.  

 

The baddest arresting is apprenticed by a altered alarm 

(same period, altered phase) that enables the muxes to 

address the amount from the CSA if it is stable, and 

authority the accepted amount otherwise. However, in 

this case the adjournment of the mux affects the 

analytical path. For radix-16 the activity blown in the 

alternative action is halved, but the analytical aisle is 

added by about 5%. For this reason, the amount is not 

included in Table 2, which summarizes the activity 

reductions. 

 
Figure 4. Multiplexers to filter glitches in selection 

function 

 

III. PROPOSED MODEL 

The general digit recurrence division architecture is 

shown in Fig. 2, where the pertinent discussion regarding 

the proposed designs will be provided as appropriate. 

Double precision operands (i.e., binary64 floating point) 

is assumed for all the proposed architectures as is the 

case for the main reference work. 

 
Figure 5.General division architecture 
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Within the framework of Fig. 2, static and semidynamic 

DMGs and two different representations for partial 

remainders provide us with a design space based on the 

following options.  

1) Radix-16 Quotient Digit Set: This choice, as in the 

previous relevant works, leads to the reduced number of 

cycles versus the direct generation of quotient bits. 

 

2) SD Representation of Quotient Digits: We use [−9, 9] 

radix-16 SD set for the intermediate representation of 

quotient digits. The 5-bit representation of such digits is 

the same as the MRSD of Fig. 1. The primary choice 

would be the minimally redundant [−8, 8] digit set that 

requires the minimum number of divisor multiples, while 

the other extreme choice would be the maximally 

redundant [−15, 15] digit set. However, another 

influential measure is the number of fractional digits that 

are sufficient for truncated comparison of partial 

remainders with divisor multiples. This is later shown to 

be 2 in the case of digit sets [−α, α] (α ∈  [9, 15]), and 3 

for α = 8. 

 

3) Semidynamic DMG: The [−9, 9] multiples of divisor 

that are needed in the PRC are normally obtained within 

the initialization cycle, where ten-way multiplexer is 

required for selecting q j+1D. However, besides 

implementing the latter conventional method, we 

propose the following method that uses a four-way 

multiplexer. In the initialization cycle, we generate only 

{2, 3, 6}D, and dynamically obtain •}{4, 5, 7, 8, 9}D, 

as •}{6D − 2D, 6D ∓ D, 6D + 2D, 6D + 3D}, 

respectively, within each recurrence. 

 

4) Use of Redundant Number Systems for PRC: The 

previous relevant works have opted for CS 

representation of partial remainders. To be able to 

independently show the advantage of aforementioned 

semidynamic DMG, we also use CS as one option, 

which due to doubling the representation storage does 

not seem to be a proper choice when lower power 

dissipation is desirable. Therefore, our other choice is to 

use higher radix redundant number systems for partial 

remainder representation. 

For example, radix-16 maximally redundant number 

system (MRSD)  is a viable choice, with only 25% extra 

representation storage. 

 
Figure 6. QDS architecture 

 

Vedic mathematics is part of four Vedas (books of 

wisdom). It is part of Sthapatya- Veda (book on civil 

engineering and architecture), which is an upa-veda 

(supplement) of Atharva Veda. It covers explanation of 

several modern mathematical terms including arithmetic, 

geometry (plane, co-ordinate), trigonometry, quadratic 

equations, factorization and even calculus. His Holiness 

Jagadguru Shankaracharya Bharati Krishna Teerthaji 

Maharaja (1884-1960) comprised all this work together 

and gave its mathematical explanation while discussing 

it for various applications. Swahiji constructed 16 sutras 

(formulae) and 16 Upa sutras (sub formulae) after 

extensive research in Atharva Veda. Obviously these 

formulae are not to be found in present text of Atharva 

Veda because these formulae were constructed by 

Swamiji himself. Vedic mathematics is not only a 

mathematical wonder but also it is logical. That‟s why 

VM has such a degree of eminence which cannot be 

disapproved. Due these phenomenal characteristic, VM 

has already crossed the boundaries of India and has 

become a leading topic of research abroad. VM deals 

with several basic as well as complex mathematical 

operations. Especially, methods of basic arithmetic are 

extremely simple and powerful.  
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The word „Vedic‟ is derived from the word „veda‟ 

which means the store-house of all knowledge. Vedic 

mathematics is mainly based on 16 Sutras (or aphorisms) 

dealing with various branches of mathematics like 

arithmetic, algebra, geometry etc. These Sutras along 

with their brief meanings are enlisted below 

alphabetically.  

1) (Anurupye) Shunyamanyat – If one is in ratio, the 

other is zero.  

2) Chalana-Kalanabyham – Differences and Similarities.  

3) EkadhikinaPurvena – By one more than the previous 

One. 

4) EkanyunenaPurvena – By one less than the previous 

one. 

5) Gunakasamuchyah – The factors of the sum is equal 

to the sum of the factors.  

