

 Page 1835

Decentralization of BPEL Using Various Processes.

A.V.A Sushama Sarvani

M.Tech Student,

Department of CSE

Vignan'sNirula Institute of Technology and Science for

Women, Pedapalakaluru, Guntur-522 005

Dr. Paturi Radhika

Associate Professor,

Department of CSE

Vignan'sNirula Institute of Technology and Science for

Women, Pedapalakaluru, Guntur-522 005

ABSTRACT:

This article presents BPELcube, a framework

comprising a scalable architecture and a set of

distributed algorithms, which support the

decentralized enactment of BPEL processes. In many

application domains, BPEL processes are long-

running, they involve the exchange of voluminous

data with external Web services, and are

concurrently accessed by large numbers of users. In

such context, centralized BPEL process execution

engines pose considerable limitations in terms of

scalability and performance.To overcome such

problems, a scalable hypercube peer-to-peer topology

is employed by BPELcube in order to organize an

arbitrar number of nodes, which can then collaborate

in the decentralized execution and monitoring of

BPEL processes. Contrary to traditional clustering

approaches, each node does not fully take charge of

executing the whole process; rather, it contributes to

the overall process execution by running a subset of

the process activities, and maintaining a subset of the

process variables. Hence, the hypercubebased

infrastructure acts as a single execution engine,

where workload is evenly distributed among the

participating nodes in a finegrained manner. An

experimental evaluation of BPELcube and a

comparison with centralized and clustered BPEL

engine architectures demonstrates that the

decentralized approach yields improved process

execution times and throughput

Index Terms— Composite Web Services, Processes,

Business Process Management, Simulation of

Business Processes

INTRODUCTION:

THe Web Services Business Process Execution

Language abbreviated to WS-BPEL or BPEL, is

widely considered the de facto standard for the

implementation of executable service-oriented

business processes as compositions of Web services.

The language specification defines a set of activities to

support synchronous and asynchronous interactions

between a process and its clients, as well as between a

process and external Web services. Moreover, a

number of structured activities are used to implement

typical control flow units such as sequential or parallel

execution, ifelse statements, loops, etc. Hence the

control flow of a business process is realized by a

number of activities, which are appropriately ordered

and put together. The BPEL language also provides the

necessary elements to support the expression of

common programming concepts such as scope

encapsulation, fault handling, compensation, and

thread synchronization.

Data handling is realized by means of variables, which

are conveniently used by a BPEL process to hold the

data that are generated and/or consumed upon

execution of its constituent activities. Thus the various

activities of a process are able to share data with each

other simply by reading from and writing to one or

more of the process variables. To date, most of the

available solutions for the execution of BPEL

processes have been designed and operate in a

centralized manner, whereby an orchestrator

component running on a single server is responsible

for the execution of all process instances, while all

relevant data are maintained at a single location (i.e.

the server hosting the BPEL engine). Clearly, such

approach cannot scale in the presence of a potentially

large number of simultaneous, long-running process

 Page 1836

instances that produce and consume voluminous data.

While in some cases clustering techniques are

supported and can be employed to address the

scalability issue, the deployment and maintenance of

clusters consisting of two or more centralized BPEL

engines sets requirements on the underlying hardware

resources, which cannot be always fulfilled by the

involved organizations. Furthermore, clustering could

be proved an inefficient approach under certain

conditions, as it cannot overcome the emergence of

bottlenecks that are caused by specific activities of a

BPEL process. Hence, a more fine-grained workload

distribution approach is called for to ensure scalability

of the BPEL execution engine at lower cost. In the

following section, we introduce a motivating scenario

from the environmental domain so as to better capture

the problem in real-world terms.

Existing system

In order to facilitate the development, delivery and

reuse of environmental software models, service

orientation has been recently pushed forward by

several important initiatives1;2;3 and international

standardization bodies4 in the environmental domain.

In the light of those efforts, both geospatial data and

geo-processing units are exposed as Web services,

which can be used as building blocks for the

composition of environmental models in the form of

BPEL processes several challenges arise upon this

paradigm shift. Efficient execution and monitoring of

long-running environmental processes that consume

and produce large volumes of data, in the presence of

multiple concurrent process instances are among the

prominent issues that one should effectively deal with.

