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Abstract: Future wireless communication systems 

tend to become multimode, multifunctional devices. 

Adaptivity becomes more important now than ever. 

These systems have to adapt to changing 

environmental conditions (e.g., more or less users in a 

cell or varying noise figures due to reflections or user 

movements) as well as to changing user demands 

[bandwidth, traffic patterns, and quality-of-service 

(QoS)]. When the system can adapt (at run-time) to 

the environment, significant savings in computational 

costs can be obtained. Furthermore, the hardware 

architectures have to be extremely efficient as these 

are used in battery-operated terminals and have to be 

cost effective as they are used in consumer products. 

Heterogeneous reconfigurable hardware platforms 

offer the necessary flexibility for performing multiple 

wireless communication standards and can achieve 

the performance required by the wireless standards. 

Furthermore, the combination of mixed-grained 

reconfigurable solutions enables energy efficient 

implementations of the wireless standards. Much 

work has been done on software defined radio (SDR) 

in the SDR forum context. One of the main reasons 

for introducing reconfigurable hardware in a wireless 

terminal is to support multiple wireless 

communication standards. The support of multiple 

wireless communication standards introduces a first 

level of adaptivity in the wireless terminal because the 

terminal can switch between wirelesses 

communications standards.Recore’s Montium Tile 

Processor (TP) is a dynamically reconfigurable IP 

core for computational intensive DSP algorithms. The 

Montium TP can be used as an accelerator to offload 

DSP tasks from a processor or in a heterogeneous 

multiprocessor system. 
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I. INTRODUCTION 

A software-defined radio system, or SDR, is a radio 

communication system where components that have 

been typically implemented in hardware (e.g. mixers, 

filters, amplifiers, modulators/demodulators, detectors, 

etc.) are instead implemented by means of software on 

a personal computer or embedded computing devices. 

While the concept of SDR is not new, the rapidly 

evolving capabilities of digital electronics render 

practical many processes which used to be only 

theoretically possible.  

 

A basic SDR system may consist of a personal 

computer equipped with a sound card, or other analog-

to-digital converter, preceded by some form of RF front 

end. Significant amounts of signal processing are 

handed over to the general-purpose processor, rather 

than being done in special-purpose hardware. Such a 

design produces a radio which can receive and transmit 

widely different radio protocols (sometimes referred to 

as a waveforms) based solely on the software used. 

Software radios have significant utility for the military 

and cell phone services, both of which must serve a 

wide variety of changing radio protocols in real time. In 
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the long term, software-defined radios are expected by 

proponents like the SDR Forum (now The Wireless 

Innovation Forum) to become the dominant technology 

in radio communications. SDRs, along with software 

defined antennas are the enablers of the cognitive radio.  

 

1.1 Existing Systems: 

Homogeneous flexible architecture like DSP processor 

or GPPS.A Multicore Software-Defined Radio(SDR) 

architecture for Global Navigation Satellite System 

(GNSS) receiver implementation. A GNSS receiver 

picks up very low power signals from multiple satellites 

and then uses dedicated processing to demodulate and 

measure the exact timing of these signals from which 

the user’s position, velocity, and time (PVT) can be 

estimated. In the GPPS are flexible but inefficient and 

have relatively poor performance. Application Specific 

architecture are efficient, it shows good performance 

but are inflexible. 

 

1.2 Proposed System: 

Heterogeneous reconfigurable hardware: It consisting 

of processing elements of different granularities is 

design with these constraints flexibility performance 

and energy efficiency in mind. The idea of 

heterogeneous processing elements is that one can 

match the granularity of the algorithm with the 

granularity of the hardware. Coarse Grained: these 

devices are flexible at word level; multipliers, adders, 

etc are hardware in these devices. Because only coarse 

functional block have to be configured, the 

configuration our head is small. Example is Montuim 

tile processor.  

 

The energy-efficiency of the system can be improved 

significantly by executing computational kernels2 on 

algorithm domain specific hardware. To satisfy above 

requirements we can design and develop Montium tail-

processor in hardware implementation for SDR. 

 

1.3 Problem Definition 

The existing system working at 100 MHz’s at this 

frequency level the processing speed is low. In 

homogeneous flexible architecture: It’s relative energy 

inefficiency. It does not have a balance between the 

energy efficiency, flexibility and performance. 

