

 Page 2137

A Signcryption based Hierarchical Distributed Attribute based

Access Control in Cloud aided information revealing Networks

Badavath Naresh

M. Tech Student

Department of CSE

Sree Rama Institute of Technology & Science

Kuppenakuntla(v) Penuballi(M) Kammam(Dist.)

S. Suresh

Asst. Professor & Head of the Department

Department of CSE

Sree Rama Institute of Technology & Science

Kuppenakuntla(v) Penuballi(M) Kammam(Dist.)

ABSTRACT:

Several trends are opening up the era of cloud

computing, which is an Internet-based development

and use of computer technology. The ever cheaper

and more powerful processors, together with the

Multi-message Ciphertext Policy Attribute-Based

Encryption (MCP-ABE) computing architecture, are

transforming data centers into pools of computing

service on a huge scale. The increasing network

bandwidth and reliable yet flexible network

connections make it even possible that users can now

subscribe high quality services from data and

software that reside solely on remote data centers. In

order to achieve the assurances of cloud data

integrity and availability and enforce the quality of

cloud storage service, we consider the problem of

building a secure cloud storage service on top of a

public cloud infrastructure where the service

provider is not completely trusted by the customer.

We describe, at a high level contract signing protocol

that combine recent and non-standard cryptographic

primitives in order to achieve our goal.

Index Terms—Data integrity, dependable distributed

storage, error localization, data dynamics, cloud

computing.

I.INTRODUCTION

Several trends area unit gap up the time of Cloud

Computing, that is associate degree Internet-based

development and use of engineering. The ever cheaper

and more powerful processors, beside the software

system as a service (MCP-ABE) computing design,

area unit remodeling datacenters into pools of

computing service on a large scale. The increasing

network information measure and reliable nevertheless

flexible network connections build it even potential

that users will currently subscribe top quality services

from knowledge and software system that reside

exclusively on remote knowledge centres. Moving

knowledge into the cloud offers nice convenience to

users since they don’t need to care regarding the

complexities of direct hardware management. The

pioneers of Cloud Computing vendors, Amazon

straightforward Storage Service and Amazon Elastic

reckon Cloud area unit each documented examples.

Whereas these internet-based on-line services do offer

vast amounts of space for storing and customizable

computing resources, this computing platform shift,

however, is eliminating the responsibility of native

machines for knowledge maintenance at a similar time.

As a result, users’ area unit at the mercy of their cloud

service suppliers for the supply and integrity of their

knowledge.

On the one hand, although the cloud infrastructures

area unit rather more powerful and reliable than

personal computing devices, broad vary of both

internal and external threats for data integrity still exist

samples of outages and data loss incidents of

noteworthy cloud storage services appear from time to

time. On the opposite hand, since users could not

retain a neighborhood copy of outsourced data, there

exist various incentives for cloud service providers

(CSP) to behave unfaithfully towards the cloud users

concerning the standing of their outsourced data. For

instance, to increase the profit margin by reducing

 Page 2138

cost, it's possible for CSP to discard rarely accessed

data without being detected in a timely fashion.

Similarly, CSP could even attempt to hide data loss

incidents thus as to maintain a reputation. Therefore,

although outsourcing data in to the cloud is

economically enticing for the cost and complexity of

long-run large-scale data storage, its lacking of

providing sturdy assurance of data integrity and

convenience could impede its wide adoption by both

enterprise and individual cloud users. In order to attain

the assurances of cloud data integrity and convenience

and enforce the quality of cloud storage service,

economical ways that enable on demand data

correctness verification on behalf of cloud users have

to be designed. However, the fact that users no longer

have physical possession of data within the cloud

prohibits the direct adoption of traditional science

primitives for the aim of data integrity protection.

Hence, the verification of cloud storage correctness

must be conducted without specific information of the

full data files. Meanwhile, cloud storage is not just a

third party data warehouse. The information keep

within the cloud may not only be accessed but also be

of updated by the users, as well as insertion, deletion,

modification, appending, etc. Thus, it's additionally

imperative to support the integration of this dynamic

feature into the cloud storage correctness assurance

that makes the system style even more difficult.

