

Page 2182

An Efficient VLSI Architecture for Software Defined Radio by

Using Montium Processing Tile
A.Saida

Assistant Professor

ECE Department

KG Reddy College of Engineering And Technology,

Moinabad,TS,India.

e-mail: angotusaida2@gmail.com

Abstract: Future wireless communication systems

tend to become multimode, multifunctional devices.

Adaptivity becomes more important now than ever.

These systems have to adapt to changing

environmental conditions (e.g., more or less users in a

cell or varying noise figures due to reflections or user

movements) as well as to changing user demands

[bandwidth, traffic patterns, and quality-of-service

(QoS)]. When the system can adapt (at run-time) to

the environment, significant savings in computational

costs can be obtained. Furthermore, the hardware

architectures have to be extremely efficient as these

are used in battery-operated terminals and have to be

cost effective as they are used in consumer products.

Heterogeneous reconfigurable hardware platforms

offer the necessary flexibility for performing multiple

wireless communication standards and can achieve

the performance required by the wireless standards.

Furthermore, the combination of mixed-grained

reconfigurable solutions enables energy efficient

implementations of the wireless standards. Much

work has been done on software defined radio (SDR)

in the SDR forum context. One of the main reasons

for introducing reconfigurable hardware in a wireless

terminal is to support multiple wireless

communication standards. The support of multiple

wireless communication standards introduces a first

level of adaptivity in the wireless terminal because the

terminal can switch between wirelesses

communications standards.Recore’s Montium Tile

Processor (TP) is a dynamically reconfigurable IP

core for computational intensive DSP algorithms. The

Montium TP can be used as an accelerator to offload

DSP tasks from a processor or in a heterogeneous

multiprocessor system.

Keywords: Heterogeneous reconfigurable hardware,

orthogonal frequency division multiplexing (OFDM),

software defined radio (SDR), system-on-chip (SoC),

wideband code division multiple access (WCDMA).

Xilinx ISE Foundation 9.1i

I. INTRODUCTION

A software-defined radio system, or SDR, is a radio

communication system where components that have

been typically implemented in hardware (e.g. mixers,

filters, amplifiers, modulators/demodulators, detectors,

etc.) are instead implemented by means of software on

a personal computer or embedded computing devices.

While the concept of SDR is not new, the rapidly

evolving capabilities of digital electronics render

practical many processes which used to be only

theoretically possible.

A basic SDR system may consist of a personal

computer equipped with a sound card, or other analog-

to-digital converter, preceded by some form of RF front

end. Significant amounts of signal processing are

handed over to the general-purpose processor, rather

than being done in special-purpose hardware. Such a

design produces a radio which can receive and transmit

widely different radio protocols (sometimes referred to

as a waveforms) based solely on the software used.

Software radios have significant utility for the military

and cell phone services, both of which must serve a

wide variety of changing radio protocols in real time. In

mailto:angotusaida2@gmail.com

Page 2183

the long term, software-defined radios are expected by

proponents like the SDR Forum (now The Wireless

Innovation Forum) to become the dominant technology

in radio communications. SDRs, along with software

defined antennas are the enablers of the cognitive radio.

1.1 Existing Systems:

Homogeneous flexible architecture like DSP processor

or GPPS.A Multicore Software-Defined Radio(SDR)

architecture for Global Navigation Satellite System

(GNSS) receiver implementation. A GNSS receiver

picks up very low power signals from multiple satellites

and then uses dedicated processing to demodulate and

measure the exact timing of these signals from which

the user’s position, velocity, and time (PVT) can be

estimated. In the GPPS are flexible but inefficient and

have relatively poor performance. Application Specific

architecture are efficient, it shows good performance

but are inflexible.

1.2 Proposed System:

Heterogeneous reconfigurable hardware: It consisting

of processing elements of different granularities is

design with these constraints flexibility performance

and energy efficiency in mind. The idea of

heterogeneous processing elements is that one can

match the granularity of the algorithm with the

granularity of the hardware. Coarse Grained: these

devices are flexible at word level; multipliers, adders,

etc are hardware in these devices. Because only coarse

functional block have to be configured, the

configuration our head is small. Example is Montuim

tile processor.

The energy-efficiency of the system can be improved

significantly by executing computational kernels2 on

algorithm domain specific hardware. To satisfy above

requirements we can design and develop Montium tail-

processor in hardware implementation for SDR.

1.3 Problem Definition

The existing system working at 100 MHz’s at this

frequency level the processing speed is low. In

homogeneous flexible architecture: It’s relative energy

inefficiency. It does not have a balance between the

energy efficiency, flexibility and performance.