6) Gunitasamuchyah – The product of the sum is equal 

to the sum of the product.  

7) Nikhilam NavatashcaramamDashatah – All from 9 

and last from 10.  

 8) Paraavartya Yojayet – Transpose and adjust.  

9) Puranapuranabyham – By the completion or 

noncompletion.  

10) Sankalana- vyavakalanabhyam – By addition and by 

subtraction.  

11) ShesanyankenaCharamena – The remainders by the 

last digit.  

12) ShunyamSaamyasamuccaye – When the sum is the 

same that sum is zero.  

13) Sopaantyadvayamantyam – The ultimate and twice 

the penultimate.  

14) Urdhva-tiryakbhyam – Vertically and crosswise.  

15) Vyashtisamanstih – Part and Whole.  

16) Yaavadunam – Whatever the extent of its deficiency.  

 

The beauty of Vedic mathematics lies in the fact that it 

reduces the otherwise cumbersome-looking calculations 

in conventional mathematics to a very simple one. This 

is so because the Vedic formulae are claimed to be based 

on the natural principles on which the human mind 

works. This is a very interesting field and presents some 

effective algorithms which can be applied to various 

branches of engineering such as computing and digital 

signal processing.  

 

The multiplier architecture can be generally classified 

into three categories. First is the serial multiplier which 

emphasizes on hardware and minimum amount of chip 

area. Second is parallel multiplier (array and tree) which 

carries out high speed mathematical operations. But the 

drawback is the relatively larger chip area consumption. 

Third is serial- parallel multiplier which serves as a good 

trade-off between the times consuming serial multiplier 

and the area consuming parallel multipliers.. 

 

The proposed division algorithm in this paper is a 

combination of the earlier discussed two sutras, the 

Nikhilam Sutra and the Paravartya Sutra, with slight 

modification so as to obtain a generalized algorithm for 

all the possible divisors. Presently, numerous division 

algorithms are used depending upon system or 

application requirements such as the Restore Type 

Division Algorithm, SRT Division Algorithm, and the 

Non Restore Type Division Algorithm [10-12], the latter 

being the fastest and economic. It has been statistically 

proven further in our work that the proposed algorithm 

performs better with respect to the Non Restore Type 

Division Algorithm in terms of speed and memory 

requirement.  

 

The proposed algorithm performs the calculations on the 

number of digits in the divisor and the dividend rather 

than on the number of bits representing them. In Non 

Restore Type Division Algorithm, the time estimate of 

the division is proportional to the number of bits. But in 

the Vedic Division Algorithm, the time requirement is 

based mainly on the number of normalizations 

(illustrated further) of the intermediate remainders. 

Hence, the algorithm exhibits remarkable results on 

divisions involving big numbers. The novelty of the 

algorithm lies in the fact that since the computation is 

done on digits rather than on the bits, very large 

numbers, having size up to 38 digits (127 bits), can be 

divided in the present form and if modified, it can divide 

even larger numbers. 
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Step-By-Step Algorithm description :  

1. In the first step the divisor is adjusted using a 

combined logic of both the Nikhilam Sutra and the 

Paravartya Sutra. All the digits that are less than or equal 

to 5 are negated. For all those digits which have values 

more than 5, 10‟s compliment of the digit is taken and 1 

is added to the next higher digit. If the divisor is 

47483647, then a close observation reveals that all the 

consecutive digits are alternately less than and greater 

than 5. The divisor adjustment starts from the Least 

Significant Digit. As 7 > 5, hence 10‟s compliment of 7 

is taken and 1 is added to the next higher digit 

„4‟,replacing 7 by 3 and 4 by 5. Now this 5 is adjusted 

by -5. Hence the adjustment of the divisor is shown 

below.  

4 7 4 8 3 6 4 7   becomes  

-5 3 -5 2 -4 4 -5 3   (Adjusted divisor)  

2. Let us take an example in which the dividend is 99999 

and the divisor is 456. Therefore, the divisor 456 after 

adjustment becomes -5 4 4. It may also be observed that 

the first digit of an adjusted divisor will always be a 

negative digit.  

3. Next, the first digit of the dividend is divided by the 

magnitude of the first digit of the adjusted divisor to 

obtain the quotient. In the example, the first digit of the 

dividend (99999) is 9 which is divided by magnitude of 

the first digit of the adjusted divisor (-5 4 4) which is 5 

to obtain the quotient 1. This is the only step where 

division is unavoidable but it has been accomplished 

with the aid of two look – up tables as shown in Table 1 

and Table 2. The use of these tables saves the division 

time otherwise required for obtaining the quotient and 

the remainder. 

 
Table 2. Look – up Table for Quotient 

 
Table 3. Look – up Table for Reminder 

 

The second row and the first column in Table 1 and 

Table 2 are shown in bold and represent the array 

indices. The row indices have been started from 1. 

Column 1 represents the denominator values and Row 2 

represents the numerator values. Suppose we want to 

divide „a‟ by „b‟. The quotient is obtained from the cell 

Q[b,a] of Table 1 where the maximum value of b can be 

5 and not equal to 0.  