 

2. DIFFERENT DSP PROCESSOR 

2.1 Introduction 

A digital signal processor (DSP) is a specialized 

microprocessor with an optimized architecture for the 

fast operational needs of digital signal processing. 

 

Digital signal processing algorithms typically require a 

large number of mathematical operations to be 

performed quickly and repetitively on a set of data. 

Signals (perhaps from audio or video sensors) are 

constantly converted from analog to digital, 

manipulated digitally, and then converted again to 

analog form, as diagrammed below. Many DSP 

applications have constraints on latency; that is, for the 

system to work, the DSP operation must be completed 

within some fixed time, and deferred (or batch) 

processing is not viable. 

 

 
 

Fig 2.1 Simple DSP processor 

Most general-purpose microprocessors and operating 

systems can execute DSP algorithms successfully, but 

are not suitable for use in portable devices such as 

mobile phones and PDAs because of power supply and 

space constraints. A specialized digital signal 

processor, however, will tend to provide a lower-cost 

solution, with better performance, lower latency, and no 

requirements for specialized cooling or large batteries. 

The architecture of a digital signal processor is 

optimized specifically for digital signal processing. 

Most also support some of the features as an 

applications processor or micro controller, since signal 

processing is rarely the only task of a system. Some 
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useful features for optimizing DSP algorithms are 

outlined below. 

2.2 Architecture: 

By the standards of general purpose processors, DSP 

instruction sets are often highly irregular. One 

implication for software architecture is that hand 

optimized assembly is commonly packaged into 

libraries for re-use, instead of relying on unusually 

advanced compiler technologies to handle essential 

algorithms.  

 

Hardware features visible through DSP instruction sets 

commonly include: 

 Hardware modulo addressing, allowing circular 

buffers to be implemented without having to 

constantly test for wrapping. 

 Memory architecture designed for streaming 

data, using DMA extensively and expecting 

code to be written to know about cache 

hierarchies and the associated delays. 

 Driving multiple arithmetic units may require 

memory architectures to support several 

accesses per instruction cycle. 

 

3. IMPLEMENTATION 

3.1 Montium Processing Tile: 

The MONTIUM processing tile targets the 8-bit digital 

signal processing (DSP) algorithm domain. A single 

MONTIUM processing tile is depicted in Figure 3.1. 

The lower part of Figure 4.1 shows the Communication 

and Configuration Unit (CCU) and the upper part 

shows the reconfigurable Tile Processor (TP). The 

CCU implements the interface for off-tile 

communication. The definition of the off-tile interface 

depends on the interconnect technology that is used in 

the FPGA. The figure 3.1 reveals that the hardware 

organization of the tile processor is very regular. The 

five identical ALUs (ALU1…ALU5) in a tile can 

exploit spatial concurrency to enhance performance. 

This parallelism demands a very high memory 

bandwidth, which is obtained by having 10 local 

memories (M01…M10) in parallel. The small local 

memories are also motivated by the locality of 

reference principle. The data path has a width of 8-bits 

and the ALUs support both signed integer and signed 

integer arithmetic. 

 
 

Figure 3.1: The MONTIUM processing tile 

 

The ALU input registers provide an even more local 

level of storage. Locality of reference is one of the 

guiding principles applied to obtain energy-efficiency 

in the Montium. A vertical segment that contains one 

ALU together with its associated input register files, a 

part of the inter connect and two local memories is 

called a Processing Part (PP). The five Processing Parts 

together are called the Processing Part Array (PPA). A 

relatively simple sequencer controls the entire PPA. 

The sequencer selects configurable PPA instructions 

that are stored in the decoders of Figure 3.1. 

 

3.2 The MONTIUM TP ALU: 

Each local memory is a single-ported SRAM with a 

capacity of 8-bit. A reconfigurable Address Generation 

Unit (AGU) accompanies each memory. It is also 

possible to use the memory as a lookup table for 

complicated functions that cannot be calculated using 

an ALU, such as sine or division (with one constant). A 

memory can be used for both integer and fixed-point 

lookups. 
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Fig 3.2: The Montium tile processor arithmetic logic 

unit 

 

Figure 3.2 depicts a single MONTIUM TP ALU. It has 

four 8-bit inputs and each input has a private input 

register file that can store up to four operands. The 

input register file cannot be bypassed, i.e., an operand is 

always read from an input register. Input registers can 

be written by various sources via a flexible 

interconnect. An ALU has two 16-bit outputs, which 

are connected to the inter connect. The ALU is entirely 

combinational and consequentially there are no pipeline 

registers within the ALU. Neighboring ALUs can also 

communicate directly on level 2. The west-output of an 

ALU connects to the east-input of the ALU neighboring 

on the left. The east west connection does not introduce 

a delay or pipeline, as it is not registered. 