2. DIFFERENT DSP PROCESSOR

2.1 Introduction

A digital signal processor (DSP) is a specialized

microprocessor with an optimized architecture for the

fast operational needs of digital signal processing.

Digital signal processing algorithms typically require a

large number of mathematical operations to be

performed quickly and repetitively on a set of data.

Signals (perhaps from audio or video sensors) are

constantly converted from analog to digital,

manipulated digitally, and then converted again to

analog form, as diagrammed below. Many DSP

applications have constraints on latency; that is, for the

system to work, the DSP operation must be completed

within some fixed time, and deferred (or batch)

processing is not viable.

Fig 2.1 Simple DSP processor

Most general-purpose microprocessors and operating

systems can execute DSP algorithms successfully, but

are not suitable for use in portable devices such as

mobile phones and PDAs because of power supply and

space constraints. A specialized digital signal

processor, however, will tend to provide a lower-cost

solution, with better performance, lower latency, and no

requirements for specialized cooling or large batteries.

The architecture of a digital signal processor is

optimized specifically for digital signal processing.

Most also support some of the features as an

applications processor or micro controller, since signal

processing is rarely the only task of a system. Some

Page 2184

useful features for optimizing DSP algorithms are

outlined below.

2.2 Architecture:

By the standards of general purpose processors, DSP

instruction sets are often highly irregular. One

implication for software architecture is that hand

optimized assembly is commonly packaged into

libraries for re-use, instead of relying on unusually

advanced compiler technologies to handle essential

algorithms.

Hardware features visible through DSP instruction sets

commonly include:

 Hardware modulo addressing, allowing circular

buffers to be implemented without having to

constantly test for wrapping.

 Memory architecture designed for streaming

data, using DMA extensively and expecting

code to be written to know about cache

hierarchies and the associated delays.

 Driving multiple arithmetic units may require

memory architectures to support several

accesses per instruction cycle.

3. IMPLEMENTATION

3.1 Montium Processing Tile:

The MONTIUM processing tile targets the 8-bit digital

signal processing (DSP) algorithm domain. A single

MONTIUM processing tile is depicted in Figure 3.1.

The lower part of Figure 4.1 shows the Communication

and Configuration Unit (CCU) and the upper part

shows the reconfigurable Tile Processor (TP). The

CCU implements the interface for off-tile

communication. The definition of the off-tile interface

depends on the interconnect technology that is used in

the FPGA. The figure 3.1 reveals that the hardware

organization of the tile processor is very regular. The

five identical ALUs (ALU1…ALU5) in a tile can

exploit spatial concurrency to enhance performance.

This parallelism demands a very high memory

bandwidth, which is obtained by having 10 local

memories (M01…M10) in parallel. The small local

memories are also motivated by the locality of

reference principle. The data path has a width of 8-bits

and the ALUs support both signed integer and signed

integer arithmetic.

Figure 3.1: The MONTIUM processing tile

The ALU input registers provide an even more local

level of storage. Locality of reference is one of the

guiding principles applied to obtain energy-efficiency

in the Montium. A vertical segment that contains one

ALU together with its associated input register files, a

part of the inter connect and two local memories is

called a Processing Part (PP). The five Processing Parts

together are called the Processing Part Array (PPA). A

relatively simple sequencer controls the entire PPA.

The sequencer selects configurable PPA instructions

that are stored in the decoders of Figure 3.1.

3.2 The MONTIUM TP ALU:

Each local memory is a single-ported SRAM with a

capacity of 8-bit. A reconfigurable Address Generation

Unit (AGU) accompanies each memory. It is also

possible to use the memory as a lookup table for

complicated functions that cannot be calculated using

an ALU, such as sine or division (with one constant). A

memory can be used for both integer and fixed-point

lookups.

Page 2185

Fig 3.2: The Montium tile processor arithmetic logic

unit

Figure 3.2 depicts a single MONTIUM TP ALU. It has

four 8-bit inputs and each input has a private input

register file that can store up to four operands. The

input register file cannot be bypassed, i.e., an operand is

always read from an input register. Input registers can

be written by various sources via a flexible

interconnect. An ALU has two 16-bit outputs, which

are connected to the inter connect. The ALU is entirely

combinational and consequentially there are no pipeline

registers within the ALU. Neighboring ALUs can also

communicate directly on level 2. The west-output of an

ALU connects to the east-input of the ALU neighboring

on the left. The east west connection does not introduce

a delay or pipeline, as it is not registered.