Last however not the least; the preparation of Cloud

Computing is steam-powered by information centres

running in a very coincidental, cooperated and

distributed manner. It’s additional blessings for

individual users to store their information redundantly

across multiple physical servers therefore on cut back

the information integrity and handiness threats. Thus,

distributed protocols for storage correctness assurance

are going to be of most importance in achieving strong

and secure cloud storage systems. However, such vital

space remains to be fully explored within the literature.

Recently, the importance of making certain the remote

information integrity has been highlighted by the

subsequent analysis works beneath totally different

system and security models. These techniques,

whereas is helpful to make sure the storage correctness

while not having users possessing local data, square

measure all specializing in single server situation.

They may be helpful for quality-of-service testing, but

doesn't guarantee the information handiness just in

case of server failures. Though direct applying these

techniques to distributed storage (multiple servers) can

be straightforward, the resulted storage verification

overhead would be linear to the amount of servers.

As a complementary approach, researchers have

conjointly planned distributed protocols for making

certain storage correctness across multiple servers or

peers. However, while providing economical cross

server storage verification and information handiness

insurance, these schemes square measure all

specializing in static or deposit information. As a

result, their capabilities of handling dynamic

information remain unclear, which inevitably limits

their full relevance in cloud storage situations. In this

paper, we have a tendency to propose an efficient and

versatile distributed storage verification theme with

specific dynamic data support to make sure the

correctness and handiness of users’ information within

the cloud. we have a tendency to consider erasure

correcting code within the file distribution preparation

to supply redundancies and guarantee the information

dependableness against Byzantine servers , wherever a

storage server may fail in absolute ways that. This

construction drastically reduces the communication

and storage overheads compared to the normal

replication-based file distribution techniques. By

utilizing the homomorphism token with distributed

verification of erasure-coded information, our scheme

achieves the storage correctness insurance as well as

information error localization: whenever information

corruption has been detected throughout the storage

correctness verification, our theme will nearly

guarantee the coincidental localization of knowledge

errors, i.e., the identification of the misbehaving

server(s).

So as to strike an honest balance between error

resilience and information dynamics, we further

explore the pure mathematics property of our token

 Page 2139

computation and erasure-coded information, and

demonstrate the way to efficiently support dynamic

operation on information blocks, while maintaining an

equivalent level of storage correctness assurance. So as

to save lots of the time, computation resources, and

even the connected on-line burden of users, we

conjointly offer the extension of the planned main

scheme to support third-party auditing, wherever users

will safely delegate the integrity checking tasks to

TPA and be free to use the services. Our work is

among the primary few ones during this field to

contemplate distributed information storage security in

Cloud Computing.

Our contribution is summarized as the following 3

aspects:

1) Compared to several of its predecessors, which only

provide binary results regarding the storage standing

across the distributed servers, the planned theme

achieves the integration of storage correctness

insurance and information error localization, i.e., the

identification of misbehaving server(s).

2) In contrast to most previous works for making

certain remote information integrity, the new theme

any supports secure and efficient dynamic operations

on information blocks, including update, delete and

append.

3) The experiment results demonstrate the planned

scheme is very economical. In depth security analysis

shows our theme is resilient against Byzantine failure,

malicious information modification attack, and even

server colluding attacks.

II. RELATED WORK

Juels and Kaliski Jr. [10] described a formal “proof of

retrievability” (POR) model for ensuring the remote

data integrity. Their scheme combines spot-checking

and error correcting code to ensure both possession

and retrievability of files on archive service systems.

Shacham and Waters[17] built on this model and

constructed a random linear function-based

homomorphism authenticator which enables unlimited

number of challenges and requires less communication

overhead due to its usage of relatively small size of

BLS signature. Bowers et al. [18] proposed an

improved framework for POR protocols that

generalizes both Juelsand Shacham’s work. Later in

their subsequent work, Bowers et al. [23] extended

POR model to distributed systems. However, all these

schemes are focusing on static data. The effectiveness

of their schemes rests primarily on the preprocessing

steps that the user conducts before outsourcing the data

file F. Any change to the contents of F, even few bits,

must propagate through the error correcting code and

the corresponding random shuffling process, thus

introducing significant computation and

communication complexity. Recently, Dodis et al. [20]

gave theoretical studies on generalized framework for

different variants of existing POR work. Ateniese et al.