PROPOSED SYSTEM

In an effort to address situations such as the one

described previously, we introduce a framework

comprising a scalable Peer-to-Peer (P2P) architecture

and a set of distributed algorithms to support the

decentralized enactment of BPEL processes. Our

framework, dubbed BPELcube hereinafter, particularly

focuses on the improvement of the average process

execution times, and the enhancement of the overall

throughput of the execution infrastructure in the

presence of multiple, concurrent and long-running

process instances. BPELcube is mainly characterized

by the following features: Fully decentralized, P2P-

based BPEL engine architecture.

BPEL processes are deployed, executed, and

monitored by a set of nodes organized in a hypercube

P2P topology. Each node does not fully take charge of

executing the whole process; rather, it contributes by

running a sub-set of the process activities, and

maintaining a sub-set of the generated process data.

Thus the BPEL execution engine is fully operational

without the need of any central controller components.

_ Fine-grained distribution of process Activitie.

Decentralization of process execution fits to the nature

of long-running business-to-business interactions, and

significantly improves the performance and throughput

of the execution infrastructure. BPEL processes are

fully decomposed into their constituent activities.

Large-scale parallelization is feasible as the various

activities designated to run in parallel can be

synchronized and executed by different nodes.

Proximity-based distribution of process variables.

Since in many application domains processes consume

and produce large volumes of data, it is important that

those data are distributed in order to avoid resource

exhaustion situations. Our algorithms make sure that

 Page 1837

the data produced by a BPEL process will be

distributed across the nodes involved in its execution.

Moreover, they will stay close to the process activities

that produce them, thereby avoiding the unnecessary

transfer of potentially large volumes of data between

nodes as much as possible.

Asynchronous interaction with the client.

Even if a BPEL process is synchronous following the

requestresponse communication pattern, the interaction

between the client and the distributed execution engine

occurs in an asynchronous, non-blocking manner. This

way, the execution engine is able to serve multiple

long-running process instances without the need to

maintain open connections to the respective clients

over long periods of time. Furthermore, while waiting

for a long-running process instance to complete,

clients are given the monitoring mechanisms to

retrieve intermediate results, without intervening or

inflicting additional delays to the process execution.

Efficient use of the available resources and balanced

workload distribution.

The BPELcube algorithms ensure that all nodes

available in the P2P infrastructure will contribute to

the execution of BPEL processes.

The frequency of use of each node is taken into

account upon load balancing, while efficient routing

techniques are employed in order to achieve an even

distribution of the workload at any given time and

thereby avoid the emergence of performance

bottlenecks. In the following section, we present an

analysis of the relative literature and pinpoint the

added value of our work in the context of decentralized

BPEL process execution. Then, we proceed in Section

3 with the detailed presentation of our proposed

approach. Examples based on the landslide BPEL

process that was described in Section 1.1 are given

where necessary in order to better explain the various

algorithms. An experimental evaluation of our

approach along with the retrieved measurements are

presented and discussed in Section 4, while we

conclude this paper and identify paths for future work

in Section 5.

BPEL Decentralization

The decomposition and decentralized enactment of

BPEL processes is a valid problem that has been the

subject of many research efforts in the last years. In the

following, we review a number of related results that

have become available in the literature.

A P2P-based workflow management system called

SwinDeW that enables the decentralized execution of

workflows was proposed by Yan et al. [17]. According

to the authors, the generic workflow representation

model is compatible with most concrete workflow

languages including BPEL, although this compatibility

is not demonstrated. In any case, similar to our

presented approach, SwinDeW is based on the

decomposition of a given workflow into its constituent

tasks, and their subsequent assignment to the available

nodes of a P2P network, in order to remove the

performance bottleneck of centralized engines

BPELcube Node Architecture

The main internal components of a node participating

in the BPELcube engine are shown in Figure 2. The

P2P Connection Listener acts as the entry point of

each node accepting incoming requests from other

nodes in the hypercube. Each request is bound to a

new P2P connection, which is then passed to a P2P

Connection Handler for further processing

Process Deployment

For a BPEL process to be deployed to the BPELcube

engine, a request containing a bundle with all

necessary files needs to be submitted to one of the

available nodes in the hypercube. In particular, this

bundle contains the BPEL process specification, the

 Page 1838

WSDL interface, the WSDL files of all external

services, as well as any potentially required XML

schemas and/or XSLT transformation files. Upon

receipt of the deploy request, the node first performs a

syntactic validation of the included files, and then

decomposes the process into its constituent activities

and variables.