The Montium Tile Processor (TP) is a programmable

architecture that obtains significant lower energy

consumption than DSPs for fixed-point digital signal

processing algorithms. The Montium TP targets

computational intensive algorithm kernels that are

dominant in both power consumption and execution

time. In contrast to a conventional DSP, the Montium

TP does not have a fixed instruction set, but is

configured with the functionality required by the

algorithm at hand. In particular, the Montium TP does

not have to fetch instructions and, hence, does not

suffer from the Von Neumann bottleneck.

• Primary requirements of wireless multimedia

handheld computers are high-performance,

flexibility, energy-efficiency and low costs.

• A compromise for these contradicting

requirements can be found in a heterogeneous

SOC.

• The MONTIUM is a prototype of a novel

coarse grained reconfigurable processor. The

SOC template offers a balance between

flexibility, efficiency and performance.

The hardware organization of the tile processor is very

regular. The five identical ALUs (ALU1…ALU5) in a

tile can exploit spatial concurrency to enhance

performance. This parallelism demands a very high

memory bandwidth, which is obtained by having,10

local memories (M01…M10) in parallel. The ALU

input registers provide an even more local level of

storage. Locality of reference is one of the guiding

principles applied to obtain energy-efficiency in the

Montium.

3.3 MEMORY DESIGN STYLE:

clock

Address

Reset

Data

OUT

Read/write

ROM/RAM

DATA IN

Figure no 3.3 Memory design styles

The above figure no 3.3: shown the total operation

dependent on the address and read/write operations. If

memory is empty there is need first fill the memory

(write data) and then access the data from memory. The

total operation takes 2n clock cycles: n-clock cycles for

write and n-clock cycles to read. It is a time consuming

process.

Page 2186

3.5 Linear Feedback Sift Register:

A linear feedback shift register (LFSR) is a shift

register whose input bit is a linear function of its

previous state. The only linear function of single bits is

XOR, thus it is a shift register whose input bit is driven

by the exclusive-or (XOR) of some bits of the overall

shift register value.

Figure no 3.5a: linear feedback shift register black

diagram

The initial value of the LFSR is called the seed, and

because the operation of the register is deterministic,

the stream of values produced by the register is

completely determined by its current (or previous) state.

Likewise, because the register has a finite number of

possible states, it must eventually enter a repeating

cycle.

However, an LFSR with a well-chosen feedback

function can produce a sequence of bits which appears

random and which has a very long cycle.

Figure no 3.5b: 16 bit LFSR black diagram

.

A 16-bit Fibonacci LFSR. The feedback tap numbers in

white correspond to a primitive polynomial in the table

so the register cycles through the maximum number of

65535 states excluding the all-zeroes state. The state

ACE1 hex shown will be followed by 5670 hex.

4. RESULT ANALYSIS

1. Each architecture is coded in Verilog and simulated.

2. The memory locations are implemented by verified

using coding.

3. The simulation results and the memory location

simulation are verified for each architecture.

The chapter deals with the implementation of

memories, the significance of various locations, reports

obtained and simulation waveforms of architectures

developed to implement memory decoder and LFSR

methods.

4.1 Memory Decoder Architecture For

Implementation Of Four Level Memory Locations

Architecture:

Fig no 4.1a: Memory decoder RTL systematic

A priority encoder is a circuit or algorithm that

compresses multiple binary inputs into a smaller

number of outputs. They are often used to control

interrupt requests by acting on the highest priority

request. If two or more inputs are given at the same

time, the input having the highest priority will take

precedence. An example of a single bit 4 to 2 encoder is

http://upload.wikimedia.org/wikipedia/en/1/16/LFSR-F16.gif

Page 2187

shown, where highest-priority inputs are to the left and

"x" indicates either a 1 or 0.

Fig no 4.1b: Memory decoder technology

systematic

The figure 4.1b shows the memory decoder

technological systematic. This is suitable for serial

applications. By using counter it will generate sequence

to decoder, the decoder out contains at maximum one

only. The counter is a asynchronous counter. It

increments its count value at negative clock edge. If the

communication medium is very slow at that situation is

suitable.

Figure no 4.1c: simulation result for memory decoder

The above figure4.1c simulation result for memory

decoder which shows the four memory locations of on a

memory decoder. In this case 0010 or 1000 etc are input

bit to the memory decoder, gives the memory location

one, 1100 or 0011 etc are input bit to the memory

decoder, gives the memory location two, 1110 or

0111are input bit to the memory decoder, gives the

memory location three and finally all ones give the

memory location four.