[11] defined the “provable data possession”(PDP)

model for ensuring possession of file on untrusted

storages. Their scheme utilized public key-based

homomorphic tags for auditing the data file.

However, the pre computation of the tags imposes

heavy computation overhead that can be expensive for

an entire file. In their subsequent work, Ateniese et al.

[14] described a PDP scheme that uses only symmetric

key-based cryptography. This method has lower

overhead than their previous scheme and allows for

block updates, deletions, and appends to the stored file,

which has also been supported in our work. However,

their scheme focuses on single server scenario and

does not provide data availability guarantee against

server failures, leaving both the distributed scenario

and data error recovery issue unexplored. The explicit

support of data dynamics has further been studied in

the two recent work [15] and [16]. Wang et al.

[15]proposed to combine BLS-based homomorphic

authenticator with Merkle Hash Tree to support fully

data dynamics, while Erway et al. [16] developed a

skip list-based scheme to enable provable data

possession with fully dynamics support. The

incremental cryptography work done by Bellare et al.

[36] also provides a set of cryptographic building

blocks such as hash, MAC, and signature functions

that may be employed for storage integrity verification

 Page 2140

while supporting dynamic operations on data.

However, this branch of work falls into the traditional

data integrity protection mechanism, where local copy

of data has to be maintained for the verification. It is

not yet clear how the work can be adapted to cloud

storage scenario where usersno longer have the data at

local sites but still need to ensure the storage

correctness efficiently in the cloud.

The Storage and Computation Cost of Token Pre

computation for 1 GB Data File under Different

System Settings In other related work, Curtmola et al.

[19] aimed to ensure data possession of multiple

replicas across the distributed storage system. They

extended the PDP scheme to cover multiple replicas

without encoding each replica separately, providing

guarantee that multiple copies of data are actually

maintained. Lillibridge et al. [25] presented aP2P

backup scheme in which blocks of a data file are

dispersed across m þ k peers using an erasure code.

Peers can request random blocks from their backup

peers and verify the integrity using separate keyed

cryptographic hashes attached on each block. Their

scheme can detect data loss from free-riding peers, but

does not ensure all data are unchanged. Filho and

Barreto [37] proposed to verify data integrity using

RSA-based hash to demonstrate unchea table data

possession in peer-to-peer file sharing networks.

However, their proposal requires exponentiation over

the entire data file, which is clearly impractical for the

server whenever the file is large. Shah et al. [12], [13]

proposed allowing a TPA to keep online storage

honest by first encrypting the data then sending a

number of pre computed symmetric-keyed hashes over

the encrypted data to the auditor. However, their

scheme only works for encrypted files, and auditors

must maintain long-term state. Schwarzand Miller [24]

proposed to ensure static file integrity across multiple

distributed servers, using erasure-coding and block-

level file integrity checks. We adopted some ideas of

their distributed storage verification protocol.

However, our scheme further support data dynamics

and explicitly studies the problem of misbehaving

server identification, while theirs did not. Very

recently, Wang et al. [31] gave a study on many

existing solutions on remote data integrity checking,

and discussed their pros and cons under different

design scenarios of secure cloud storage services.

Portions of the work presented in this paper have

previously appeared as an extended abstract in [1]. We

have revised the paper a lot and add more technical

details as compared to [1]. The primary improvements

are as follows: First, we provide the protocol extension

for privacy preserving third-party auditing, and discuss

the application scenarios for cloud storage service.

Second, we add correctness analysis of proposed

storage verification design. Third, we completely redo

all the experiments in our performance evaluation part,

which achieves significantly improved result as

compared to [1]. We also add detailed discussion on

the strength of our bounded usage for protocol

verifications and its comparison with state of the art.

