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ABSTRACT:  

Several trends are opening up the era of cloud 

computing, which is an Internet-based development 

and use of computer technology. The ever cheaper 

and more powerful processors, together with the 

Multi-message Ciphertext Policy Attribute-Based 

Encryption (MCP-ABE) computing architecture, are 

transforming data centers into pools of computing 

service on a huge scale. The increasing network 

bandwidth and reliable yet flexible network 

connections make it even possible that users can now 

subscribe high quality services from data and 

software that reside solely on remote data centers. In 

order to achieve the assurances of cloud data 

integrity and availability and enforce the quality of 

cloud storage service, we consider the problem of 

building a secure cloud storage service on top of a 

public cloud infrastructure where the service 

provider is not completely trusted by the customer. 

We describe, at a high level contract signing protocol 

that combine recent and non-standard cryptographic 

primitives in order to achieve our goal.  

 

Index Terms—Data integrity, dependable distributed 

storage, error localization, data dynamics, cloud 

computing. 

I.INTRODUCTION 

Several trends area unit gap up the time of Cloud 

Computing, that is associate degree Internet-based 

development and use of engineering. The ever cheaper 

and more powerful processors, beside the software 

system as a service (MCP-ABE) computing design, 

area unit remodeling datacenters into pools of 

computing service on a large scale. The increasing 

network information measure and reliable nevertheless 

flexible network connections build it even potential 

that users will currently subscribe top quality services 

from knowledge and software system that reside 

exclusively on remote knowledge centres. Moving 

knowledge into the cloud offers nice convenience to 

users since they don’t need to care regarding the 

complexities of direct hardware management. The 

pioneers of Cloud Computing vendors, Amazon 

straightforward Storage Service and Amazon Elastic 

reckon Cloud area unit each documented examples. 

Whereas these internet-based on-line services do offer 

vast amounts of space for storing and customizable 

computing resources, this computing platform shift, 

however, is eliminating the responsibility of native 

machines for knowledge maintenance at a similar time. 

As a result, users’ area unit at the mercy of their cloud 

service suppliers for the supply and integrity of their 

knowledge.  

On the one hand, although the cloud infrastructures 

area unit rather more powerful and reliable than 

personal computing devices, broad vary of both 

internal and external threats for data integrity still exist 

samples of outages and data loss incidents of 

noteworthy cloud storage services appear from time to 

time. On the opposite hand, since users could not 

retain a neighborhood copy of outsourced data, there 

exist various incentives for cloud service providers 

(CSP) to behave unfaithfully towards the cloud users 

concerning the standing of their outsourced data. For 

instance, to increase the profit margin by reducing 



 
 

 Page 2138 
 

cost, it's possible for CSP to discard rarely accessed 

data without being detected in a timely fashion.  

Similarly, CSP could even attempt to hide data loss 

incidents thus as to maintain a reputation. Therefore, 

although outsourcing data in to the cloud is 

economically enticing for the cost and complexity of 

long-run large-scale data storage, its lacking of 

providing sturdy assurance of data integrity and 

convenience could impede its wide adoption by both 

enterprise and individual cloud users. In order to attain 

the assurances of cloud data integrity and convenience 

and enforce the quality of cloud storage service, 

economical ways that enable on demand data 

correctness verification on behalf of cloud users have 

to be designed. However, the fact that users no longer 

have physical possession of data within the cloud 

prohibits the direct adoption of traditional science 

primitives for the aim of data integrity protection. 

Hence, the verification of cloud storage correctness 

must be conducted without specific information of the 

full data files. Meanwhile, cloud storage is not just a 

third party data warehouse. The information keep 

within the cloud may not only be accessed but also be 

of updated by the users, as well as insertion, deletion, 

modification, appending, etc. Thus, it's additionally 

imperative to support the integration of this dynamic 

feature into the cloud storage correctness assurance 

that makes the system style even more difficult.  

Last however not the least; the preparation of Cloud 

Computing is steam-powered by information centres 

running in a very coincidental, cooperated and 

distributed manner. It’s additional blessings for 

individual users to store their information redundantly 

across multiple physical servers therefore on cut back 

the information integrity and handiness threats. Thus, 

distributed protocols for storage correctness assurance 

are going to be of most importance in achieving strong 

and secure cloud storage systems. However, such vital 

space remains to be fully explored within the literature. 

