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Abstract— In this brief, the logic operations 

involved in conventional carry select adder (CSLA) 

and binary to excess-1 converter (BEC)-based 

CSLA are analyzed to study the data dependence 

and to identify redundant logic operations. We 

have eliminated all the redundant logic operations 

present in the conventional CSLA and proposed a 

new logic formulation for CSLA. In the proposed 

scheme, the carry select (CS) operation is scheduled 

before the calculation of final-sum, which is 

different from the conventional approach. Bit 

patterns of two anticipating carry words 

(corresponding to cin = 0 and 1) and fixed cin bits 

are used for logic optimization of CS and 

generation units. An efficient CSLA design is 

obtained using optimized logic units. The proposed 

CSLA design involves significantly less area and 

delay than the recently proposed BEC-based 

CSLA. Due to the small carry-output delay, the 

proposed CSLA design is a good candidate for 

square-root (SQRT) CSLA. A theoretical estimate 

shows that the proposed SQRT-CSLA involves 

nearly 35% less area–delay–product (ADP) than 

the BEC-based SQRT-CSLA, which is best among 

the existing SQRT-CSLA designs, on average, for 

different bit-widths. The application-specified 

integrated circuit (ASIC) synthesis result shows 

that the BEC-based SQRT-CSLA design involves 

48% more ADP and consumes 50% more energy 

than the proposed SQRT-CSLA, on average, for 

different bit-widths.  

 

Index Terms—Adder, arithmetic unit, low-power 

design, carry select (CS), carry select adder 

(CSLA), area–delay–product (ADP), application-

specified integrated circuit (ASIC). 

I. INTRODUCTION: 

Low-Power, area-efficient, and high-performance 

VLSI systems are increasingly used in portable and 

mobile devices, multi standard wireless receivers, and 

biomedical instrumentation [1], [2]. An adder is the 

main component of an arithmetic unit. A complex 

digital signal processing (DSP) system involves 

several adders. An efficient adder design essentially 

improves the performance of a complex DSP system. 

A ripple carry adder (RCA) uses a simple design, but 

carry propagation delay (CPD) is the main concern in 

this adder. 

 

Carry look-ahead and carry select (CS) methods have 

been suggested to reduce the CPD of adders.A 

conventional carry select adder (CSLA) is an RCA–

RCA configuration that generates a pair of sum words 

and output carry bits corresponding the anticipated 

input-carry (cin =0 and 1) and selects one out of each 

pair for final-sum and final-output-carry [3]. A 

conventional CSLA has less CPD than an RCA, but 

the design is not attractive since it uses a dual RCA. 

Few attempts have been made to avoid dual use of 

RCA in CSLA design. Kim and Kim [4] used one 

RCA and one add-one circuit instead of two RCAs, 

where the add-one circuit is implemented using a 

multiplexer (MUX). He et al. [5] proposed a square-

root (SQRT)-CSLA to implement large bit-width 

adders with less delay. In a SQRT CSLA, CSLAs with 

increasing size are connected in a cascading structure. 

The main objective of SQRT-CSLA design is to 

provide a parallel path for carry propagation that helps 

to reduce the overall adder delay. Ramkumar and 

Kittur [6] suggested a binary to BEC-based CSLA. 

The BEC-based CSLA involves less logic resources 

than the conventional CSLA, but it has marginally 
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higher delay. A CSLA based on common Boolean 

logic (CBL) is also proposed in [7] and [8]. The CBL-

based CSLA of [7] involves significantly less logic 

resource than the conventional CSLA but it has longer 

CPD, which is almost equal to that of the RCA. To 

overcome this problem, a SQRT-CSLA based on CBL 

was proposed in [8]. However, the CBL-based 

SQRTCSLA design of [8] requires more logic resource 

and delay than the BEC-based SQRT-CSLA of [6]. 