 

The remainder is obtained from Table 2 in the same 

manner, that is, the value of cell R[b,a]. The new 

quotient is then multiplied by all the digits of the 

adjusted divisor and placed below the dividend at the 

exact positions and then added to get the new remainder 

1. This step normalizes the remainder. Normalization 

means replacing a multiple digit value by a single digit 

value at each position. The procedure is started from the 

Least Significant Number of the remainder and followed 

to the Most Significant Number. The Least Significant 

Digit of the multiple digit number is kept at the position 

and the rest is added to the next Higher Significant Digit. 

 

2. The next step checks for a „0‟ at the Most Significant 

Digit of the normalized remainder. If it is not „0‟, as in 

this case, then the normalized remainder is again divided 

by the adjusted divisor and the new quotient is added to 

the previous quotient. Else if it is „0‟, then the previous 

procedures are repeated till completion.  
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The Algorithm: 

Initialization Part: 

1. The dividend and the divisor are held in two arrays – 

Array ‟a‟ and Array „b‟ having index „m‟ and „n‟ 

respectively. Array „b‟ finally stores the remainder. A 

temporary array „temp‟ has been used to hold the 

quotient having index„t‟. Another array „c‟ is used to 

hold the copy of the divisor. All the data has been stored 

in Little Endean Formats and initialized to 0.The length 

of Array „b‟ is „n‟ and Array „a‟ is „m+1‟, Array ‟c‟ is 

„m‟ and „temp‟ is „n‟ respectively.  

2. The divisor is adjusted so that no digit in the divisor is 

more than 5.  

3. „m‟ is updated if adjusting the divisor causes increase 

in length of the divisor.  

4. Inverse each digit of the divisor (including the most 

significant digit). 

 

Division Part: 

5. A new variable „j‟ is taken for holding the value of the 

possible number of iterations and its limits are set from 1 

to „n-m+1‟.  

6. Compare the most significant digits of divisor and 

dividend.  

7. If MSD (Most Significant Digit) of divisor >MSD of 

dividend, club the most significant pair of digits of 

dividend. Update (decrement) n and t. 

8. If clubbing results in decrease of the number of digits 

of dividend below that of divisor, break from the „For 

Loop using „j‟‟ and go to step 13.  

9. Quo= MSD of dividend/ MSD of divisor. Calculate 

the remainder (dividend).  

10. If MSD of dividend not divisible by that of divisor, 

then break from the “for loop”. A fresh iteration is being 

started. Go to step 13.  

11. Decrement n and t, go to step 8.  

12. The remainder is then normalized. Increment „n‟ 

and„t‟ if normalization increments the number of digits 

in remainder.  

13. If (nn-m+1) in the previous iteration, no further 

iterations are possible and 2nd condition means we have 

already tried to divide once more but failed, go to step 

16.  

14. Else division is possible, go to step 7.  

15. Check the remainder. If the remainder is negative, 

the quotient is decremented once. Else if it is positive, it 

is the „normalized version of divisor‟ and cannot be 

divided again. So check if original form of divisor 

(stored in array „c‟) can divide again. This division can 

result into incrementing the quotient by 1.  

16. The quotient is stored in array „temp‟ with the 

leading and trailing 0‟sand remainder in array „b‟. 

Quotient can further be normalized.  

 
Figure 7. Flowchart of the Vedic Division Algorithm 

 

IV. SIMULATION RESULTS 

 
Figure 8. Simulation Results for binary division(32-

bit) 
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Figure 9: Simulation Results for binary division(64-

bit) 

 

 
Figure 10: Simulation results for vedic division 

 

V. CONCLUSION 

We advised (via analytic and synthesis-based appraisal 

of the agnate VLSI realizations) the appulse of the 

afterward two architecture options on the abstracts of 

arete of bifold digit-recurrence analysis hardware. 

 Representation of fractional remainders viatop basis 

bombastic amount systems. Our representation best 

is maximally bombastic radix-16 SD amount 

arrangement with chiffre set [−15,15]. 

 Activating bearing of some divisor multiples in [−9, 

9] × D about the precomputed assorted6D. 

We aswell advised the accordant antecedent designs, 

which accept autonomous for bifold CS representation of 

fractional remainders and representation of radix-16 

caliber digits via minimally bombastic radix-4 [−2, 2] 

digits, which leads to fractional activating bearing of 

divisor multiples. 

 

For bigger appraisal of the aloft options, we explored a 

architecture amplitude absolute four architectures based 

on precomputation of all or allotment of divisor 

multiples and CS or MRSD representation of fractional 

remainders. The HDL simulations and amalgam showed 

low-power and low-energy advantages of all the four 

designs as compared with the best antecedent work. 

However, while our designs do not accomplish as fast as 

the advertence one, the EDP of the proposed designs is 

26%–35% beneath than that of the advertence work. 
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