

 Page 60

VLSI Oriented Vedic Division with Redundant Number Systems

Goli Manoj Kumar

Department of Electronics &

Communication Engineering,

HITAM, Hyderabad, Telangana-

502401, India.

Vinod Kumar Ahuja

Department of Electronics &

Communication Engineering,

HITAM, Hyderabad, Telangana-

502401, India.

K. Anil Kumar

Department of Electronics &

Communication Engineering,

HITAM, Hyderabad, Telangana-

502401, India.

ABSTRACT

VLSI realizations of digit-recurrence binary division

usually use redundant representation of partial

remainders and quotient digits. The former allows for

fast carry-free computation of the next partial

remainder, and the latter leads to less number of the

required divisor multiples. In studying the previous

relevant works, we have noted that the binary carry

save (CS) number system is prevalent in the

representation of partial remainders, and redundant

high radix representation of quotient digits is popular

in order to reduce the cycle count. In this paper, we

explore a design space containing four division

architectures. These are based on binary CS or radix-

16 signed digit (SD) representations of partial

remainders. On the other hand, they use full or partial

pre-computation of divisor multiples. The latter uses

smaller multiplexer at the cost two extra adders, where

one of the operands is constant within all cycles. The

quotient digits are represented by radix-16 [−9, 9] SDs.

Our synthesis-based evaluation of VLSI realizations of

the best previous relevant work and the four proposed

designs show reduced power and energy figures in the

proposed designs at the cost of more silicon area and

delay measures. However, our energy-delay product is

26%–35% less than that of the reference work.

I. INTRODUCTION

Division is the less frequent operation among the four

basic arithmetic operations that are carried out within the

execution of a typical task on digital processors. On the

other hand, it is the most complex and time consuming

operation. VLSI realization of dividers is generally based

on two classes of algorithms, namely, subtractive (aka

digit recurrence) and multiplicative (aka functional). The

former is less costly, but slower, such that obtaining each

digit of the quotient requires a separate recurrence cycle,

while the number of iterations in the latter is

logarithmically proportional to the number of quotient

digits [1]. Quotient digit selection (QDS) is very simple

in conventional binary division algorithms, such as no

restoring division scheme, where the next quotient bit is

obtained just by examining the sign of partial remainder.

However, in order to reduce the number of recurrences,

radix-2h (e.g., h = 4) division schemes have been

proposed at the cost of more complex QDS, since one

out of 2h possible digit values is to be selected. This is

undertaken via comparing the partial remainder with a

set of divisor multiples.

In order to reduce the generation cost of such multiples,

the quotient digits are often selected from a signed digit

(SD) set [3] (e.g., [−2h−1, 2h−1]), and converted on the

fly into the desired binary output. Another cost reducing

technique is to perform the comparison only via the few

most significant digits, whose number is determined via

a fairly complex error analysis [2]. On the other hand,

the SD representation of partial remainders has been

employed to enable borrow free subtraction that shortens

the cycle time. However, sign detection of SD numbers,

which is required in QDS, is not a trivial operation.

Despite the less frequent occurrence of division in

comparison with other basic operations, the several

addition operations that are embedded within a digit

Cite this article as: Goli Manoj Kumar, Vinod Kumar Ahuja & K.

Anil Kumar, "VLSI Oriented Vedic Division with Redundant

Number Systems", International Journal & Magazine of Engineering,

Technology, Management and Research, Volume 6 Issue 1, 2018,

Page 60-69.

 Page 61

recurrence division contribute to extra energy

consumption. On the other hand, given the popularity of

portable devices and prominence of green computing,

the current trend in VLSI design favors low-power

products that are often more reliable due to the reduction

of die temperature. In addition, the reduction of power

dissipation is considerably influential within the

arithmetic/logic units, which is often recognized as the

hot spot of digital processors.

The commonly used redundant number system that is

required for the representation of partial remainders is

the binary carry save (CS), which roughly doubles the

required number of bits for representing the same value.

Although the extra register cost might be affordable, the

corresponding extra power dissipation could be in

question [3]. On the other hand, there are less costly

redundant number systems that represent the same range

of numbers via exploiting less number of additional bits.

For example, the case of redundant digit floating point

arithmetic uses the radix-16 maximally redundant SD

(MRSD) representation that requires only 25% extra bits.