Exploration of the proposed Contract Signing

Protocol

A fair contract signing protocol allows two potentially

mistrusted parities to exchange their commitments.

Contract signing is truly simple due to the existence of

“simultaneity”. That is, both parties generally sign two

hard copies of the same contract at the same place and

at the same time based on the RSA signature scheme, a

new digital contract signing protocol.

Here the fair exchange, between two (or multiple)

potentially mistrusted parities exchanging digital items

over computer networks in a fair way, so that each

party gets the other’s item, or neither party does. In the

fair exchange will contain:

1) Contract Signing Protocol.

2) Certified e-mail systems.

3) Non-reputation Protocol.

1 Certified e-mail systems:

Certified electronic mail enables two mutually

suspicious users to exchange a receipt for electronic

mail. One family of protocols, the believers’ protocols,

use a trusted third party. The second family, the

skeptics’ protocols, uses no third party. Our protocols

 Page 2141

are secure in a very strong sense; the probability of one

party cheating can be made arbitrarily small. The

protocols provide a practical example of the use of

various innovative cryptographic techniques, including

digital signatures, bit commitment, and zero-

knowledge interactive proofs. These protocols can be

implemented in modern communication networks.

2 Non-reputation Protocol:

The goal of a non-repudiation service is to collect,

maintain, make available, and validate irrefutable

evidence regarding the transfer of a message from the

originator to the recipient, possibly involving the

service of a trusted third party called the Delivery

Agent. We distinguish between the following non-

repudiation services.

3 Contract Signing Protocol:

Contract signing protocol is essentially implied by fair

exchange of digital signatures between two potentially

mistrusted parities with the Trusted Third Party

(TTP).Two Parties a and b want to sign a contract c

over a communication network. They must

simultaneously exchange their commitments to c. since

simultaneous exchange is usually impossible,

protocols are needed to approximate simultaneity by

exchanging partial commitments in piece by piece

manner. During such a protocol, one party or another

may have a slight advantages a fair protocol keeps this

advantage within acceptable limits

Contract signing Protocol was divided into:

1) Gradual Exchange without any TTP.

2) Protocol with an online TTP.

3) Protocol with off line TTP.

1) Gradual Exchange Without any TTP:

Gradual Exchange protocols to meet computational

fairness: Both parties exchange their

commitments/secrets “bit-by-bit”. If one party stops

prematurely, both parties have about the same fraction

of the peer’s secret, which means that they can

complete the contract off-line by investing about the

same amount of computing work. The major

advantage of this approach is that no TTP is involved.

However, this approach is unrealistic for most real-

world applications due to the following several

reasons. First of all, it is assumed that the two parties

have equivalent computation resources. Otherwise,

such a protocol is favorable to the party with stronger

computing power, who may conditionally force the

other party to commit the contract by its own interest.

At the same time, such protocols are inefficient

because the costs of computation and communication

are extensive.

2) Protocol with an online TTP:

An on-line TTP is always involved in every

exchange. In this scenario, a TTP is essentially a

mediator.

 Each party first sends his/her item to the TTP

 The TTP checks the validity of those items

 If all expected items are correctly received, the

TTP finally forwards each item to the party

3) Protocol with off line TTP:

This protocol is optimistic in the sense that the

TTP is not invoked in the execution of exchange

unless one of the two parties misbehaves or the

communication channel is out of order. Trusted

Third Party (TTP) is not invoked when the two

involved parties perform the protocol correctly.

 Page 2142

This kind of protocol is more practical than those

in which TTP mediates all transactions.

In the above said protocols are very difficult to

manage. So new contract signing protocol for two

mutually distrusted parties. Our protocol is based on an

RSA multi signature, which is formally proved to be

secured and optimistic because.

 Fairness

 Optimism

 Abuse freeness

 Provable Security

 Timely Termination

 Compatibility

 TTP’Statelessness

 High Performance

To exchange the signatures we use:

1) Registration protocol

2) Signature exchange protocol

3) Dispute resolution protocol

1) Registration Protocol: At first parties should

Register at TTP and get certificate from the

TTP. Registration protocol is a little

complicated, we remark that this stage needs

to be executed only once for a sufficiently

long period.