Process Execution

The execution of an already deployed process is

triggered each time an ExecuteProcess request is

received by one of the available nodes in the

hypercube, containing the process identifier idp and

the initial input, if any. To ensure even distribution of

workload, the recipient node starts a random walk

within the hypercube by means of shortest-path

routing, in order to appoint the node that will actually

take over the role of the execution manager.

The appointed manager creates a new P2P session for

the execution of the process, and stores it in a tuple

Conclusions

We presented a distributed architecture based on the

hypercube P2P topology along with a set of algorithms

that enable the decentralized execution of BPEL

processes. Our approach targets towards the

improvement of the average process execution times

and the enhancement of the overall throughput of the

execution infrastructure, in the presence of multiple

long-running process instances that involve the

exchange of large data.

The presented algorithms support the decomposition of

a given BPEL process and the subsequent assignment

of the constituent activities and data variables to the

available hypercube nodes. Execution is then

performed in a completely decentralized manner

without the existence of a central coordinator. Our

distributed approach also provides a lightweight

monitoring mechanism that does not intrude into the

process execution, but rather allows the retrieval of

monitoring information from the hypercube in a

seamless manner. We evaluated our approach in a

series of experiments, and compared it with centralized

and clustered architectures in terms of performance.

The retrieved measurements indicate that our

hypercube-based architecture is more suitable for the

execution of long-running and data-intensive

processes, while it is able to accommodate more

concurrent clients than the other two architectures.

Moreover, thanks to the even distribution of workload,

our approach copes with large data in a more efficient

manner. In future work, we aim to expand our worker

recruitment algorithm so as to consider additional

factors like network proximity or other QoS, which are

complementary to the frequence of use of the

employed nodes. This expansion will facilitate the

deployment of the hypercube-based engine on less

controlled settings IEEE TRANSACTIONS ON

SERVICES COMPUTING, VOL. X, NO. X, MONTH

20XX 14 such as WAN networks. We are also

interested in extending the proposed architecture to

support Cloudbased deployment of the BPELcube

engine. We anticipate that by moving BPELcube to the

Cloud, we will be able to exploit elasticity capabilities

for dynamically increasing or decreasing the

hypercube dimension. This way, the BPELcube engine

will be able to effectively and timely respond to

 Page 1839

workload changes. Finally, in terms of

implementation, we will investigate the use of parallel

query processing techniques to further enhance the

performance of BPELcube nodes, in the presence of

multiple concurrently running process instances.

REFERENCES:

[1] OASIS, “Web Services Business Process

Execution Language Version 2.0,” Apr. 2007.

[Online]. Available: http://docs.oasisopen.

org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

[2] B. Sch¨affer and T. Foerster, “A client for

distributed geoprocessing and workflow design.”

Journal of Location Based Services, vol. 2, no. 3, pp.

194–210, 2008.

[3] A. Weiser and A. Zipf, “Web service orchestration

of ogc web services for disaster management,” in

Geomatics Solutions for Disaster Management, ser.

Lecture Notes in Geoinformation and Cartography, J.

Li, S. Zlatanova, A. G. Fabbri, W. Cartwright, G.

Gartner, L. Meng, and M. P. Peterson, Eds. Springer

Berlin Heidelberg, 2007, pp. 239–254.

[4] X. Meng, F. Bian, and Y. Xie, “Research and

realization of geospatial information service

orchestration based on BPEL.” In Proceedings of the

2009 International Conference on Environmental

Science and Information Application Technology,

ESIAT 2009. IEEE Computer Society, 2009, pp. 642–

645.

[5] F. Theisselmann, D. Dransch, and S. Haubrock,

“Service-oriented architecture for environmental

modelling - the case of a distributed dike breach

information system,” in Proceedings of the 18th World

IMACS/MODSIM Congress, 13-17 July 2009, pp.

938–944.

[6] D. Roman, S. Schade, A. J. Berre et al.,

“Environmental services infrastructure with ontologies

- a decision support framework,” in Proceedings of

EnviroInfo 2009: Environmental Informatics and

Industrial Environmental Protection: Concepts,

Methods and Tools. Shaker Verlag, 2009, pp. 307–

315.

http://docs.oasisopen/