Recently, the importance of making certain the remote 

information integrity has been highlighted by the 

subsequent analysis works beneath totally different 

system and security models. These techniques, 

whereas is helpful to make sure the storage correctness 

while not having users possessing local data, square 

measure all specializing in single server situation. 

They may be helpful for quality-of-service testing, but 

doesn't guarantee the information handiness just in 

case of server failures. Though direct applying these 

techniques to distributed storage (multiple servers) can 

be straightforward, the resulted storage verification 

overhead would be linear to the amount of servers.  

As a complementary approach, researchers have 

conjointly planned distributed protocols for making 

certain storage correctness across multiple servers or 

peers. However, while providing economical cross 

server storage verification and information handiness 

insurance, these schemes square measure all 

specializing in static or deposit information. As a 

result, their capabilities of handling dynamic 

information remain unclear, which inevitably limits 

their full relevance in cloud storage situations. In this 

paper, we have a tendency to propose an efficient and 

versatile distributed storage verification theme with 

specific dynamic data support to make sure the 

correctness and handiness of users’ information within 

the cloud. we have a tendency to consider erasure 

correcting code within the file distribution preparation 

to supply redundancies and guarantee the information 

dependableness against Byzantine servers , wherever a 

storage server may fail in absolute ways that. This 

construction drastically reduces the communication 

and storage overheads compared to the normal 

replication-based file distribution techniques. By 

utilizing the homomorphism token with distributed 

verification of erasure-coded information, our scheme 

achieves the storage correctness insurance as well as 

information error localization: whenever information 

corruption has been detected throughout the storage 

correctness verification, our theme will nearly 

guarantee the coincidental localization of knowledge 

errors, i.e., the identification of the misbehaving 

server(s).  

So as to strike an honest balance between error 

resilience and information dynamics, we further 

explore the pure mathematics property of our token 
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computation and erasure-coded information, and 

demonstrate the way to efficiently support dynamic 

operation on information blocks, while maintaining an 

equivalent level of storage correctness assurance. So as 

to save lots of the time, computation resources, and 

even the connected on-line burden of users, we 

conjointly offer the extension of the planned main 

scheme to support third-party auditing, wherever users 

will safely delegate the integrity checking tasks to 

TPA and be free to use the services. Our work is 

among the primary few ones during this field to 

contemplate distributed information storage security in 

Cloud Computing.  

Our contribution is summarized as the following 3 

aspects: 

1) Compared to several of its predecessors, which only 

provide binary results regarding the storage standing 

across the distributed servers, the planned theme 

achieves the integration of storage correctness 

insurance and information error localization, i.e., the 

identification of misbehaving server(s). 

2) In contrast to most previous works for making 

certain remote information integrity, the new theme 

any supports secure and efficient dynamic operations 

on information blocks, including update, delete and 

append. 

3) The experiment results demonstrate the planned 

scheme is very economical. In depth security analysis 

shows our theme is resilient against Byzantine failure, 

malicious information modification attack, and even 

server colluding attacks. 

II. RELATED WORK 

Juels and Kaliski Jr. [10] described a formal “proof of 

retrievability” (POR) model for ensuring the remote 

data integrity. Their scheme combines spot-checking 

and error correcting code to ensure both possession 

and retrievability of files on archive service systems. 

Shacham and Waters[17] built on this model and 

constructed a random linear function-based 

homomorphism authenticator which enables unlimited 

number of challenges and requires less communication 

overhead due to its usage of relatively small size of 

BLS signature. Bowers et al. [18] proposed an 

improved framework for POR protocols that 

generalizes both Juelsand Shacham’s work. Later in 

their subsequent work, Bowers et al. [23] extended 

POR model to distributed systems. However, all these 

schemes are focusing on static data. The effectiveness 

of their schemes rests primarily on the preprocessing 

steps that the user conducts before outsourcing the data 

file F. Any change to the contents of F, even few bits, 

must propagate through the error correcting code and 

the corresponding random shuffling process, thus 

introducing significant computation and 

communication complexity. Recently, Dodis et al. [20] 

gave theoretical studies on generalized framework for 

different variants of existing POR work. Ateniese et al. 

[11] defined the “provable data possession”(PDP) 

model for ensuring possession of file on untrusted 

storages. Their scheme utilized public key-based 

homomorphic tags for auditing the data file.  

However, the pre computation of the tags imposes 

heavy computation overhead that can be expensive for 

an entire file. In their subsequent work, Ateniese et al. 