Efficient radix-16 MRSD addition and subtraction have

been offered. The choice of SD set for the representation

of quotient digits is critical, since narrower digit sets

(e.g., the minimally redundant digit set [−2h−1, 2h−1])

that are desirable for reducing the cost of divisor

multiple generation (DMG) tend to require more number

of digits for comparing them with partial remainders.

Given the aforementioned design space parameters (i.e.,

the choice of SD or CS for partial remainders and

quotient digits), we are motivated to study and explore

the low power possibilities in the design and

implementation of new binary digit recurrence dividers.

The Ancient Indian Vedic Mathematics comprises of

sixteen Sutras and thirteen corollaries. The four

elementary operations of a processor, the addition,

subtraction, multiplication and the division have been

extensively dealt with in the sixteen sutras of Vedic

Mathematics. The work in this paper involves the

Nikhilam and the Paravartya Sutra which deal with the

division [4]. The Nikhilam Sutra also deals with

multiplication and some amount of work has been done

using another sutra known as the UrdhvaTiryakbhyam

Sutra. The novelty of the Vedic division lies in the fact

that the procedure incorporates addition and negation

operations, both of which are much faster than the

traditional successive subtraction methods. The

Nikhilam Sutra can be stated as follows:

1.1. The Nikhilam Sutra :

1. This Sutra breaks up the dividend into two parts, one

part resembling the Quotient and the other part

resembling the Remainder. The number of digits in the

Remainder part equals the number of digits in the

divisor. For example, if the dividend and divisor are

2002002 and 89998 respectively, then 2002002 is broken

up into two parts, 20 (part 1) and 02002 (part 2).

2. The next step in the Sutra adjusts the divisor by

complimenting it using the procedure “subtract all from

9 and the last from 10” in which all the digits in the

divisor are subtracted from 9 barring the last significant

digit which is subtracted from 10 [5].Therefore, the

divisor 89998 after adjustment becomes 10002.

3. Next, the first digit of the quotient part (part 1 of the

dividend) is divided by the first digit of the actual

divisor. This is the only step where division is

unavoidable, but in this case also the maximum division

is that of a single digit number by a single digit number.

In our work a look-up table has been created which

stores all the single digit division results in the form of

quotient and remainder, and accessed on demand. The

first digit of the quotient part „2‟is divided by „8‟ (the

first digit of the actual divisor) and the remainder „2‟ is

noted down.

In the third step of the sutra, a single digit division has

been done that can be performed using a look-up table.

The division process has been performed with

multiplication process in subsequent steps and addition.

Multiplication is a relatively faster and cheaper operation

than division [6]. Also the largest multiplication that

may be required is multiplying 9 by 9.

 Page 62

1.2 The Paravartya Sutra :

The Paravartya Sutra is suitable for divisions including

large as well as small divisors. The sutra is actually

known as “Paravartya Yojayet” which means “Transpose

and Apply”. The Paravartya Sutra can be easily

explained using the famous Remainder Theorem as

follows:

1. If E = Dividend, D = Divisor, Q = Quotient and R =

Remainder and if the divisor is taken to be (x-p), then a

relationship can be stated as follows: E = D.Q + R, or E

= Q.(x-p) + R.

2. Now, if „x‟ is substituted by „p‟ then the identity

becomes E = R, thus the expression E automatically

becomes the remainder as „p‟ is achieved by equating x-

p to zero. Hence, actually the sign of „p‟ is reversed.

II. BACKGROUND AND THE RELATED WORKS

The balance w[j] is stored in carry-save representation

(wS and wC) [7]. The signed- digit representation of the

caliber is adapted to accepted two‟s accompaniment

representation and angled by the on-the-fly convert-and-

round unit. The accomplishing of the accepted divider,

optimized for beeline latency, is apparent in Figure 2.

The ceremony is implemented with the alternative action

(SEL), two assorted generators (MULT), two carry-save

adders (CSA)2 and two registers (REG) to abundance

the carry-save representation of the residual. Because of

the carry-save representation of the residual, the

alternative action (SEL R-4) in Figure 1 is composed by

a 7-bit carry-propagate adder and a action implemented

with argumentation gates.

Figure 1: Selection function for radix-16

The advocate performs the about-face and the rounding

according to the assurance of th -16 nal balance and the

arresting that detects if it is zero, which are produced by

a sign-zero-detector (SZD). Table 1 shows the

adjournment through the two locations of SEL. Note that

the beyond adjournment of SELqL is compensated by

the added CSA that exists in the aisle from SELqH [8] .