We observe that logic optimization largely depends on 

availability of redundant operations in the formulation, 

whereas adder delay mainly depends on data 

dependence. In the existing designs, logic is optimized 

without giving any consideration to the data 

dependence. In this brief, we made an analysis on logic 

operations involved in conventional and BEC-based 

CSLAs to study the data dependence and to identify 

redundant logic operations. Based on this analysis, we 

have proposed a logic formulation for the CSLA. The 

main contribution in this brief is logic formulation 

based on data dependence and optimized carry 

generator (CG) and CS design. Based on the proposed 

logic formulation, we have derived an efficient logic 

design for CSLA. Due to optimized logic units, the 

proposed CSLA involves significantly less ADP than 

the existing CSLAs. We have shown that the SQRT-

CSLA using the proposed CSLA design involves 

nearly 32% less ADP and consumes 33% less energy 

than that of the corresponding SQRT-CSLA. The rest 

of this brief is organized as follows. Logic formulation 

of CSLA is presented in Section II. The proposed 

CSLA is presented in Section III and the performance 

comparison is presented in Section IV. The conclusion 

is given in Section V. 

 

II. LOGIC FORMULATION 

The CSLA has two units: 1) the sum and carry 

generator unit (SCG) and 2) the sum and carry 

selection unit [9]. The SCG unit consumes most of the 

logic resources of CSLA and significantly contributes 

to the critical path. Different logic designs have been 

suggested for efficient implementation of the SCG 

unit. We made a study of the logic designs suggested 

for the SCG unit of conventional and BEC-based 

CSLAs of [6] by suitable logic expressions. The main 

objective of this study is to identify redundant logic 

operations and data dependence. Accordingly, we 

remove all redundant logic operations and sequence 

logic operations based on their data dependence. 

 

 
 

Fig.1. (a) Conventional CSLA; n is the input operand 

bit-width. (b) The logic operations of the RCA is 

shown in split form, where HSG, HCG, FSG, and FCG 

represent half-sum generation, half-carry generation, 

full-sum generation, and full-carry generation, 

respectively. 

 

A. Logic Expressions of the SCG Unit of the 

Conventional CSLA 

As shown in Fig. 1(a), the SCG unit of the 

conventional CSLA [3] is composed of two n-bit 

RCAs, where n is the adder bit-width. The logic 

operation of the n-bit RCA is performed in four stages: 

1) half-sum generation (HSG); 2) half-carry 

generation (HCG); 3) full-sum generation (FSG); and 

4) fullcarry generation (FCG). Suppose two n-bit 

operands are added in the conventional CSLA, then 

RCA-1 and RCA-2 generate n-bit sum (s0 and s1) and 

output-carry (c0 out and c1out) corresponding to input-

carry (cin = 0 and cin = 1), respectively. Logic 

expressions of RCA-1 and RCA-2 of the SCG unit of 

the n-bit CSLA are given as  

 

s0
0(i) = A(i)  B(i)   c0

0(i) = A(i)・ B(i)       (1a) 

s0
1(i) =s0

0(i)  c0
1(i − 1)                              (1b) 

c0
1(i) =c0

0(i) + s0
0(i)・c01(i − 1) c0

out=c0
1(n − 1)                                                                    

(1c) 

s1
0(i) =A(i)  B(i) c1

0(i) = A(i) ・ B(i)          (2a) 
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s1
1(i) =s1

0(i)  c1
1(i − 1)                                (2b) 

c1
1(i) =c1

0(i) + s1
0(i) ・ c1

1(i − 1) c1
out=c1

1(n − 1) (2c)  

 

where c0
1(−1) = 0, c1

1(−1) = 1, and 0 ≤ i ≤ n − 1. 

 

As shown in (1a)–(1c) and (2a)–(2c), the logic 

expression of {s0
0(i), c0

0(i)} is identical to that of 

{s1
0(i), c1

0(i)}. These redundant logic operations can be 

removed to have an optimized design for RCA-2, in 

which the HSG and HCG of RCA-1 is shared to 

construct RCA-2. Based on this, [4] and [5] have used 

an add-one circuit instead of RCA-2 in the CSLA, in 

which a BEC circuit is used in [6] for the same 

purpose. Since the BEC-based CSLA offers the best 

area–delay power efficiency among the existing 

CSLAs, we discuss here the logic expressions of the 

SCG unit of the BEC-based CSLA as well. 