[14] described a PDP scheme that uses only symmetric 

key-based cryptography. This method has lower 

overhead than their previous scheme and allows for 

block updates, deletions, and appends to the stored file, 

which has also been supported in our work. However, 

their scheme focuses on single server scenario and 

does not provide data availability guarantee against 

server failures, leaving both the distributed scenario 

and data error recovery issue unexplored. The explicit 

support of data dynamics has further been studied in 

the two recent work [15] and [16]. Wang et al. 

[15]proposed to combine BLS-based homomorphic 

authenticator with Merkle Hash Tree to support fully 

data dynamics, while Erway et al. [16] developed a 

skip list-based scheme to enable provable data 

possession with fully dynamics support. The 

incremental cryptography work done by Bellare et al. 

[36] also provides a set of cryptographic building 

blocks such as hash, MAC, and signature functions 

that may be employed for storage integrity verification 
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while supporting dynamic operations on data. 

However, this branch of work falls into the traditional 

data integrity protection mechanism, where local copy 

of data has to be maintained for the verification. It is 

not yet clear how the work can be adapted to cloud 

storage scenario where usersno longer have the data at 

local sites but still need to ensure the storage 

correctness efficiently in the cloud. 

The Storage and Computation Cost of Token Pre 

computation for 1 GB Data File under Different 

System Settings In other related work, Curtmola et al. 

[19] aimed to ensure data possession of multiple 

replicas across the distributed storage system. They 

extended the PDP scheme to cover multiple replicas 

without encoding each replica separately, providing 

guarantee that multiple copies of data are actually 

maintained. Lillibridge et al. [25] presented aP2P 

backup scheme in which blocks of a data file are 

dispersed across m þ k peers using an erasure code. 

Peers can request random blocks from their backup 

peers and verify the integrity using separate keyed 

cryptographic hashes attached on each block. Their 

scheme can detect data loss from free-riding peers, but 

does not ensure all data are unchanged. Filho and 

Barreto [37] proposed to verify data integrity using 

RSA-based hash to demonstrate unchea table data 

possession in peer-to-peer file sharing networks. 

However, their proposal requires exponentiation over 

the entire data file, which is clearly impractical for the 

server whenever the file is large. Shah et al. [12], [13] 

proposed allowing a TPA to keep online storage 

honest by first encrypting the data then sending a 

number of pre computed symmetric-keyed hashes over 

the encrypted data to the auditor. However, their 

scheme only works for encrypted files, and auditors 

must maintain long-term state. Schwarzand Miller [24] 

proposed to ensure static file integrity across multiple 

distributed servers, using erasure-coding and block-

level file integrity checks. We adopted some ideas of 

their distributed storage verification protocol. 

However, our scheme further support data dynamics 

and explicitly studies the problem of misbehaving 

server identification, while theirs did not. Very 

recently, Wang et al. [31] gave a study on many 

existing solutions on remote data integrity checking, 

and discussed their pros and cons under different 

design scenarios of secure cloud storage services. 

Portions of the work presented in this paper have 

previously appeared as an extended abstract in [1]. We 

have revised the paper a lot and add more technical 

details as compared to [1]. The primary improvements 

are as follows: First, we provide the protocol extension 

for privacy preserving third-party auditing, and discuss 

the application scenarios for cloud storage service. 

Second, we add correctness analysis of proposed 

storage verification design. Third, we completely redo 

all the experiments in our performance evaluation part, 

which achieves significantly improved result as 

compared to [1]. We also add detailed discussion on 

the strength of our bounded usage for protocol 

verifications and its comparison with state of the art. 

Exploration of the proposed Contract Signing 

Protocol 

A fair contract signing protocol allows two potentially 

mistrusted parities to exchange their commitments. 

Contract signing is truly simple due to the existence of 

“simultaneity”. That is, both parties generally sign two 

hard copies of the same contract at the same place and 

at the same time based on the RSA signature scheme, a 

new digital contract signing protocol. 

 

Here the fair exchange, between two (or multiple) 

potentially mistrusted parities exchanging digital items  

over computer networks in a fair way, so that each 

party gets the other’s item, or neither party does. In the 

fair exchange will contain: 

1) Contract Signing Protocol. 

2) Certified e-mail systems. 

3) Non-reputation Protocol. 