The analytical aisle post-layout is 9.2 ns and 16

iterations are appropriate to complete the operation,

agnate to a cessation of 15ns.

Table 1. Critical path through qL and qH

Figure 2. Implementation radix-16

 Page 63

Figure 3. Retiming the reccurence of Low power

Implementing

Low-power architecture techniques are activated to the

accepted accomplishing of the affiliate to abate the

activity burning after chastening the latency. The

techniques, advised below, were originally developed for

radix-4 [7] and are actuality acclimatized to the radix-16

case.

Retiming of the recurrence:

The retiming of the ceremony is done by affective the

alternative action from the aboriginal allotment of the

aeon to the endure allotment of the antecedent cycle.

This is apparent in Figure 3 for a radix-r divider. A new

annals is bare to abundance the caliber digit. This

retiming has the advantage of attachedtheanalytical aisle

to the b most-significant $.25 of the ceremony (b = 10

for radix- 16), so that the blow can be redesigned for low

power. For instance, for the aisle through SELqL, the

two paths are as adumbrated in the antecedent section,

and apparent in Figure 4a, the beyond adjournment of

SELqL is compensated by the added carry-save adder in

the aisle of SELqH. This advantage is alone by the

retiming, as apparent in Figure 4b. Consequently, in

adjustment not to access the aeon delay, the alarm of

annals qLis skewed, consistent in the paths of Figure 4c.

The alarm can be skewed by abacus the adapted

adjournment (e.g. some buffers) in the alarm

administrationtree.

Since in the retimed accomplishing the alternative action

is placed afterwards the additional CSA, instead of anon

afterwards the registers, there is a ample access in the

amount of glitches, which are amenable for the added

amusement of the alternative function. One way to

clarify those glitches is to absorber the alternative action

with multiplexers acting as latches, as declared in Figure

5.

The baddest arresting is apprenticed by a altered alarm

(same period, altered phase) that enables the muxes to

address the amount from the CSA if it is stable, and

authority the accepted amount otherwise. However, in

this case the adjournment of the mux affects the

analytical path. For radix-16 the activity blown in the

alternative action is halved, but the analytical aisle is

added by about 5%. For this reason, the amount is not

included in Table 2, which summarizes the activity

reductions.

Figure 4. Multiplexers to filter glitches in selection

function

III. PROPOSED MODEL

The general digit recurrence division architecture is

shown in Fig. 2, where the pertinent discussion regarding

the proposed designs will be provided as appropriate.

Double precision operands (i.e., binary64 floating point)

is assumed for all the proposed architectures as is the

case for the main reference work.

Figure 5.General division architecture

 Page 64

Within the framework of Fig. 2, static and semidynamic

DMGs and two different representations for partial

remainders provide us with a design space based on the

following options.

1) Radix-16 Quotient Digit Set: This choice, as in the

previous relevant works, leads to the reduced number of

cycles versus the direct generation of quotient bits.

2) SD Representation of Quotient Digits: We use [−9, 9]

radix-16 SD set for the intermediate representation of

quotient digits. The 5-bit representation of such digits is

the same as the MRSD of Fig. 1. The primary choice

would be the minimally redundant [−8, 8] digit set that

requires the minimum number of divisor multiples, while

the other extreme choice would be the maximally

redundant [−15, 15] digit set. However, another

influential measure is the number of fractional digits that

are sufficient for truncated comparison of partial

remainders with divisor multiples. This is later shown to

be 2 in the case of digit sets [−α, α] (α ∈ [9, 15]), and 3

for α = 8.

3) Semidynamic DMG: The [−9, 9] multiples of divisor

that are needed in the PRC are normally obtained within

the initialization cycle, where ten-way multiplexer is

required for selecting q j+1D. However, besides

implementing the latter conventional method, we

propose the following method that uses a four-way

multiplexer. In the initialization cycle, we generate only

{2, 3, 6}D, and dynamically obtain •}{4, 5, 7, 8, 9}D,

as •}{6D − 2D, 6D ∓ D, 6D + 2D, 6D + 3D},

respectively, within each recurrence.

4) Use of Redundant Number Systems for PRC: The

previous relevant works have opted for CS

representation of partial remainders. To be able to

independently show the advantage of aforementioned

semidynamic DMG, we also use CS as one option,

which due to doubling the representation storage does

not seem to be a proper choice when lower power

dissipation is desirable. Therefore, our other choice is to

use higher radix redundant number systems for partial

remainder representation.