 

The Montium Tile Processor (TP) is a programmable 

architecture that obtains significant lower energy 

consumption than DSPs for fixed-point digital signal 

processing algorithms. The Montium TP targets 

computational intensive algorithm kernels that are 

dominant in both power consumption and execution 

time. In contrast to a conventional DSP, the Montium 

TP does not have a fixed instruction set, but is 

configured with the functionality required by the 

algorithm at hand. In particular, the Montium TP does 

not have to fetch instructions and, hence, does not 

suffer from the Von Neumann bottleneck. 

• Primary requirements of wireless multimedia 

handheld computers are high-performance, 

flexibility, energy-efficiency and low costs.  

• A compromise for these contradicting 

requirements can be found in a heterogeneous 

SOC.  

• The MONTIUM is a prototype of a novel 

coarse grained reconfigurable processor. The 

SOC template offers a balance between 

flexibility, efficiency and performance. 

                            

The hardware organization of the tile processor is very 

regular. The five identical ALUs (ALU1…ALU5) in a 

tile can exploit spatial concurrency to enhance 

performance. This parallelism demands a very high 

memory bandwidth, which is obtained by having,10 

local memories (M01…M10) in parallel. The ALU 

input registers provide an even more local level of 

storage. Locality of reference is one of the guiding 

principles applied to obtain energy-efficiency in the 

Montium. 

 

3.3 MEMORY DESIGN STYLE: 

clock

Address 

Reset

Data 

OUT 

Read/write 

ROM/RAM

DATA IN 

 
Figure no 3.3 Memory design styles 

 

The above figure no 3.3: shown the total operation 

dependent on the address and read/write operations. If 

memory is empty there is need first fill the memory 

(write data) and then access the data from memory. The 

total operation takes 2n clock cycles: n-clock cycles for 

write and n-clock cycles to read. It is a time consuming 

process. 
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3.5 Linear Feedback Sift Register: 

A linear feedback shift register (LFSR) is a shift 

register whose input bit is a linear function of its 

previous state. The only linear function of single bits is 

XOR, thus it is a shift register whose input bit is driven 

by the exclusive-or (XOR) of some bits of the overall 

shift register value.                   

 

 
 

Figure no 3.5a: linear feedback shift register black 

diagram 

The initial value of the LFSR is called the seed, and 

because the operation of the register is deterministic, 

the stream of values produced by the register is 

completely determined by its current (or previous) state. 

Likewise, because the register has a finite number of 

possible states, it must eventually enter a repeating 

cycle.  

However, an LFSR with a well-chosen feedback 

function can produce a sequence of bits which appears 

random and which has a very long cycle. 

 
Figure no 3.5b: 16 bit LFSR black diagram 

. 

A 16-bit Fibonacci LFSR. The feedback tap numbers in 

white correspond to a primitive polynomial in the table 

so the register cycles through the maximum number of 

65535 states excluding the all-zeroes state. The state 

ACE1 hex shown will be followed by 5670 hex. 

 

4. RESULT ANALYSIS 

 

1. Each architecture is coded in Verilog and simulated. 

2. The memory locations are implemented by verified 

using coding. 

3. The simulation results and the memory location 

simulation are verified for each architecture. 

The chapter deals with the implementation of 

memories, the significance of various locations, reports 

obtained and simulation waveforms of architectures 

developed to implement memory decoder and LFSR 

methods. 

 

4.1 Memory Decoder Architecture For 

Implementation Of Four Level Memory Locations 

Architecture: 

 

 
 

Fig no 4.1a: Memory decoder RTL systematic 

 

A priority encoder is a circuit or algorithm that 

compresses multiple binary inputs into a smaller 

number of outputs. They are often used to control 

interrupt requests by acting on the highest priority 

request. If two or more inputs are given at the same 

time, the input having the highest priority will take 

precedence. An example of a single bit 4 to 2 encoder is 

http://upload.wikimedia.org/wikipedia/en/1/16/LFSR-F16.gif
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shown, where highest-priority inputs are to the left and 

"x" indicates either a 1 or 0. 

