

 Page 1508

Area–Delay–Power Efficient Carry-Select Adder

B.Radhika

MTech Student

VLSI & Embedded Design,

Vijaya Engineering College

Khammam, India.

T.V.Suresh Kumar, M.Tech,(Ph.D)

Guide

VLSI & Embedded Design,

Vijaya Engineering College

Khammam, India.

D.Vijay Kumar, M.Tech

HoD

VLSI & Embedded Design,

Vijaya Engineering College

Khammam, India.

Abstract— In this brief, the logic operations

involved in conventional carry select adder (CSLA)

and binary to excess-1 converter (BEC)-based

CSLA are analyzed to study the data dependence

and to identify redundant logic operations. We

have eliminated all the redundant logic operations

present in the conventional CSLA and proposed a

new logic formulation for CSLA. In the proposed

scheme, the carry select (CS) operation is scheduled

before the calculation of final-sum, which is

different from the conventional approach. Bit

patterns of two anticipating carry words

(corresponding to cin = 0 and 1) and fixed cin bits

are used for logic optimization of CS and

generation units. An efficient CSLA design is

obtained using optimized logic units. The proposed

CSLA design involves significantly less area and

delay than the recently proposed BEC-based

CSLA. Due to the small carry-output delay, the

proposed CSLA design is a good candidate for

square-root (SQRT) CSLA. A theoretical estimate

shows that the proposed SQRT-CSLA involves

nearly 35% less area–delay–product (ADP) than

the BEC-based SQRT-CSLA, which is best among

the existing SQRT-CSLA designs, on average, for

different bit-widths. The application-specified

integrated circuit (ASIC) synthesis result shows

that the BEC-based SQRT-CSLA design involves

48% more ADP and consumes 50% more energy

than the proposed SQRT-CSLA, on average, for

different bit-widths.

Index Terms—Adder, arithmetic unit, low-power

design, carry select (CS), carry select adder

(CSLA), area–delay–product (ADP), application-

specified integrated circuit (ASIC).

I. INTRODUCTION:

Low-Power, area-efficient, and high-performance

VLSI systems are increasingly used in portable and

mobile devices, multi standard wireless receivers, and

biomedical instrumentation [1], [2]. An adder is the

main component of an arithmetic unit. A complex

digital signal processing (DSP) system involves

several adders. An efficient adder design essentially

improves the performance of a complex DSP system.

A ripple carry adder (RCA) uses a simple design, but

carry propagation delay (CPD) is the main concern in

this adder.

Carry look-ahead and carry select (CS) methods have

been suggested to reduce the CPD of adders.A

conventional carry select adder (CSLA) is an RCA–

RCA configuration that generates a pair of sum words

and output carry bits corresponding the anticipated

input-carry (cin =0 and 1) and selects one out of each

pair for final-sum and final-output-carry [3]. A

conventional CSLA has less CPD than an RCA, but

the design is not attractive since it uses a dual RCA.

Few attempts have been made to avoid dual use of

RCA in CSLA design. Kim and Kim [4] used one

RCA and one add-one circuit instead of two RCAs,

where the add-one circuit is implemented using a

multiplexer (MUX). He et al. [5] proposed a square-

root (SQRT)-CSLA to implement large bit-width

adders with less delay. In a SQRT CSLA, CSLAs with

increasing size are connected in a cascading structure.

The main objective of SQRT-CSLA design is to

provide a parallel path for carry propagation that helps

to reduce the overall adder delay. Ramkumar and

Kittur [6] suggested a binary to BEC-based CSLA.

The BEC-based CSLA involves less logic resources

than the conventional CSLA, but it has marginally

 Page 1509

higher delay. A CSLA based on common Boolean

logic (CBL) is also proposed in [7] and [8]. The CBL-

based CSLA of [7] involves significantly less logic

resource than the conventional CSLA but it has longer

CPD, which is almost equal to that of the RCA. To

overcome this problem, a SQRT-CSLA based on CBL

was proposed in [8]. However, the CBL-based

SQRTCSLA design of [8] requires more logic resource

and delay than the BEC-based SQRT-CSLA of [6].