4.2 Linear Feedback Shift-Register Architecture

For Implementation Of Four Level Memory

Locations:

The figure no 4.2 LFSR modules RTL systematic gives

the register have a finite number of possible states; it

must eventually enter a repeating cycle.

Fig no 4.2: LFSR module RTL systematic

However, an LFSR with a well-chosen feedback

function can produce a sequence of bits which appears

random and which has a very long cycle. A 16-bit

Fibonacci LFSR. The feedback tap numbers in white

correspond to a primitive polynomial in the table so the

register cycles through the maximum number of 65535

states excluding the all-zeroes state. The state ACE1

hex shown will be followed by 5670 hex.

The bit positions that affect the next state are called the

taps. The rightmost bit of the LFSR is called the output

bit. The taps are XOR'd sequentially with the output bit

and then fed back into the leftmost bit. The sequence of

bits in the rightmost position is called the output

stream.

Page 2188

Fig no 4.2a: LFSR technology systematic

The above figure 4.2a shows linear feedback sift

register technological systematic. The bits in the LFSR

state which influence the input are called taps (white in

the diagram).A maximum-length LFSR produces an m-

sequence (i.e. it cycles through all possible 2n − 1 states

within the shift register except the state where all bits

are zero), unless it contains all zeros, in which case it

will never change. As an alternative to the XOR based

feedback in an LFSR, one can also use XNOR.

This function is not linear, but it results in an equivalent

polynomial counter whose state of this counter is the

complement of the state of an LFSR. A state with all

ones is illegal when using an XNOR feedback, in the

same way as a state with all zeroes is illegal when using

XOR. This state is considered illegal because the

counter would remain "locked-up" in this state. The

sequence of numbers generated by an LFSR or its

XNOR counterpart can be considered a binary numeral

system just as valid as Gray code or the natural binary

code.

Figure no 4.2b: simulation result for LFSR

The above figure 4.2b: shows the simulation result

for LFSR. It gives randomly accesses memory location.

Here all memory locations are to be activated randomly

hence it’s required frequency is to be increased, so the

time will be decreases, and hence it increases the speed

of the memory locations.

5. CONCLUSION

This project explains the methods used in high speed

parallel memory implementation. By using the memory

decoder and LFSR technique increases the frequency of

memory location, that means decreases the time. So it

enhances the speed of the memory locations.

Hence heterogeneous reconfigurable hardware

platforms offer the necessary flexibility for performing

multiple wireless communication standards and achieve

the performance required by the wireless standards.

Furthermore, the combination of mixed-grained

reconfigurable solutions enables energy efficient

implementations of the wireless standards. Much work

has been done on software defined radio (SDR) in the

SDR forum context.

6. FUTURE SCOPE

The future scope of this project involves analyzing the

effects of different depth of the memory hardware

increase and the timing optimizations we get. This can

be done by applying different levels decoders for the

standard Montium-tile processor and concluding the

results respect to hardware and timing issues. Also the

design can be analyzed for different levels of unfolding

factors to discuss the hardware overhead involving in

different parallelism levels.

7. REFERENCES

1. Th. Claasen: “Is High-Speed the Only Solution to

Exploit the Intrinsic Computational Power of Silicon?”,

keynote at the ISSCC 99, February, 1999.

2. P.M. Heysters, G.J.M. Smit & E. Molenkamp:

“Montium – Balancing between Energy-Efficiency,

Page 2189

Flexibility and Performance”, Proceedings of

Engineering of Reconfigurable Systems and Algorithms

(ERSA) 2003, pp 235-242, Las Vegas, Nevada, 2003.

3. P.M. Heysters & G.J.M. Smit: “Mapping of DSP

Algorithms on the Montium Architecture”, Proceedings

of the 17th International Parallel & Distributed

Processing

Symposium Reconfigurable Architectures Workshop

(RAW) 2003, Nice, France, April 2003, ISBN 0-7695-

1926-1.

 4. G.J.M. Smit, P.J.M. Havinga, L.T. Smit, P.M.

Heysters &M.A.J. Rosien, “Dynamic Reconfiguration

in Mobile Systems”, Proceedings FPL 2002,

Montpellier France, pp

171-181, September 2002.

5. H. Veendrick: “Deep-Submicron CMOS ICs”, 2nd

edition, Kluwer academic publishers, 2000, ISBN 90-

440-01116.

6. K. Yarlagadda, “ARM Refocuses DSP Effort”,

Microdesign resources, Microprocessor report, June

1999.