2) Signature exchange protocol: the contract

explicitly contains the following information:

a predetermined but reasonable deadline , the

identities of parties and the TTP. Our signature

exchange protocol is briefly illuminated in

Figure 1.

3) Dispute resolution protocol: If party has sent

his signature another party but does not

receive the value before the deadline, then he

sends the TTP to apply dispute resolution.

Upon receiving application, the TTP performs.

1) TTP first verifies.

2) The TTP checks whether the deadline

expires or not

3) If expires Get valid from the TTP directly

by initiating dispute resolution protocol.

4) Run the Signature Exchange Protocol

Again.

5) Exchange the Signatures.

Contract signing between Client and Cloud: a

signcryption approach:

The entire process starts here with the employment of

RSA signature algorithm [42] otherwise known as

Signcyption. Here, the 1st user splits his private key d

into d1 and d2 such that d=d1+d2 by following

park[40]. The signature of this user has to be

exchanged with the other and this signature is
1() modd

A h m n 
. The partial signature generated

by the 1st user is to assure that he has zero-knowledge

base and this is done by Gennaro protocol[27].The

connections we have are unreliable due to network

failure or router’s attacks [36],[46]. But, TTP is

 Page 2143

reliable since the messages inserted reach the

destination for sure but with some delay.

A. Registration Protocol:

The receiver of the information has only to register i.e.

only the registration of the initiator with TTP is

enough. He then gets a long-term voucher along with

CA. After this, the following processes are done: (for

our convenience, let the sender be CLOUD and

receiver as CLIENT.)

i. Client first sets an RSA modulus
n pq

,

where p and q are two -bit safe primes, i.e.,

there exist two primes
'p
 and

'q
 such that

2 ' 1p p 
,

2 ' 1q q 
. After, Client selects

her random public key
*

()R ne  , and

calculates her private key
1 mod ()d e n ,

where
() (1)*(1)n p q   

. At last, Client

registers her public key with a CA to get her

certificate AC , which binds her identity and the

corresponding pubic key
(,)n e

together.

ii. Client randomly splits d into 1d and 2d such

that 1 2mod ()d d d n  by choosing

*

()1 R nd  , and computes

1

1 1 mod ()e d n . She also generates a

sample message-signature pair (,)  ,

where
* \{1, 1}, () ' 'n ord p q    and

1 d mod n  . Then, Client sends

(, , , 2)AC d  to the TTP but keeps

1 2 1(, , ,)d d d e secret.

iii. The TTP first checks for the validation of

Client’s certificate AC . After that, the TTP

checks that the triple (, , 2)d  s prepared

correctly. If everything is in correct order as

per its rules, TTP saves d2 and generates a

voucher AV by computing

(, ,)A TTP AV Sign C   . This proves the

TTP’s signature on message (, ,)AC   ,

which guarantees that the TTP can issue a

valid partial signature on behalf of Client by

using the secret 2d .

B. Signature Exchange Protocol:

Before all this, a contract has to be agreed between

Cloud and Client and they should sign it. It should also

has a deadline, and identify the Client, Cloud, and

TTP.

a) Initially, the initiator Client has to compute her

partial signature
1

1 () moddh m n  , and then

sends the triple (, ,)AC   to the responder

Cloud. Here, (.)h is a cryptographically

secure hash function.

b) After receiving 1(, ,)A AC V  , Cloud first

verifies that AC is whether issued by CA, and

AV is Client’s voucher created by the TTP.