 

1  Certified e-mail systems: 

Certified electronic mail enables two mutually 

suspicious users to exchange a receipt for electronic 

mail. One family of protocols, the believers’ protocols, 

use a trusted third party. The second family, the 

skeptics’ protocols, uses no third party. Our protocols 
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are secure in a very strong sense; the probability of one 

party cheating can be made arbitrarily small. The 

protocols provide a practical example of the use of 

various innovative cryptographic techniques, including 

digital signatures, bit commitment, and zero-

knowledge interactive proofs. These protocols can be 

implemented in modern communication networks. 

 

 
 

2   Non-reputation Protocol: 

The goal of a non-repudiation service is to collect, 

maintain, make available, and validate irrefutable 

evidence regarding the transfer of a message from the 

originator to the recipient, possibly involving the 

service of a trusted third party called the Delivery 

Agent. We distinguish between the following non-

repudiation services. 

 

3  Contract Signing Protocol: 

Contract signing protocol is essentially implied by fair 

exchange of digital signatures between two potentially 

mistrusted parities with the Trusted Third Party 

(TTP).Two Parties a and b want to sign a contract c 

over a communication network. They must 

simultaneously exchange their commitments to c. since 

simultaneous exchange is usually impossible, 

protocols are needed to approximate simultaneity by 

exchanging partial commitments in piece by piece 

manner. During such a protocol, one party or another 

may have a slight advantages a fair protocol keeps this 

advantage within acceptable limits 

 

Contract signing Protocol was divided into: 

1) Gradual Exchange without any TTP. 

2) Protocol with an online TTP. 

3) Protocol with off line TTP. 

 

1) Gradual Exchange Without any TTP: 

Gradual Exchange protocols to meet computational 

fairness: Both parties exchange their 

commitments/secrets “bit-by-bit”. If one party stops 

prematurely, both parties have about the same fraction 

of the peer’s secret, which means that they can 

complete the contract off-line by investing about the 

same amount of computing work. The major 

advantage of this approach is that no TTP is involved. 

However, this approach is unrealistic for most real-

world applications due to the following several 

reasons. First of all, it is assumed that the two parties 

have equivalent computation resources. Otherwise, 

such a protocol is favorable to the party with stronger 

computing power, who may conditionally force the 

other party to commit the contract by its own interest. 

At the same time, such protocols are inefficient 

because the costs of computation and communication 

are extensive. 

 

2) Protocol with an online TTP: 

An on-line TTP is always involved in every 

exchange. In this scenario, a TTP is essentially a 

mediator. 

 Each party first sends his/her item to the TTP 

 The TTP checks the validity of those items 

 If all expected items are correctly received, the 

TTP finally forwards each item to the party 

 

 
 

3) Protocol with off line TTP: 

This protocol is optimistic in the sense that the 

TTP is not invoked in the execution of exchange 

unless one of the two parties misbehaves or the 

communication channel is out of order. Trusted 

Third Party (TTP) is not invoked when the two 

involved parties perform the protocol correctly. 
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This kind of protocol is more practical than those 

in which TTP mediates all transactions. 

 

 
 

 

In the above said protocols are very difficult to 

manage. So new contract signing protocol for two 

mutually distrusted parties. Our protocol is based on an 

RSA multi signature, which is formally proved to be 

secured and optimistic because. 

 Fairness 

 Optimism 

 Abuse freeness 

 Provable Security 

 Timely Termination 

 Compatibility 

 TTP’Statelessness 

 High Performance 

To exchange the signatures we use: 

1) Registration protocol 

2) Signature exchange protocol 

3)  Dispute resolution protocol 

 

1) Registration Protocol: At first parties should 

Register at TTP and get certificate from the 

TTP. Registration protocol is a little 

complicated, we remark that this stage needs 

to be executed only once for a sufficiently 

long period. 

2) Signature exchange protocol: the contract 

explicitly contains the following information: 

a predetermined but reasonable deadline , the 

identities of parties and the TTP. Our signature 

exchange protocol is briefly illuminated in 

Figure 1. 

 
 

3) Dispute resolution protocol: If party has sent 

his signature another party but does not 

receive the value before the deadline, then he 

sends the TTP to apply dispute resolution. 

Upon receiving application, the TTP performs. 

1) TTP first verifies. 

2) The TTP checks whether the deadline 

expires or not 

3) If expires Get valid from the TTP directly 

by initiating dispute resolution protocol. 

4) Run the Signature Exchange Protocol 

Again. 

5) Exchange the Signatures. 