For example, radix-16 maximally redundant number

system (MRSD) is a viable choice, with only 25% extra

representation storage.

Figure 6. QDS architecture

Vedic mathematics is part of four Vedas (books of

wisdom). It is part of Sthapatya- Veda (book on civil

engineering and architecture), which is an upa-veda

(supplement) of Atharva Veda. It covers explanation of

several modern mathematical terms including arithmetic,

geometry (plane, co-ordinate), trigonometry, quadratic

equations, factorization and even calculus. His Holiness

Jagadguru Shankaracharya Bharati Krishna Teerthaji

Maharaja (1884-1960) comprised all this work together

and gave its mathematical explanation while discussing

it for various applications. Swahiji constructed 16 sutras

(formulae) and 16 Upa sutras (sub formulae) after

extensive research in Atharva Veda. Obviously these

formulae are not to be found in present text of Atharva

Veda because these formulae were constructed by

Swamiji himself. Vedic mathematics is not only a

mathematical wonder but also it is logical. That‟s why

VM has such a degree of eminence which cannot be

disapproved. Due these phenomenal characteristic, VM

has already crossed the boundaries of India and has

become a leading topic of research abroad. VM deals

with several basic as well as complex mathematical

operations. Especially, methods of basic arithmetic are

extremely simple and powerful.

 Page 65

The word „Vedic‟ is derived from the word „veda‟

which means the store-house of all knowledge. Vedic

mathematics is mainly based on 16 Sutras (or aphorisms)

dealing with various branches of mathematics like

arithmetic, algebra, geometry etc. These Sutras along

with their brief meanings are enlisted below

alphabetically.

1) (Anurupye) Shunyamanyat – If one is in ratio, the

other is zero.

2) Chalana-Kalanabyham – Differences and Similarities.

3) EkadhikinaPurvena – By one more than the previous

One.

4) EkanyunenaPurvena – By one less than the previous

one.

5) Gunakasamuchyah – The factors of the sum is equal

to the sum of the factors.

6) Gunitasamuchyah – The product of the sum is equal

to the sum of the product.

7) Nikhilam NavatashcaramamDashatah – All from 9

and last from 10.

 8) Paraavartya Yojayet – Transpose and adjust.

9) Puranapuranabyham – By the completion or

noncompletion.

10) Sankalana- vyavakalanabhyam – By addition and by

subtraction.

11) ShesanyankenaCharamena – The remainders by the

last digit.

12) ShunyamSaamyasamuccaye – When the sum is the

same that sum is zero.

13) Sopaantyadvayamantyam – The ultimate and twice

the penultimate.

14) Urdhva-tiryakbhyam – Vertically and crosswise.

15) Vyashtisamanstih – Part and Whole.

16) Yaavadunam – Whatever the extent of its deficiency.

The beauty of Vedic mathematics lies in the fact that it

reduces the otherwise cumbersome-looking calculations

in conventional mathematics to a very simple one. This

is so because the Vedic formulae are claimed to be based

on the natural principles on which the human mind

works. This is a very interesting field and presents some

effective algorithms which can be applied to various

branches of engineering such as computing and digital

signal processing.

The multiplier architecture can be generally classified

into three categories. First is the serial multiplier which

emphasizes on hardware and minimum amount of chip

area. Second is parallel multiplier (array and tree) which

carries out high speed mathematical operations. But the

drawback is the relatively larger chip area consumption.

Third is serial- parallel multiplier which serves as a good

trade-off between the times consuming serial multiplier

and the area consuming parallel multipliers..

The proposed division algorithm in this paper is a

combination of the earlier discussed two sutras, the

Nikhilam Sutra and the Paravartya Sutra, with slight

modification so as to obtain a generalized algorithm for

all the possible divisors. Presently, numerous division

algorithms are used depending upon system or

application requirements such as the Restore Type

Division Algorithm, SRT Division Algorithm, and the

Non Restore Type Division Algorithm [10-12], the latter

being the fastest and economic. It has been statistically

proven further in our work that the proposed algorithm

performs better with respect to the Non Restore Type

Division Algorithm in terms of speed and memory

requirement.

The proposed algorithm performs the calculations on the

number of digits in the divisor and the dividend rather

than on the number of bits representing them. In Non

Restore Type Division Algorithm, the time estimate of

the division is proportional to the number of bits. But in

the Vedic Division Algorithm, the time requirement is

based mainly on the number of normalizations

(illustrated further) of the intermediate remainders.