We observe that logic optimization largely depends on

availability of redundant operations in the formulation,

whereas adder delay mainly depends on data

dependence. In the existing designs, logic is optimized

without giving any consideration to the data

dependence. In this brief, we made an analysis on logic

operations involved in conventional and BEC-based

CSLAs to study the data dependence and to identify

redundant logic operations. Based on this analysis, we

have proposed a logic formulation for the CSLA. The

main contribution in this brief is logic formulation

based on data dependence and optimized carry

generator (CG) and CS design. Based on the proposed

logic formulation, we have derived an efficient logic

design for CSLA. Due to optimized logic units, the

proposed CSLA involves significantly less ADP than

the existing CSLAs. We have shown that the SQRT-

CSLA using the proposed CSLA design involves

nearly 32% less ADP and consumes 33% less energy

than that of the corresponding SQRT-CSLA. The rest

of this brief is organized as follows. Logic formulation

of CSLA is presented in Section II. The proposed

CSLA is presented in Section III and the performance

comparison is presented in Section IV. The conclusion

is given in Section V.

II. LOGIC FORMULATION

The CSLA has two units: 1) the sum and carry

generator unit (SCG) and 2) the sum and carry

selection unit [9]. The SCG unit consumes most of the

logic resources of CSLA and significantly contributes

to the critical path. Different logic designs have been

suggested for efficient implementation of the SCG

unit. We made a study of the logic designs suggested

for the SCG unit of conventional and BEC-based

CSLAs of [6] by suitable logic expressions. The main

objective of this study is to identify redundant logic

operations and data dependence. Accordingly, we

remove all redundant logic operations and sequence

logic operations based on their data dependence.

Fig.1. (a) Conventional CSLA; n is the input operand

bit-width. (b) The logic operations of the RCA is

shown in split form, where HSG, HCG, FSG, and FCG

represent half-sum generation, half-carry generation,

full-sum generation, and full-carry generation,

respectively.

A. Logic Expressions of the SCG Unit of the

Conventional CSLA

As shown in Fig. 1(a), the SCG unit of the

conventional CSLA [3] is composed of two n-bit

RCAs, where n is the adder bit-width. The logic

operation of the n-bit RCA is performed in four stages:

1) half-sum generation (HSG); 2) half-carry

generation (HCG); 3) full-sum generation (FSG); and

4) fullcarry generation (FCG). Suppose two n-bit

operands are added in the conventional CSLA, then

RCA-1 and RCA-2 generate n-bit sum (s0 and s1) and

output-carry (c0 out and c1out) corresponding to input-

carry (cin = 0 and cin = 1), respectively. Logic

expressions of RCA-1 and RCA-2 of the SCG unit of

the n-bit CSLA are given as

s0
0(i) = A(i) B(i) c0

0(i) = A(i)・ B(i) (1a)

s0
1(i) =s0

0(i) c0
1(i − 1) (1b)

c0
1(i) =c0

0(i) + s0
0(i)・c01(i − 1) c0

out=c0
1(n − 1)

(1c)

s1
0(i) =A(i) B(i) c1

0(i) = A(i) ・ B(i) (2a)

 Page 1510

s1
1(i) =s1

0(i) c1
1(i − 1) (2b)

c1
1(i) =c1

0(i) + s1
0(i) ・ c1

1(i − 1) c1
out=c1

1(n − 1) (2c)

where c0
1(−1) = 0, c1

1(−1) = 1, and 0 ≤ i ≤ n − 1.

As shown in (1a)–(1c) and (2a)–(2c), the logic

expression of {s0
0(i), c0

0(i)} is identical to that of

{s1
0(i), c1

0(i)}. These redundant logic operations can be

removed to have an optimized design for RCA-2, in

which the HSG and HCG of RCA-1 is shared to

construct RCA-2. Based on this, [4] and [5] have used

an add-one circuit instead of RCA-2 in the CSLA, in

which a BEC circuit is used in [6] for the same

purpose. Since the BEC-based CSLA offers the best

area–delay power efficiency among the existing

CSLAs, we discuss here the logic expressions of the

SCG unit of the BEC-based CSLA as well.

