ISSN No: 2348-4845 International Journal & Magazine of Engineering, Technology, Management and Research

A Peer Reviewed Open Access International Journal

Integrating VSCs to Weak Grids by Nonlinear Power Damping Controller Capability

B.Mohan lal

MTech Student Department of EEE AnuBose Institute of Technology(ABIT) Paloncha, Khammam, India.

ABSTRACT:

This paper presents a new control topology to enable effective integration of voltage source converters (VSCs) in weak grids. The controller has two main parts. The first part is a linear power-damping and synchronizing controller which automatically synchronizes a VSC to a grid by providing damping and synchronizing power components, and enables effective full power injection even under very weak grid conditions. The controller adopts cascaded angle, frequency and power loops for frequency and angle regulation. The controller emulates the dynamic performance of synchronous machines, which eases grid integration and provides a virtual inertia control framework for VSCs to damp power and frequency oscillations. Although the linear controller offers stable and smooth operation in many cases, it cannot ensure system stability in weak grids, where sudden large disturbances rapidly drift system dynamics to the nonlinear region. To overcome this difficulty, a supplementary nonlinear controller is developed to assist the linear controller and enhance system performance under large-signal nonlinear disturbances, such as self-synchronization, disturbances in grid frequency and angle, high power injection in very weak grids and fault-ride-through conditions.

Index Terms—Distributed generation, nonlinear control, power damping, voltage source converter (VSC) control, weak grid.

INTRODUCTION:

Consistent development of renewable distributed generations (DG) resources, such as wind turbines and photovoltaic (PV) arrays, has resulted in significant

C CH Mohanrao

Associate Professor&HoD Department of EEE AnuBose Institute of Technology(ABIT) Paloncha, Khammam, India.

tendency toward optimal control, operation and grid integration of DG units Seamless integration of DG units is a major driving force in the context of smart grids. Voltage source converters (VSCs) are the main enabling technology for interfacing renewable and clean energy resources in modern grids. The main control topologies of VSCs are vector control and direct power control. To obtain current and voltage components in a synchronously-rotating reference frame, a phase-locked loop (PLL) is required.

Furthermore, the PLL is necessary to extract gridfrequency and initial angle to guarantee smooth converter-grid connection via a synchronization process. However, the PLL dynamics, during transients, adversely affects overall system stability especially in weak grids. Despite the advantages of the vector control technique, there is considerable tendency toward developing new control topologies which eliminate the need for a PLL (i.e., self synchronization. To overcome difficulties associated with vector control of VSCs connected to very weak grids, the concept of power synchronization has been presented and provide in to an inherent synchronization with grid in steady-state similar to a synchronous generator (SG). Nevertheless, the proposed methods are synthesized based on smallsignal dynamics and cannot guarantee large-signal stability.

Existing System:

To evaluate system dynamic performance in a weak grid, a small-signal stability analysis of a gridconnected VSC is presented in this section. The threephase power system involves a converter and its controller, RL filter, connecting line and infinite grid.

Volume No: 2 (2015), Issue No: 7 (July) www.ijmetmr.com

ISSN No: 2348-4845 International Journal & Magazine of Engineering, Technology, Management and Research

A Peer Reviewed Open Access International Journal

Assuming an ideal VSC, the VSC local voltage is equal to the controller command, thus it is possible to model the VSC and PWM block by an average voltage approach The system parameters are given in Table I. The augmented model of the VSC and its controller can be developed as follows.

First, the load angle dynamic equation is given by Equations and represent a sixth order system and involve all the eigen values of the multivariable multiinput multi-output controller and the related power system. Figs. 4 and 5 show the loci of the eigen values as a function of the real power control loop parameters and, respectively. The sixth eigen value is not shown here because it appears far away from the imaginary axis. The dominant poles are highly dependent on these parameters. Equations and introduce two eigen values (eigens 4 and 5) which are contributed to the electric circuit and are independent of controller parameters.

Proposed System:

This paper focuses on the development of a nonlinear power damping control strategy for VSC units in weak grids with applicability to both grid-connected and islanded modes of operation. Fig. 1 shows the schematic view of a grid-connected VSC supplying a local load. The most critical issue for controller design is the complexity of the system due to nonlinear behavior of the power transfer dynamics.

Usually, linear controllers are developed based on small-signal linearization; however, the control performance inherently depends on specific operating points. In this paper, a two-level topology with cooperative nonlinear and linear controllers is developed. The first level is a power synchronizingdamping controller. The second level is a nonlinear controller supporting the linear part to enhance system stability in weak grids or during Self synchronization where load angle is large and system works in the nonlinear region.

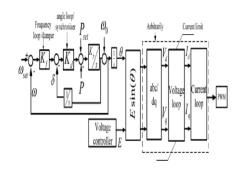
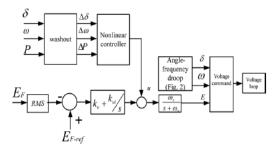
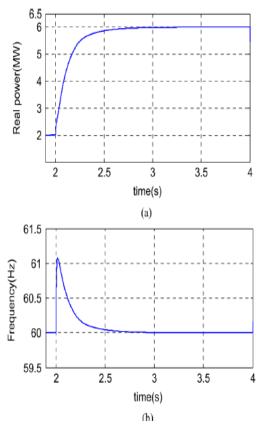


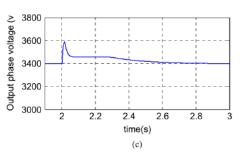
Fig. 2. Proposed linear control scheme.