Hence, the algorithm exhibits remarkable results on

divisions involving big numbers. The novelty of the

algorithm lies in the fact that since the computation is

done on digits rather than on the bits, very large

numbers, having size up to 38 digits (127 bits), can be

divided in the present form and if modified, it can divide

even larger numbers.

 Page 66

Step-By-Step Algorithm description :

1. In the first step the divisor is adjusted using a

combined logic of both the Nikhilam Sutra and the

Paravartya Sutra. All the digits that are less than or equal

to 5 are negated. For all those digits which have values

more than 5, 10‟s compliment of the digit is taken and 1

is added to the next higher digit. If the divisor is

47483647, then a close observation reveals that all the

consecutive digits are alternately less than and greater

than 5. The divisor adjustment starts from the Least

Significant Digit. As 7 > 5, hence 10‟s compliment of 7

is taken and 1 is added to the next higher digit

„4‟,replacing 7 by 3 and 4 by 5. Now this 5 is adjusted

by -5. Hence the adjustment of the divisor is shown

below.

4 7 4 8 3 6 4 7 becomes

-5 3 -5 2 -4 4 -5 3 (Adjusted divisor)

2. Let us take an example in which the dividend is 99999

and the divisor is 456. Therefore, the divisor 456 after

adjustment becomes -5 4 4. It may also be observed that

the first digit of an adjusted divisor will always be a

negative digit.

3. Next, the first digit of the dividend is divided by the

magnitude of the first digit of the adjusted divisor to

obtain the quotient. In the example, the first digit of the

dividend (99999) is 9 which is divided by magnitude of

the first digit of the adjusted divisor (-5 4 4) which is 5

to obtain the quotient 1. This is the only step where

division is unavoidable but it has been accomplished

with the aid of two look – up tables as shown in Table 1

and Table 2. The use of these tables saves the division

time otherwise required for obtaining the quotient and

the remainder.

Table 2. Look – up Table for Quotient

Table 3. Look – up Table for Reminder

The second row and the first column in Table 1 and

Table 2 are shown in bold and represent the array

indices. The row indices have been started from 1.

Column 1 represents the denominator values and Row 2

represents the numerator values. Suppose we want to

divide „a‟ by „b‟. The quotient is obtained from the cell

Q[b,a] of Table 1 where the maximum value of b can be

5 and not equal to 0.

The remainder is obtained from Table 2 in the same

manner, that is, the value of cell R[b,a]. The new

quotient is then multiplied by all the digits of the

adjusted divisor and placed below the dividend at the

exact positions and then added to get the new remainder

1. This step normalizes the remainder. Normalization

means replacing a multiple digit value by a single digit

value at each position. The procedure is started from the

Least Significant Number of the remainder and followed

to the Most Significant Number. The Least Significant

Digit of the multiple digit number is kept at the position

and the rest is added to the next Higher Significant Digit.

2. The next step checks for a „0‟ at the Most Significant

Digit of the normalized remainder. If it is not „0‟, as in

this case, then the normalized remainder is again divided

by the adjusted divisor and the new quotient is added to

the previous quotient. Else if it is „0‟, then the previous

procedures are repeated till completion.

 Page 67

The Algorithm:

Initialization Part:

1. The dividend and the divisor are held in two arrays –

Array ‟a‟ and Array „b‟ having index „m‟ and „n‟

respectively. Array „b‟ finally stores the remainder. A

temporary array „temp‟ has been used to hold the

quotient having index„t‟. Another array „c‟ is used to

hold the copy of the divisor. All the data has been stored

in Little Endean Formats and initialized to 0.The length

of Array „b‟ is „n‟ and Array „a‟ is „m+1‟, Array ‟c‟ is

„m‟ and „temp‟ is „n‟ respectively.

2. The divisor is adjusted so that no digit in the divisor is

more than 5.

3. „m‟ is updated if adjusting the divisor causes increase

in length of the divisor.

4. Inverse each digit of the divisor (including the most

significant digit).

Division Part:

5. A new variable „j‟ is taken for holding the value of the

possible number of iterations and its limits are set from 1

to „n-m+1‟.

6. Compare the most significant digits of divisor and

dividend.

7. If MSD (Most Significant Digit) of divisor >MSD of

dividend, club the most significant pair of digits of

dividend. Update (decrement) n and t.