 

 

B. Logic Expression of the SCG Unit of the BEC Based 

CSLA 

As shown in Fig. 2, the RCA calculates n-bit sum s01 

and c0 out corresponding to cin = 0. The BEC unit 

receives s01 and c0 out from the RCA and generates (n 

+ 1)-bit excess-1 code. The most significant bit (MSB) 

of BEC represents c1out, in which n least significant 

bits (LSBs) represent s1
1. The logic expressions 

 

 
Fig.2. Structure of the BEC-based CSLA; n is the input 

operand bit-width. 

 

of the RCA are the same as those given in (1a)–(1c). 

The logic expressions of the BEC unit of the n-bit 

BEC-based CSLA are given as 

 

s1
1(0)  = s0

1(0)  c1
1(0) = s0

1(0)             (3a) 

s1
1(i)  = s0

1(i)  c1
1(i − 1)                   (3b) 

c1
1(i) = s0

1(i) ・ c1
1(i − 1)                   (3c) 

c1
out = c0

1(n − 1)  c1
1(n − 1)             (3d) 

 

for 1 ≤ i ≤ n − 1. 

 

We can find from (1a)–(1c) and (3a)–(3d) that, in the 

case of the BEC-based CSLA, c1
1 depends on s0

1, 

which otherwise has no dependence on s01in the case 

of the conventional CSLA. The BEC method therefore 

increases data dependence in the CSLA. We have 

considered logic expressions of the conventional 

CSLA and made a further study on the data 

dependence to find an optimized logic expression for 

the CSLA. It is interesting to note from (1a)–(1c) and 

(2a)–(2c) that logic expressions of s0
1 and s1

1 are 

identical except the terms c0
1 and c1

1since (s0
0 = s1

0 = 

s0). In addition, we find that c0
1 and c1

1depend on {s0, 

c0, cin}, where c0 = c0
0 = c1

0. Since c0
1 and c1

1 have no 

dependence on s0
1 and s1

1, the logic operation of c0
1 

and c1
1 can be scheduled before s0

1 and s1
1, and the 

select unit can select one from the set (s0
1, s1

1) for the 

final-sum of the CSLA. We find that a significant 

amount of logic resource is spent for calculating {s0
1, 

s1
1}, and it is not an efficient approach to reject one 

sum-word after the calculation. Instead, one can select 

the required carry word from the anticipated carry 

words {c0 and c1} to calculate the final-sum. The 

selected carry word is added with the half-sum (s0) to 

generate the final-sum (s). Using this method, one can 

have three design advantages: 

 

1) Calculation of s0
1 is avoided in the SCG unit; 2) the 

n-bit select unit is required instead of the (n + 1) bit; 

and 3) small output-carry delay. All these features 

result in an area–delay and energy-efficient design for 

the CSLA. We have removed all the redundant logic 

operations of (1a)–(1c) and (2a)–(2c) and rearranged 

logic expressions of (1a)–(1c) and (2a)–(2c) based on 

their dependence. The proposed logic formulation for 

the CSLA is given as 

 

s0(i) =A(i)  B(i) c0(i) = A(i) ・ B(i)          (4a) 

c0
1(i) =c0

1(i − 1) ・ s0(i) + c0(i)  for  c0
1(0) = 0  (4b) 

c1
1(i) = c1

1(i − 1) ・ s0(i) + c0(i) for  c1
1(0) = 1  (4c) 
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c(i) = c0
1(i)  if  (cin = 0)                       (4d) 

c(i) =c1
1(i)  if   (cin = 1)                         (4e) 

 

 

 
 

 
 

 

 
 

 
 

 
 

 
 

Fig.3. (a) Proposed CS adder design, where n is the 

input operand bit-width, and [∗] represents delay (in 

the unit of inverter delay), n = max(t, 3.5n + 2.7). (b) 

Gate-level design of the HSG. (c) Gate-level optimized 

design of (CG0) for input-carry = 0. (d) Gate-level 

optimized design of (CG1) for input-carry = 1.(e) 

Gate-level design of the CS unit. (f) Gate-level design 

of the final-sum generation (FSG) unit. 

 

Cout  = c(n − 1)                                                 (4f) 

s(0) = s0(0)  cin s(i) = s0(i)  c(i − 1).         (4g) 

 

III. PROPOSED ADDER DESIGN 

The proposed CSLA is based on the logic formulation 

given in (4a)–(4g), and its structure is shown in Fig. 