B. Logic Expression of the SCG Unit of the BEC Based

CSLA

As shown in Fig. 2, the RCA calculates n-bit sum s01

and c0 out corresponding to cin = 0. The BEC unit

receives s01 and c0 out from the RCA and generates (n

+ 1)-bit excess-1 code. The most significant bit (MSB)

of BEC represents c1out, in which n least significant

bits (LSBs) represent s1
1. The logic expressions

Fig.2. Structure of the BEC-based CSLA; n is the input

operand bit-width.

of the RCA are the same as those given in (1a)–(1c).

The logic expressions of the BEC unit of the n-bit

BEC-based CSLA are given as

s1
1(0) = s0

1(0) c1
1(0) = s0

1(0) (3a)

s1
1(i) = s0

1(i) c1
1(i − 1) (3b)

c1
1(i) = s0

1(i) ・ c1
1(i − 1) (3c)

c1
out = c0

1(n − 1) c1
1(n − 1) (3d)

for 1 ≤ i ≤ n − 1.

We can find from (1a)–(1c) and (3a)–(3d) that, in the

case of the BEC-based CSLA, c1
1 depends on s0

1,

which otherwise has no dependence on s01in the case

of the conventional CSLA. The BEC method therefore

increases data dependence in the CSLA. We have

considered logic expressions of the conventional

CSLA and made a further study on the data

dependence to find an optimized logic expression for

the CSLA. It is interesting to note from (1a)–(1c) and

(2a)–(2c) that logic expressions of s0
1 and s1

1 are

identical except the terms c0
1 and c1

1since (s0
0 = s1

0 =

s0). In addition, we find that c0
1 and c1

1depend on {s0,

c0, cin}, where c0 = c0
0 = c1

0. Since c0
1 and c1

1 have no

dependence on s0
1 and s1

1, the logic operation of c0
1

and c1
1 can be scheduled before s0

1 and s1
1, and the

select unit can select one from the set (s0
1, s1

1) for the

final-sum of the CSLA. We find that a significant

amount of logic resource is spent for calculating {s0
1,

s1
1}, and it is not an efficient approach to reject one

sum-word after the calculation. Instead, one can select

the required carry word from the anticipated carry

words {c0 and c1} to calculate the final-sum. The

selected carry word is added with the half-sum (s0) to

generate the final-sum (s). Using this method, one can

have three design advantages:

1) Calculation of s0
1 is avoided in the SCG unit; 2) the

n-bit select unit is required instead of the (n + 1) bit;

and 3) small output-carry delay. All these features

result in an area–delay and energy-efficient design for

the CSLA. We have removed all the redundant logic

operations of (1a)–(1c) and (2a)–(2c) and rearranged

logic expressions of (1a)–(1c) and (2a)–(2c) based on

their dependence. The proposed logic formulation for

the CSLA is given as

s0(i) =A(i) B(i) c0(i) = A(i) ・ B(i) (4a)

c0
1(i) =c0

1(i − 1) ・ s0(i) + c0(i) for c0
1(0) = 0 (4b)

c1
1(i) = c1

1(i − 1) ・ s0(i) + c0(i) for c1
1(0) = 1 (4c)

 Page 1511

c(i) = c0
1(i) if (cin = 0) (4d)

c(i) =c1
1(i) if (cin = 1) (4e)

Fig.3. (a) Proposed CS adder design, where n is the

input operand bit-width, and [∗] represents delay (in

the unit of inverter delay), n = max(t, 3.5n + 2.7). (b)

Gate-level design of the HSG. (c) Gate-level optimized

design of (CG0) for input-carry = 0. (d) Gate-level

optimized design of (CG1) for input-carry = 1.(e)

Gate-level design of the CS unit. (f) Gate-level design

of the final-sum generation (FSG) unit.

Cout = c(n − 1) (4f)

s(0) = s0(0) cin s(i) = s0(i) c(i − 1). (4g)

III. PROPOSED ADDER DESIGN

The proposed CSLA is based on the logic formulation

given in (4a)–(4g), and its structure is shown in Fig.

3(a). It consists of one HSG unit, one FSG unit, one

CG unit, and one CS unit. The CG unit is composed of

two CGs (CG0 and CG1) corresponding to input-carry

‘0’ and ‘1’. The HSG receives two n-bit operands (A

and B) and generate half-sum word s0 and half-carry

word c0 of width n bits each. Both CG0 and CG1

receive s0 and c0 from the HSG unit and generate two

n-bit full-carry words c0
1 and c1

1 corresponding to

input-carry ‘0’ and ‘1’, respectively. The logic diagram

of the HSG unit is shown in Fig. 3(b). The logic

circuits of CG0 and CG1 are optimized to take

advantage of the fixed input-carry bits. The optimized

designs of CG0 and CG1 are shown in Fig. 3(c) and

(d), respectively.