8. If clubbing results in decrease of the number of digits

of dividend below that of divisor, break from the „For

Loop using „j‟‟ and go to step 13.

9. Quo= MSD of dividend/ MSD of divisor. Calculate

the remainder (dividend).

10. If MSD of dividend not divisible by that of divisor,

then break from the “for loop”. A fresh iteration is being

started. Go to step 13.

11. Decrement n and t, go to step 8.

12. The remainder is then normalized. Increment „n‟

and„t‟ if normalization increments the number of digits

in remainder.

13. If (nn-m+1) in the previous iteration, no further

iterations are possible and 2nd condition means we have

already tried to divide once more but failed, go to step

16.

14. Else division is possible, go to step 7.

15. Check the remainder. If the remainder is negative,

the quotient is decremented once. Else if it is positive, it

is the „normalized version of divisor‟ and cannot be

divided again. So check if original form of divisor

(stored in array „c‟) can divide again. This division can

result into incrementing the quotient by 1.

16. The quotient is stored in array „temp‟ with the

leading and trailing 0‟sand remainder in array „b‟.

Quotient can further be normalized.

Figure 7. Flowchart of the Vedic Division Algorithm

IV. SIMULATION RESULTS

Figure 8. Simulation Results for binary division(32-

bit)

 Page 68

Figure 9: Simulation Results for binary division(64-

bit)

Figure 10: Simulation results for vedic division

V. CONCLUSION

We advised (via analytic and synthesis-based appraisal

of the agnate VLSI realizations) the appulse of the

afterward two architecture options on the abstracts of

arete of bifold digit-recurrence analysis hardware.

 Representation of fractional remainders viatop basis

bombastic amount systems. Our representation best

is maximally bombastic radix-16 SD amount

arrangement with chiffre set [−15,15].

 Activating bearing of some divisor multiples in [−9,

9] × D about the precomputed assorted6D.

We aswell advised the accordant antecedent designs,

which accept autonomous for bifold CS representation of

fractional remainders and representation of radix-16

caliber digits via minimally bombastic radix-4 [−2, 2]

digits, which leads to fractional activating bearing of

divisor multiples.

For bigger appraisal of the aloft options, we explored a

architecture amplitude absolute four architectures based

on precomputation of all or allotment of divisor

multiples and CS or MRSD representation of fractional

remainders. The HDL simulations and amalgam showed

low-power and low-energy advantages of all the four

designs as compared with the best antecedent work.

However, while our designs do not accomplish as fast as

the advertence one, the EDP of the proposed designs is

26%–35% beneath than that of the advertence work.

REFERENCES

[1] J. Rajski, J. Tyszer, G. Mrugalski, and B. Nadeau-

Dostie, “Test generator with preselected toggling for low

power built-in self-test,” in Proc. Eur.Test Symp., May

2012, pp. 1–6.

[2] E. K. Moghaddam, J. Rajski, M. Kassab, and S. M.

Reddy, “At-speed scan test with low switching activity,”

in Proc. IEEE VLSI Test Symp., Apr. 2010, pp. 177–

182.

[3] S. Balatsouka, V. Tenentes, X. Kavousianos, and K.

Chakrabarty, “Defect aware X-filling for low-power scan

testing,” in Proc. Design, Autom. Test Eur. Conf.

Exhibit., Mar. 2010, pp. 873–878.

[4] I. Polian, A. Czutro, S. Kundu, and B. Becker,

“Power droop testing,” IEEE Design Test Comput., vol.

24, no. 3, pp. 276–284, May/Jun. 2007.

[5] X. Wen et al., “On pinpoint capture power

management in at-speed scan test generation,” in Proc.

IEEE Int. Test Conf., Nov. 2012,pp. 1–10.

[6] G. Hetherington, T. Fryars, N. Tamarapalli, M.

Kassab, A. Hassan, and J. Rajski, “Logic BIST for large

industrial designs: Real issues and case studies,” in Proc.

Int. Test Conf., 1999, pp. 358–367.

[7] X. Lin, “Power supply droop and its impacts on

structural at-speed testing,” in Proc. 21st Asian Test

Symp., Nov. 2012, pp. 239–244.

[8] Mentor Graphics. (2011). Tessent LogicBIST: At-

Speed Pseudorandom Pattern Embedded Logic Test.

 Page 69

[Online]. Available: http://www.mentor.com/

products/silicon- yield/products/upload/logicbist-ds.pdf

http://www.mentor.com/