Contract signing between Client and Cloud: a 

signcryption approach: 

The entire process starts here with the employment of 

RSA signature algorithm [42] otherwise known as 

Signcyption. Here, the 1st user splits his private key d 

into d1 and d2 such that d=d1+d2  by following 

park[40]. The signature of this user has to be 

exchanged with the other and this signature is 
1( ) modd

A h m n 
. The partial signature generated 

by the 1st user is to assure that he has zero-knowledge 

base and this is done by Gennaro protocol[27].The 

connections we have are unreliable due to network 

failure or router’s attacks [36],[46]. But, TTP is 
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reliable since the messages inserted reach the 

destination for sure but with some delay. 

A. Registration Protocol:  

The receiver of the information has only to register i.e. 

only the registration of the initiator with TTP is 

enough. He then gets a long-term voucher along with 

CA. After this, the following processes are done: ( for 

our convenience, let the sender be CLOUD and 

receiver as CLIENT.) 

i. Client first sets an RSA modulus
n pq

, 

where p and q are two -bit safe primes, i.e., 

there exist two primes 
'p
 and 

'q
 such that

2 ' 1p p 
, 

2 ' 1q q 
. After, Client selects 

her random public key
*

( )R ne  , and 

calculates her private key 
1 mod ( )d e n , 

where 
( ) ( 1)*( 1)n p q   

. At last, Client 

registers her public key with a CA to get her 

certificate AC , which binds her identity and the 

corresponding pubic key 
( , )n e

together. 

ii. Client randomly splits d into 1d and 2d  such 

that 1 2mod ( )d d d n   by choosing

*

( )1 R nd  , and computes

1

1 1 mod ( )e d n . She also  generates a 

sample message-signature pair ( , )  , 

where 
* \{1, 1}, ( ) ' 'n ord p q    and

1  d mod n  . Then, Client sends 

( , , , 2)AC d  to the TTP but keeps 

1 2 1( , , , )d d d e  secret. 

iii. The TTP first checks for the validation of 

Client’s certificate AC  . After that, the TTP 

checks that the triple ( , , 2)d   s prepared 

correctly. If everything is in correct order as 

per its rules, TTP saves d2 and generates a 

voucher AV  by computing

( , , )A TTP AV Sign C   . This proves the 

TTP’s signature on message ( , , )AC   , 

which guarantees that the TTP can issue a 

valid partial signature on behalf of Client by 

using the secret 2d . 

 

B. Signature Exchange Protocol:  

Before all this, a contract has to be agreed between 

Cloud and Client and they should sign it. It should also 

has a deadline, and identify the Client, Cloud, and 

TTP. 

a) Initially, the initiator Client has to compute her 

partial signature
1

1 ( ) moddh m n  , and then 

sends the triple ( , , )AC    to the responder 

Cloud. Here, (.)h  is a cryptographically 

secure hash function. 

b) After receiving 1( , , )A AC V  , Cloud first 

verifies that AC is whether issued by CA, and 

AV  is Client’s voucher created by the TTP. 

Then, Cloud checks if the identities of Client, 

Cloud, and the TTP are correctly mentioned as 

part of the contract ‘m’. If all these checking 

are ok, Cloud initiates the below interactive 

zero-knowledge protocol with Client to check 

whether 1 is Client’s valid partial signature 

on contact. 

i) Then Cloud selects two numbers 

, [1, ]Ri j n  at random, and a challenge 

c  to Client is sent by computing
2

1 modi j

wc n  . 

ii) Receiving the challenge c , Client 

calculates the response moder c n
 She 

then returns her commitment 

( , )r TCcom r t  to Cloud using a random 

number t , where TCcom is the 

commitment algorithm. 

iii) After receiving the commitment r , Cloud 

sends Client the pair ( , )i j to acknowledge 
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that he is done with the challenge c  

properly. 

iv) Client verifies for correct preparation of c, 

that is 
2

1 modi jc n  . If ok, Client 

withdraws his commitment r by knowing 

the responses ( , )r t  to Cloud. With this

( , )r t  , Cloud knows 1 as valid if and 

only if 
2( ) modi jr h m n and 

( , )r TCcom r t . 

c). Cloud checks the 1 Client’s valid partial signature 

and the deadline t  mentioned in contract m is whether 

enough for resolving the dispute resolution from the 

TTP. Then only he sends his signature B  to Client.  

d). After receiving B , Client has to check 

whether it is Cloud’s valid signature. If it is, she sends 

Cloud the partial signature 2  by computing

2

2 ( ) moddh m n  . As Cloud receives 2 , he sets

1 2 modA n   , and accepts 2 as valid if and only 

if
22( ) mod
e

Ah m n  . Here, Cloud can receive 

Client’s standard RSA signature A on message m

from A . If all this do not happen, Cloud seeks the 

help of TTP for connection before the expiry of the 

date. 