 

 
 

Fig no 4.1b: Memory decoder technology 

systematic 

 

The figure 4.1b shows the memory decoder 

technological systematic. This is suitable for serial 

applications. By using counter it will generate sequence 

to decoder, the decoder out contains at maximum one 

only. The counter is a asynchronous counter. It 

increments its count value at negative clock edge. If the 

communication medium is very slow at that situation is 

suitable. 

 

 
 

Figure no 4.1c: simulation result for memory decoder 

 

The above figure4.1c simulation result for memory 

decoder which shows the four memory locations of on a 

memory decoder. In this case 0010 or 1000 etc are input 

bit to the memory decoder, gives the memory location 

one, 1100 or 0011 etc are input bit to the memory 

decoder, gives the memory location two, 1110 or 

0111are input bit to the memory decoder, gives the 

memory location three and finally all ones give the 

memory location four. 

 

4.2  Linear Feedback Shift-Register Architecture 

For Implementation Of Four Level Memory 

Locations: 

The figure no 4.2 LFSR modules RTL systematic gives 

the register have a finite number of possible states; it 

must eventually enter a repeating cycle.  

 

 
 

Fig no 4.2: LFSR module RTL systematic 

 

However, an LFSR with a well-chosen feedback 

function can produce a sequence of bits which appears 

random and which has a very long cycle. A 16-bit 

Fibonacci LFSR. The feedback tap numbers in white 

correspond to a primitive polynomial in the table so the 

register cycles through the maximum number of 65535 

states excluding the all-zeroes state. The state ACE1 

hex shown will be followed by 5670 hex. 

 

The bit positions that affect the next state are called the 

taps. The rightmost bit of the LFSR is called the output 

bit. The taps are XOR'd sequentially with the output bit 

and then fed back into the leftmost bit. The sequence of 

bits in the rightmost position is called the output 

stream. 
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Fig no 4.2a: LFSR technology systematic 

 

The above figure 4.2a shows linear feedback sift 

register technological systematic. The bits in the LFSR 

state which influence the input are called taps (white in 

the diagram).A maximum-length LFSR produces an m-

sequence (i.e. it cycles through all possible 2n − 1 states 

within the shift register except the state where all bits 

are zero), unless it contains all zeros, in which case it 

will never change. As an alternative to the XOR based 

feedback in an LFSR, one can also use XNOR. 

This function is not linear, but it results in an equivalent 

polynomial counter whose state of this counter is the 

complement of the state of an LFSR. A state with all 

ones is illegal when using an XNOR feedback, in the 

same way as a state with all zeroes is illegal when using 

XOR. This state is considered illegal because the 

counter would remain "locked-up" in this state. The 

sequence of numbers generated by an LFSR or its 

XNOR counterpart can be considered a binary numeral 

system just as valid as Gray code or the natural binary 

code. 

Figure no 4.2b: simulation result for LFSR 

 

The above figure 4.2b: shows the simulation result 

for LFSR. It gives randomly accesses memory location. 

Here all memory locations are to be activated randomly 

hence it’s required frequency is to be increased, so the 

time will be decreases, and hence it increases the speed 

of the memory locations.  

 

5. CONCLUSION 

This project explains the methods used in high speed 

parallel memory implementation. By using the memory 

decoder and LFSR technique increases the frequency of 

memory location, that means decreases the time. So it 

enhances the speed of the memory locations.  

 

Hence heterogeneous reconfigurable hardware 

platforms offer the necessary flexibility for performing 

multiple wireless communication standards and achieve 

the performance required by the wireless standards. 

Furthermore, the combination of mixed-grained 

reconfigurable solutions enables energy efficient 

implementations of the wireless standards. Much work 

has been done on software defined radio (SDR) in the 

SDR forum context. 

 

6. FUTURE SCOPE 

The future scope of this project involves analyzing the 

effects of different depth of the memory hardware 

increase and the timing optimizations we get. This can 

be done by applying different levels decoders for the 

standard Montium-tile processor and concluding the 

results respect to hardware and timing issues. Also the 

design can be analyzed for different levels of unfolding 

factors to discuss the hardware overhead involving in 

different parallelism levels. 
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