Then, Cloud checks if the identities of Client,

Cloud, and the TTP are correctly mentioned as

part of the contract ‘m’. If all these checking

are ok, Cloud initiates the below interactive

zero-knowledge protocol with Client to check

whether 1 is Client’s valid partial signature

on contact.

i) Then Cloud selects two numbers

, [1,]Ri j n at random, and a challenge

c to Client is sent by computing
2

1 modi j

wc n  .

ii) Receiving the challenge c , Client

calculates the response moder c n
 She

then returns her commitment

(,)r TCcom r t to Cloud using a random

number t , where TCcom is the

commitment algorithm.

iii) After receiving the commitment r , Cloud

sends Client the pair (,)i j to acknowledge

 Page 2144

that he is done with the challenge c

properly.

iv) Client verifies for correct preparation of c,

that is
2

1 modi jc n  . If ok, Client

withdraws his commitment r by knowing

the responses (,)r t to Cloud. With this

(,)r t , Cloud knows 1 as valid if and

only if
2() modi jr h m n and

(,)r TCcom r t .

c). Cloud checks the 1 Client’s valid partial signature

and the deadline t mentioned in contract m is whether

enough for resolving the dispute resolution from the

TTP. Then only he sends his signature B to Client.

d). After receiving B , Client has to check

whether it is Cloud’s valid signature. If it is, she sends

Cloud the partial signature 2 by computing

2

2 () moddh m n  . As Cloud receives 2 , he sets

1 2 modA n   , and accepts 2 as valid if and only

if
22() mod
e

Ah m n . Here, Cloud can receive

Client’s standard RSA signature A on message m

from A . If all this do not happen, Cloud seeks the

help of TTP for connection before the expiry of the

date.

III. Results and Discussion

CASE 1:CLIENT IS HONEST, BUT CLOUD IS

CHEATING.

If Cloud cheats in any possible way, he cannot learn

other information except  is valid Upon receiving

the valid value of M 1, Cloud has to make a choice

whether he should send his signature M B on contract

m to Client. If Cloud does, honest initiator Client

returns back her second partial signature M2=h(m)d2 as

Cloud expects. In such a situation, Cloud gets Client’s

signature on contract m by setting 1 2A   mod n

while Client also obtains Cloud’s signature B

simultaneously. If Cloud does not send ^B or only

sends an incorrect | B to Client, he cannot get the

value of 2 from ice. Furthermore, in this setting,

Cloud also cannot get the value of M2 from the TTP so

that Client does not obtain his signature | B . Once

those values are submitted, Cloud indeed gets 2

from the TTP but Client receives (m, | B) from the

TTP, too. Therefore, once again, Cloud and Client get

the other’s signature on contract m at the same time.

CASE 2: CLOUD IS HONEST, BUT CLIENT IS

CHEATING.

In our signature exchange protocol, Client may cheat

in any or some of the following steps: step (i), step

(2), and step (4). First of all, according to the

specification of our signature exchange protocol, to

get the signature on contract from the honest

responder Cloud, the initiator Client has to convince

Cloud accepting as a valid partial signature in step (2).

Step (2) is confirmation protocol for RSA undeniable

signatures, and that their protocol satisfies the

property of soundness. The soundness means that the

possible cheating Client (prover), even

computationally unbounded, cannot convince

Cloud (verifier) to accept an invalid as valid with non

negligible probability. Therefore, we conclude that to

get from Cloud, Client has to send valid ^1 (with valid

CAandVA) instep (1) and perform honestly in step

(2). Client is not so silly by preparing and sending ^1 to

Cloud. Cloud can drive her private key (and then

compute signature | B . Therefore, to get signature

B from Cloud, Client has to compute and send it to

Cloud. In this situation, Cloud receives valid from

Client before Client gets valid B from Cloud. After

that, step (4) is the only one possi cheating chance for

Client, i.e., she may refuse to reeve or just send an

incorrect B to Cloud. However, this behavior does

not harm Cloud essentially, since he can get the value

of B from the TTP via our dispute resolution pro-

tocol. The reason is that Cloud has received valid

^1before he sends B to Client. After getting the

value of from the TTP, Cloud can recover Client’s.