The CS unit selects one final carry word from the two

carry words available at its input line using the control

signal cin. It selects c0
1 when cin = 0; otherwise, it

selects c1
1. The CS unit can be implemented using an

n-bit 2-to-l MUX. However, we find from the truth

table of the CS unit that carry words c0
1 and c1

1follow

a specific bit pattern. If c0
1

 Page 1512

(i) = ‘1’, then c1
1

(i) = 1,

irrespective of s0(i) and c0(i), for 0 ≤ i ≤ n − 1. This

feature is used for logic optimization of the CS unit.

The optimized design of the CS unit is shown in Fig.

3(e), which is composed of n AND–OR gates. The

final carry word c is obtained from the CS unit. The

MSB of c is sent to output as cout, and (n − 1) LSBs

are XORed with (n − 1) MSBs of half-sum (s0) in the

FSG [shown in Fig. 3(f)] to obtain (n − 1) MSBs of

final-sum (s). The LSB of s0 is XORed with cin to

obtain the LSB of s.

IV. PERFORMANCE COMPARISON

A. Area–Delay Estimation Method

We have considered all the gates to be made of 2-input

AND, 2-input OR, and inverter (AOI). A 2-input XOR

is composed of 2 AND, 1 OR, and 2 NOT gates. The

area and delay of the 2-input AND, 2-input OR, and

NOT gates are taken from the Synopsys Armenia

Educational Department (SAED) 90-nm standard cell

library datasheet for theoretical estimation. The area

and delay of a design are calculated using the

following relations:

A =a ・ Na + r ・ No + i ・ Ni (5a)

T =na ・ Ta + no ・ To + ni ・ Ti (5b)

where (Na,No,Ni) and (na, no, ni), respectively,

represent the (AND, OR, NOT) gate counts of the total

design and its critical path. (a, r, i) and (Ta, To, Ti),

respectively, represent the area and delay of one

(AND, OR, NOT) gate. We have calculated the (AOI)

gate counts of each design for area and delay

estimation. Using (5a) and (5b), the area and delay of

each design are calculated from the AOI gate counts

(Na,No,Ni), (na, no, ni).

B. Single-Stage CSLA

The general expression to calculate the AOI gate

counts of the n-bit proposed CSLA and the BEC-based

CSLA of [6] and CBL-based CSLA of single stage

design. We have calculated the AOI gate counts on the

critical path of the proposed n-bit CSLA and CSLAs of

[6]–[8] and used those AOI gate counts in (5b) to find

an expression for delay of final-sum and output-carry

in the unit of Ti (NOT gate delay).The delay of the n-

bit single-stage CSLA. For further analysis of the

critical path of the proposed CSLA, the delay of each

intermediate and output signals of the proposed n-bit

CSLA design of Fig. 3 is shown in the square bracket

against each signal. We can find

from Table II that the proposed n-bit single-stage

CSLA adder involves 6n less number of AOI gates

than the CSLA of [6] and takes 2.7 and 6.6 units less

delay to calculate final-sum and output-carry.

Compared with the CBL-based CSLA of [7], the

proposed CSLA design involves n more AOI gates,

and it takes (n − 4.7) unit less delay to calculate the

output-carry.

Fig.4. Proposed SQRT-CSLA for n = 16. All

intermediate and output signals are labeled with delay

(shown in square brackets).

Whereas the CBL-based CSLA of [7] offers a single

carry propagation path identical to the RCA design.

Moreover, the proposed CSLA design has 0.45 ns less

output-carry delay than the output-sum delay. This is

mainly due to the CS unit that produces output-carry

before the FSG calculates the final-sum.

C. Multistage CSLA (SQRT-CSLA)

The multipath carry propagation feature of the CSLA

is fully exploited in the SQRT-CSLA [5], which is

composed of a chain of CSLAs. CSLAs of increasing

size are used in the SQRT-CSLA to extract the

 Page 1513

maximum concurrence in the carry propagation path.