III. Results and Discussion 

CASE 1:CLIENT IS HONEST, BUT CLOUD IS 

CHEATING. 

If Cloud cheats in any possible way, he cannot learn 

other information except   is valid Upon receiving 

the valid value of M 1, Cloud has to make a choice 

whether he should send his signature M B on contract 

m to Client. If Cloud does, honest initiator Client 

returns back her second partial signature M2=h(m)d2 as 

Cloud expects. In such a situation, Cloud gets Client’s 

signature on contract m by setting 1 2A    mod n 

while Client also obtains Cloud’s signature B  

simultaneously. If Cloud does not send ^B or only 

sends an incorrect | B  to Client, he cannot get the 

value of 2  from ice. Furthermore, in this setting, 

Cloud also cannot get the value of M2 from the TTP so 

that Client does not obtain his signature | B . Once 

those values are submitted, Cloud indeed gets 2  

from the TTP but Client receives (m, | B ) from the 

TTP, too. Therefore, once again, Cloud and Client get 

the other’s signature on contract m at the same time. 

 

CASE 2: CLOUD IS HONEST, BUT CLIENT IS 

CHEATING. 

In our signature exchange protocol, Client may cheat 

in any or some of the following steps: step (i), step 

(2), and step (4). First of all, according to the 

specification of our signature exchange protocol, to 

get the signature on contract from the honest 

responder Cloud, the initiator Client has to convince 

Cloud accepting as a valid partial signature in step (2). 

Step (2) is confirmation protocol for RSA undeniable 

signatures, and that their protocol satisfies the 

property of soundness. The soundness means that the 

possible cheating Client (prover), even 

computationally unbounded, cannot convince 

Cloud (verifier) to accept an invalid as valid with non 

negligible probability. Therefore, we conclude that to 

get from Cloud, Client has to send valid ^1 (with valid 

CAandVA ) instep (1) and perform honestly in step 

(2). Client is not so silly by preparing and sending ^1 to 

Cloud. Cloud can drive her private key (and then 

compute signature | B . Therefore, to get signature 

B  from Cloud, Client has to compute and send it to 

Cloud. In this situation, Cloud receives valid from 

Client before Client gets valid B  from Cloud. After 

that, step (4) is the only one possi cheating chance for 

Client, i.e., she may refuse to reeve or just send an 

incorrect B  to Cloud. However, this behavior does 

not harm Cloud essentially, since he can get the value 

of B  from the TTP via our dispute resolution pro-

tocol. The reason is that Cloud has received valid 

^1before he sends B  to Client. After getting the 

value of from the TTP, Cloud can recover Client’s. 
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IV Conclusion 

In this paper, we investigated the problem of data 

security in cloud data storage and data transmission, 

which is essentially a distributed storage system. To 

ensure the correctness of users’ data in cloud data 

storage, we proposed an effective and flexible 

distributed scheme. Our scheme achieves the 

integration of storage correctness insurance and data 

error localization. In the data transmission proposed, 

method transferred data is encrypted in the upper-layer 

on top of the transport layer instead of using IPSec or 

SSL. Thus, the scheme for the performance 

improvement can be applied without modifying the 

implementation of IP layer, and efficient secure 

communications by pre-processing of encryption in the 

upper-layer are realized. We have used file uploading 

as service as web application, the security is applied 

over to the data at the background using the encryption 

algorithms like AES, Triple DES and DES. Through 

detailed security and performance analysis, we show 

that our scheme is highly efficient and resilient to 

Byzantine failure, malicious data modification attack, 

and even server colluding attacks. We believe that data 

storage security in Cloud Computing, an area full of 

challenges and of paramount importance, is still in its 

infancy now, and many research problems are yet to be 

identified. Adding secure cloud storage using the 

proposed cryptographic solution and with a searchable 

encryption technique for the files to be accessed, it will 

work as a better approach to the user to ensure security 

of data. The cloud security using cryptography is 

already in use for secure data storage which can be 

enhanced for secure data transmission and storage. An 

interesting question in this model is if we can construct 

a scheme to achieve both public verifiability and 

storage correctness assurance of dynamic data. 

Besides, along with our research on dynamic cloud 

data storage, we also plan to investigate the problem of 

fine-grained data error localization. 
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