 Page 2145

IV Conclusion

In this paper, we investigated the problem of data

security in cloud data storage and data transmission,

which is essentially a distributed storage system. To

ensure the correctness of users’ data in cloud data

storage, we proposed an effective and flexible

distributed scheme. Our scheme achieves the

integration of storage correctness insurance and data

error localization. In the data transmission proposed,

method transferred data is encrypted in the upper-layer

on top of the transport layer instead of using IPSec or

SSL. Thus, the scheme for the performance

improvement can be applied without modifying the

implementation of IP layer, and efficient secure

communications by pre-processing of encryption in the

upper-layer are realized. We have used file uploading

as service as web application, the security is applied

over to the data at the background using the encryption

algorithms like AES, Triple DES and DES. Through

detailed security and performance analysis, we show

that our scheme is highly efficient and resilient to

Byzantine failure, malicious data modification attack,

and even server colluding attacks. We believe that data

storage security in Cloud Computing, an area full of

challenges and of paramount importance, is still in its

infancy now, and many research problems are yet to be

identified. Adding secure cloud storage using the

proposed cryptographic solution and with a searchable

encryption technique for the files to be accessed, it will

work as a better approach to the user to ensure security

of data. The cloud security using cryptography is

already in use for secure data storage which can be

enhanced for secure data transmission and storage. An

interesting question in this model is if we can construct

a scheme to achieve both public verifiability and

storage correctness assurance of dynamic data.

Besides, along with our research on dynamic cloud

data storage, we also plan to investigate the problem of

fine-grained data error localization.

References

[1] Cong Wang, Qian WangKui Ren, Ning Cao, and

Wenjing Lou “Toward Secure and Dependable Storage

Services in Cloud Computing” IEEE transactions on

services computing, vol. 5, no. 2, april-june 2012

[2] Qian Wang,Cong Wang, Kui Ren, Wenjing Lou Jin

Li “Enabling Public Auditability and Data Dynamics

for Storage Security in Cloud Computing” IEEE

transactions on parallel and distributed systems, vol.

22, no. 5, may 2011

[3] Boris Tomas1and Bojan Vuksic2 “Peer to Peer

Distributed Storage and Computing Cloud System”

International conference on information technology

interfaces, june 25-28, 2012, cavtat, Croatia

[4] “Security and Privacy Challenges in Cloud

Computing Environments” co-published by the IEEE

computer and reliability ieee november/december 2010

[5] Subashini S, Kavitha V., “A survey on security

issues in service delivery models of cloud computing,”

Journal of Network and Computer Applications (2011)

vol. 34 Issue 1, January 2011 pp. 1-11.

[6] Balachander R.K, Ramakrishna P, A. Rakshit,

“Cloud Security Issues, IEEE International Conference

on Services Computing (2010),” pp. 517-520.

 [7] Kresimir Popovic, Željko Hocenski, “Cloud

computing security issues and challenges,” MIPRO

2010, pp. 344-349.

[8] Amazon.com, “Amazon Web Services (AWS),”

Online at http://aws. amazon.com, 2008.

[9] Luis M. Vaquero, Luis Rodero-Merino, Juan

Caceres1, Maik Lindner, “A Break in Clouds: Towards

a cloud Definition,” ACM SIGCOMM Computer

Communication Review, vol. 39, Number 1, January

2009, pp. 50-55.

[10] Patrick McDaniel, Sean W. Smith, “Outlook:

Cloudy with a chance of security challenges and

improvements,” IEEE Computer and reliability

societies (2010), pp. 77-80.

 Page 2146

[11] Sameera Abdulrahman Almulla, Chan Yeob

Yeun, “Cloud Computing Security Management,”

Engineering systems management and its applications

(2010), pp. 1-7.

[12] Steve Mansfield-Devine, “Danger in Clouds”,

Network Security (2008), 12, pp. 9-11.

[13] Anthony T. Velte, Toby J.Velte, Robert

Elsenpeter, Cloud Computing: A Practical Approach,

Tata Mc GrawHill 2010.

[14] Gary Anthes, “Security in the cloud,” In ACM

Communications (2010), vol.53, Issue11, pp. 16-18.

[15] Lombardi F, Di Pietro R. Secure virtualization for

cloud computing. Journal of Network Computer

Applications (2010), doi:10.1016/j.jnca.2010.06.008.