Using the SQRT-CSLA design, large-size adders are

implemented with significantly less delay than a

single-stage CSLA of same size. However, carry

propagation delay between the CSLA stages of SQRT-

CSLA is critical for the overall adder delay. Due to

early generation of output-carry with multipath carry

propagation feature, the proposed CSLA design is

more favorable than the existing CSLA designs for

area–delay efficient implementation of SQRT-CSLA.

A 16-bit SQRT-CSLA design using the proposed

CSLA is shown in Fig. 4, where the 2-bit RCA, 2-bit

CSLA, 3-bit CSLA, 4-bit CSLA, and 5-bit CSLA are

used. We have considered the cascaded configuration

of (2-bit RCA and 2-, 3-, 4-, 6-, 7-,and 8-bit CSLAs)

and (2-bit RCA and 2-, 3-, 4-, 6-, 7-, 8-, 9-,11-, and 12-

bit CSLAs), respectively, for the 32-bit SQRTCSLA

and the 64-bit SQRT-CSLA to optimize adder delay.

To demonstrate the advantage of the proposed CSLA

design in SQRT-CSLA, we have estimated the area

and delay of SQRTCSLA using the proposed CSLA

design and the BEC-based CSLA of [6] and the CBL-

based CSLA of [7] for bit-widths 16, 32, and 64 The

estimated values are listed in Table IV for comparison.

As shown in Table IV, the delay of the CBL-based

SQRT-CSLA [7] is significantly higher for large bit-

widths than the proposed SQRT-CSLA and BEC-

based SQRT-CSLA designs. Compared with SQRT-

CSLA designs of [6] and [7], the proposed

SQRTCSLA design, respectively, involves 35% and

72% less ADP, on average, for different bit-widths.

TABLE IV

THEORETICAL ESTIMATE OF AREA AND

DELAY COMPLEXITIES OF THE PROPOSED

SQRT-CSLAS.

 Number of Slices: 23

 Number of 4 input LUTs: 41

 Number of IOs: 50

 Number of bonded IOBs: 50

Delay 17.441ns

Area 201552 kilobytes

D. Simulation Results

V. CONCLUSION

We have analyzed the logic operations involved in the

conventional and BEC-based CSLAs to study the data

dependence and to identify redundant logic operations.

We have eliminated all the redundant logic operations

of the conventional CSLA and proposed a new logic

formulation for the CSLA. In the proposed scheme, the

CS operation is scheduled before the calculation of

final-sum, which is different from the conventional

approach. Carry words corresponding to input-carry

‘0’ and ‘1’ generated by the CSLA based on the

proposed scheme follow a specific bit pattern, which is

used for logic optimization of the CS unit. Fixed input

bits of the CG unit are also used for logic optimization.

Based on this, an optimized design for CS and CG

units are obtained. Using these optimized logic units,

an efficient design is obtained for the CSLA. The

proposed CSLA design involves significantly less area

and delay than the recently proposed BEC-based

CSLA. Due to the small carry output delay, the

proposed CSLA design is a good candidate for the

SQRT adder. The ASIC synthesis result shows that the

existing BEC-based SQRT-CSLA design involves

48% more ADP and consumes 50% more energy than

the proposed SQRTCSLA, on average, for different

bit-widths.

REFERENCES

[1] K. K. Parhi, VLSI Digital Signal Processing. New

York, NY, USA:Wiley,1998.

 Page 1514

[2] A. P. Chandrakasan, N. Verma, and D. C. Daly,

“Ultralow-power electronicsfor biomedical

applications,” Annu. Rev. Biomed. Eng., vol. 10, pp.

247–274, Aug. 2008.

[3] O. J. Bedrij, “Carry-select adder,” IRE Trans.

Electron. Comput.,vol. EC-11, no. 3, pp. 340–344, Jun.

1962.

[4] Y. Kim and L.-S. Kim, “64-bit carry-select adder

with reduced area,” Electron. Lett., vol. 37, no. 10, pp.

614–615, May 2001.

[5] Y. He, C. H. Chang, and J. Gu, “An area-efficient

64-bit square root carryselect adder for low power

application,” in Proc. IEEE Int. Symp. CircuitsSyst.,

2005, vol. 4, pp. 4082–4085.