3(a). It consists of one HSG unit, one FSG unit, one 

CG unit, and one CS unit. The CG unit is composed of 

two CGs (CG0 and CG1) corresponding to input-carry 

‘0’ and ‘1’. The HSG receives two n-bit operands (A 

and B) and generate half-sum word s0 and half-carry 

word c0 of width n bits each. Both CG0 and CG1 

receive s0 and c0 from the HSG unit and generate two 

n-bit full-carry words c0
1 and c1

1 corresponding to 

input-carry ‘0’ and ‘1’, respectively. The logic diagram 

of the HSG unit is shown in Fig. 3(b). The logic 

circuits of CG0 and CG1 are optimized to take 

advantage of the fixed input-carry bits. The optimized 

designs of CG0 and CG1 are shown in Fig. 3(c) and 

(d), respectively. 

 

The CS unit selects one final carry word from the two 

carry words available at its input line using the control 

signal cin. It selects c0
1 when cin = 0; otherwise, it 

selects c1
1. The CS unit can be implemented using an 

n-bit 2-to-l MUX. However, we find from the truth 

table of the CS unit that carry words c0
1 and c1

1follow 

a specific bit pattern. If c0
1 
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(i) = ‘1’, then c1
1 

(i) = 1, 

 

irrespective of s0(i) and c0(i), for 0 ≤ i ≤ n − 1. This 

feature is used for logic optimization of the CS unit. 

The optimized design of the CS unit is shown in Fig. 

3(e), which is composed of n AND–OR gates. The 

final carry word c is obtained from the CS unit. The 

MSB of c is sent to output as cout, and (n − 1) LSBs 

are XORed with (n − 1) MSBs of half-sum (s0) in the 

FSG [shown in Fig. 3(f)] to obtain (n − 1) MSBs of 

final-sum (s). The LSB of s0 is XORed with cin to 

obtain the LSB of s. 

 

IV. PERFORMANCE COMPARISON 

A. Area–Delay Estimation Method 

We have considered all the gates to be made of 2-input 

AND, 2-input OR, and inverter (AOI). A 2-input XOR 

is composed of 2 AND, 1 OR, and 2 NOT gates. The 

area and delay of the 2-input AND, 2-input OR, and 

NOT gates are taken from the Synopsys Armenia 

Educational Department (SAED) 90-nm standard cell 

library datasheet for theoretical estimation. The area 

and delay of a design are calculated using the 

following relations: 

 

A =a ・ Na + r ・ No + i ・ Ni (5a) 

T =na ・ Ta + no ・ To + ni ・ Ti (5b) 

 

where (Na,No,Ni) and (na, no, ni), respectively, 

represent the (AND, OR, NOT) gate counts of the total 

design and its critical path. (a, r, i) and (Ta, To, Ti), 

respectively, represent the area and delay of one 

(AND, OR, NOT) gate. We have calculated the (AOI) 

gate counts of each design for area and delay 

estimation. Using (5a) and (5b), the area and delay of 

each design are calculated from the AOI gate counts 

(Na,No,Ni), (na, no, ni). 

 

B. Single-Stage CSLA 

The general expression to calculate the AOI gate 

counts of the n-bit proposed CSLA and the BEC-based 

CSLA of [6] and CBL-based CSLA of single stage 

design. We have calculated the AOI gate counts on the 

critical path of the proposed n-bit CSLA and CSLAs of 

[6]–[8] and used those AOI gate counts in (5b) to find 

an expression for delay of final-sum and output-carry 

in the unit of Ti (NOT gate delay).The delay of the n-

bit single-stage CSLA. For further analysis of the 

critical path of the proposed CSLA, the delay of each 

intermediate and output signals of the proposed n-bit 

CSLA design of Fig. 3 is shown in the square bracket 

against each signal. We can find 

from Table II that the proposed n-bit single-stage 

CSLA adder involves 6n less number of AOI gates 

than the CSLA of [6] and takes 2.7 and 6.6 units less 

delay to calculate final-sum and output-carry. 

Compared with the CBL-based CSLA of [7], the 

proposed CSLA design involves n more AOI gates, 

and it takes (n − 4.7) unit less delay to calculate the 

output-carry.  