Nonlinear Power Damping Controller

In weak grids with SCR less than 4, the load angle is usually large and approaches the steady-state stability limit; accordingly, in the case that a DG unit is required to supply its rated power, power stability may be significantly degraded. The proposed cooperative angle-frequency droop control can enable higher load angles. However, as a linear controller, it cannot guarantee large-signal stability in all operating conditions especially when system dynamics drifts to the nonlinear region. This is more pronounced in sudden large transients such as self-synchronization where any large mismatch between frequency and angle of both sides across the connecting breaker (or re closer) may contribute to poor performance and even instability To overcome this issue, a nonlinear back stepping power damping controller is proposed and augmented with the linear controller Since the nonlinear controller is a supplementary one providing an additional signal for the linear controller, the designs of the controllers are decoupled. The practicality of the nonlinear controller is also discussed in.




Fig. 6. Nonlinear supplementary control structure.


International Journal & Magazine of Engineering, Technology, Management and Research

A Peer Reviewed Open Access International Journal

EVALUATION RESULTS

Fig.7 shows the configuration of the simulated system. The system is composed of a 7.0 MW VSC, filter, local load, transformer and an interface line connecting the VSC to a grid. It is worth to mention that the impedance is the equivalent impedance of the stiff source referred to the distribution level. The simulation was conducted in MATLAB/SIMULINK study environment. The controller parameters are presented in Table I. The DG unit supplies the local load at its output terminal and is connected to a stiff grid through a very weak interface with total impedance of Since the connecting line is almost inductive, the power capacity of the interface line is approximated where the notations are defined in Fig. 1 and is the total reactance of the transformer, line and stiff grid Therefore, the maximum real power transfer capacity of the connecting line is equal MW. Since the local load power at the rated voltage is 2.5 MW, thus the VSC's maximum power capacity is about 7 MW. The DG works as a PV bus aiming at keeping the filter output voltage constant during grid connection.

ISSN No: 2348-4845

CONCLUSIONS

In this paper, a new control topology is presented to enable effective integration of VSCs to weak grids. The controller has two parts, namely the linear power damping controller and the nonlinear supplementary controller. The linear part mimics SGs with extra power damping synchronization capability providing self-synchronization with grid which eliminates the need for a PLL. However, in grid restoration scenarios, any large mismatch between VSC and grid frequency and angle may cause poor performance and even instability. These cases are considered as large-signal disturbances, thus the proposed nonlinear controller can enhance system performance in these cases. Moreover, the controller is able to work in very weak grids with SCR and supplies the rated power because of its damping and synchronizing power characteristics. The design process for the linear and nonlinear parts has been presented and numerous simulation scenarios were presented to validate the controller effectiveness.

REFERENCES

[1] A. Guerrero *et al.*, "Distributed generation," *IEEE Ind. Electron. Mag*, pp. 52–64, Mar. 2010.

[2] N. Flourentzou, V. G. Agelidis, and G. D. Demetriades, "VSC-based HVDC power transmission systems: An overview," *IEEE Trans. Power Electron.*, vol. 24, no. 3, pp. 592–602, Mar. 2009.

[3] B. Parkhideh and S. Bhattacharya, "Vectorcontrolled voltage-sourceconverter- based transmission under grid disturbances," *IEEE Trans. Power Electron.*, vol. 28, no. 2, pp. 661–672, 2012.

[4] Y.-P. Ding and J.-H. Liu, "Study on vector control used in VSC-HVDC," in *Proc. IEEE Power Engineering and Automation Conf. (PEAM)*, 2011.

Volume No: 2 (2015), Issue No: 7 (July) www.iimetmr.com

International Journal & Magazine of Engineering, Technology, Management and Research

A Peer Reviewed Open Access International Journal

[5] T. Noguchi, H. Tomiki, S.Kondo, and I. Takahashi, "Direct power control of PWM converter without power-source voltage sensors," *IEEE Trans. Ind. Applicat.*, vol. 34, no. 3, pp. 473–479, May/Jun. 1998.

[6] J. Verveckken, F. Silva, D. Barros, and J. Driesen, "Direct power control of series converter of unified power-flowcontroller with three-level neutral point clamped converter," *IEEE Trans. Power Del.*, vol. 27, no.4, pp. 1772–1782, Oct. 2012.

[7] F. Blaabjerg,R. Teodorescu,M.Liserre, and A. V. Timbus, "Overview of control and grid synchronization for distributed power generation

systems," *IEEE Trans. Ind. Electron.*, vol. 53, no. 5, pp. 1398–1408,Oct. 2006.

[8] L. Zhang, L. Harnefors, and H. -P. Nee, "Powersynchronization control of grid-connected voltagesource converters," *IEEE Trans. Power Syst.*, vol. 25, no. 2, pp. 809–819, May 2010.

[9] Q. -C. Zhong, P. -L. Nguyen, Z. Ma, and W. Sheng, "Self-synchronised synchronverters: inverters without a dedicated synchronization unit," *IEEE Trans. Power Electron.*, vol. 29, no. 2, pp. 617–630, 2014.

[10] L. Zhang, L. Harnefors, and H.-P. Nee, "Modeling and control of VSCHVDC links connected to island systems," *IEEE Trans. Power Syst.*, vol. 26, no. 2, pp. 783–793, May 2011.

Author Details:

Mr.Bhukya Mohan Lal, PG Scholar and Completed B.Tech degree in Electrical & Electronics Engineering in 2012 from Jawaharlal Nehru Technological University, Hyderabad, presently pursuing M.Tech in "Power Electronics " Anubose Institute of Technology,Paloncha,India.

ISSN No: 2348-4845

Mr.Chettumala Ch Mohan Rao was born in 1980. He graduated from kakatiya University, warangal in the year 2002. He received M.Tech degree from Jawaharlal Nehre Technological University, Hyderabad in the year 2012. He is presently working as Associate. Professor in the Department of Electrical and Electronics Engineering at Anubose Institute Of Technology,Paloncha, India. His research area includes DTC and Drives.