 

 
 

Fig.4. Proposed SQRT-CSLA for n = 16. All 

intermediate and output signals are labeled with delay 

(shown in square brackets). 

 

Whereas the CBL-based CSLA of [7] offers a single 

carry propagation path identical to the RCA design. 

Moreover, the proposed CSLA design has 0.45 ns less 

output-carry delay than the output-sum delay. This is 

mainly due to the CS unit that produces output-carry 

before the FSG calculates the final-sum. 

 

C. Multistage CSLA (SQRT-CSLA) 

The multipath carry propagation feature of the CSLA 

is fully exploited in the SQRT-CSLA [5], which is 

composed of a chain of CSLAs. CSLAs of increasing 

size are used in the SQRT-CSLA to extract the 
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maximum concurrence in the carry propagation path. 

Using the SQRT-CSLA design, large-size adders are 

implemented with significantly less delay than a 

single-stage CSLA of same size. However, carry 

propagation delay between the CSLA stages of SQRT-

CSLA is critical for the overall adder delay. Due to 

early generation of output-carry with multipath carry 

propagation feature, the proposed CSLA design is 

more favorable than the existing CSLA designs for 

area–delay efficient implementation of SQRT-CSLA. 

A 16-bit SQRT-CSLA design using the proposed 

CSLA is shown in Fig. 4, where the 2-bit RCA, 2-bit 

CSLA, 3-bit CSLA, 4-bit CSLA, and 5-bit CSLA are 

used. We have considered the cascaded configuration 

of (2-bit RCA and 2-, 3-, 4-, 6-, 7-,and 8-bit CSLAs) 

and (2-bit RCA and 2-, 3-, 4-, 6-, 7-, 8-, 9-,11-, and 12-

bit CSLAs), respectively, for the 32-bit SQRTCSLA 

and the 64-bit SQRT-CSLA to optimize adder delay. 

 

To demonstrate the advantage of the proposed CSLA 

design in SQRT-CSLA, we have estimated the area 

and delay of SQRTCSLA using the proposed CSLA 

design and the BEC-based CSLA of [6] and the CBL-

based CSLA of [7] for bit-widths 16, 32, and 64 The 

estimated values are listed in Table IV for comparison. 

As shown in Table IV, the delay of the CBL-based 

SQRT-CSLA [7] is significantly higher for large bit-

widths than the proposed SQRT-CSLA and BEC-

based SQRT-CSLA designs. Compared with SQRT-

CSLA designs of [6] and [7], the proposed 

SQRTCSLA design, respectively, involves 35% and 

72% less ADP, on average, for different bit-widths. 

 

TABLE IV 

THEORETICAL ESTIMATE OF AREA AND 

DELAY COMPLEXITIES OF THE PROPOSED 

SQRT-CSLAS. 

 

 Number of Slices:                       23 

 Number of 4 input LUTs:           41    

 Number of IOs:                           50 

 Number of bonded IOBs:            50     

Delay                                          17.441ns 

Area                                            201552 kilobytes 

D.  Simulation Results 

 

 
 

V. CONCLUSION 

We have analyzed the logic operations involved in the 

conventional and BEC-based CSLAs to study the data 

dependence and to identify redundant logic operations. 

We have eliminated all the redundant logic operations 

of the conventional CSLA and proposed a new logic 

formulation for the CSLA. In the proposed scheme, the 

CS operation is scheduled before the calculation of 

final-sum, which is different from the conventional 

approach. Carry words corresponding to input-carry 

‘0’ and ‘1’ generated by the CSLA based on the 

proposed scheme follow a specific bit pattern, which is 

used for logic optimization of the CS unit. Fixed input 

bits of the CG unit are also used for logic optimization. 

Based on this, an optimized design for CS and CG 

units are obtained. Using these optimized logic units, 

an efficient design is obtained for the CSLA. The 

proposed CSLA design involves significantly less area 

and delay than the recently proposed BEC-based 

CSLA. Due to the small carry output delay, the 

proposed CSLA design is a good candidate for the 

SQRT adder. The ASIC synthesis result shows that the 

existing BEC-based SQRT-CSLA design involves 

48% more ADP and consumes 50% more energy than 

the proposed SQRTCSLA, on average, for different 

bit-widths. 
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