
 Volume No: 2 (2015), Issue No: 7 (July) July 2015
 www.ijmetmr.com Page 364

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

Many functionalities of a spatial database are useful
in various ways in specific contexts. For instance, in a
geography information system, range search can be
deployed to find all restaurants in a certain area, while
nearest neighbor retrieval can discover the restaurant
closest to a given address. Today, the widespread use
of search engines has made it realistic to write spatial
queries in a brand new way. Conventionally, queries
focus on objects’ geometric properties only, such as
whether a point is in a rectangle, or how close two
points are from each other. We have seen some mod-
ern applications that call for the ability to select objects
based on both of their geometric coordinates and their
associated texts.For example, it would be fairly useful
if a search engine can be used to find the nearest res-
taurant that offers “steak, spaghetti, and brandy” all at
the same time.

Note that this is not the “globally” nearest restaurant
(which would have been returned by a traditional near-
est neighbor query), but the nearest restaurant among
only those providing all the demanded foods and
drinks. In this paper, we design a variant of inverted
index that is optimized for multidimensional points,
and is thus named the spatial inverted index (SI-index).
This access method successfully incorporates point
coordinates into a conventional inverted index with
small extra space, owing to a delicate compact storage
scheme. Meanwhile, an SI-index preserves the spatial
locality of data points, and comes with an R-tree built
on every inverted list at little space overhead.

As a result, it offers two competing ways for query pro-
cessing. We can (sequentially) merge multiple lists very
much like merging traditional inverted lists by ids. Al-
ternatively, we can also leverage the Rtrees to browse
the points of all relevant lists in ascending order of
their distances to the query point. As demonstrated
by experiments, the SI-index significantly outperforms
the IR 2 -tree in query efficiency, often by a factor of
orders of magnitude.

Abstract:

Conventional abstraction queries, like vary search and
nearest neighbor retrieval, involve solely conditions on
objects’ geometric properties. Today, several trendy
applications involve novel kinds of queries that aim to
seek out objects satisfying each a abstraction predi-
cate, and a predicate on their associated texts. as an
example, rather than considering all the restaurants, a
nearest neighbor question would instead elicit the eat-
ing house that’s the highest among those whose menus
contain “steak, spaghetti, brandy” all at an equivalent
time. Presently the most effective resolution to such
queries is predicated on the IR2-tree, which, as shown
during this paper, features a few deficiencies that seri-
ously impact its potency. Impelled by this, we tend to
develop a replacement access methodology known as
the abstraction inverted index that extends the stan-
dard inverted index to address flat knowledge, and
comes with algorithms that may answer nearest neigh-
bor queries with keywords in real time. As verified by
experiments, the projected techniques outgo the IR2-
tree in question latent period considerably, typically by
an element of orders of magnitude.

Keywords:

R-tree, UML, diagrams, brandy, index, R-tree

I. INTRODUCTION:

A spatial database manages multidimensional objects
(such as points, rectangles, etc.), and provides fast ac-
cess to those objects based on different selection cri-
teria. The importance of spatial databases is reflected
by the convenience of modeling entities of reality in
a geometric manner. For example, locations of res-
taurants, hotels, hospitals and so on are often repre-
sented as points in a map, while larger extents such as
parks, lakes, and landscapes often as a combination of
rectangles.

Novel Method for Fast Search from Large Databases
G.Swathi

M.Tech,
Dept of CSE,

Prasad Engineering College,
Jangom (PECJ).

M.Srikanth
Assistance Professor,

Dept of CSE,
Prasad Engineering College,

Jangom (PECJ).

Dr.K.Babu Rao
Professor,

Dept of CSE,
Prasad Engineering College,

Jangom (PECJ).

 Volume No: 2 (2015), Issue No: 7 (July) July 2015
 www.ijmetmr.com Page 365

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

several functionalities of a spatial info square measure
helpful in varied ways in which in specific contexts. as
an example, in an exceedingly geographics system,
vary search will be deployed to search out all restau-
rants in an exceedingly sure space, whereas nearest
neighbor retrieval will discover the eating place near-
est to a given address.

Furthermore, because the SI-index relies on the tradi-
tional technology of inverted index, it’s without delay
incorporable in an exceedingly business computer pro-
gramme that applies large similarity, implying its imme-
diate industrial deserves.
IV. DESIGN ANALYSIS

UML Diagrams: UML is a method for describing the sys-
tem architecture in detail using the blueprint. UML rep-
resents a collection of best engineering practices that
have proven successful in the modeling of large and
complex systems. UML is a very important part of de-
veloping objects oriented software and the software
development process. UML uses mostly graphical no-
tations to express the design of software projects.

Using the UML helps project teams communicate, ex-
plore potential designs, and validate the architectural
design of the software. Definition: UML is a general-
purpose visual modeling language that is used to spec-
ify, visualize, construct, and document the artifacts of
the software system. UML is a language: It will provide
vocabulary and rules for communications and func-
tion on conceptual and physical representation. So it is
modeling language

UML Specifying: Specifying means building models that
are precise, unambiguous and complete. In particular,
the UML address the specification of all the important
analysis, design and implementation decisions that
must be made in developing and displaying a software
intensive system. UML Visualization: The UML includes
both graphical and textual representation.

It makes easy to visualize the system and for better
understanding. UML Constructing: UML models can
be directly connected to a variety of programming lan-
guages and it is sufficiently expressive and free from
any ambiguity to permit the direct execution of mod-
els. UML Documenting: UML provides variety of docu-
ments in addition raw executable codes.

II. EXISTING SYSTEM:

Spatial queries with keywords have not been exten-
sively explored. In the past years, the community has
sparked enthusiasm in studying keyword search in
relational databases. It is until recently that attention
was diverted to multidimensional data. Existing works
mainly focus on finding top-k Nearest Neighbors, where
each node has to match the whole querying keywords
.It does not consider the density of data objects in the
spatial space. Also these methods are low efficient for
incremental query. We have finished explaining how to
build the leaf nodes of an R-tree on an inverted list. As
each leaf is a block, all the leaves can be stored in a
blocked SI-index as described in Section 6.1. Building
the non leaf levels is trivial, because they are invisible
to the merging-based query algorithms, and hence, do
not need to preserve any common ordering. We are
free to apply any of the existing R-tree construction
algorithms.

It is noteworthy that the non leaf levels add only a
small amount to the overall space overhead because,
in an R-tree, the number of non leaf nodes is by far low-
er than that of leaf nodes We have finished explaining
how to build the leaf nodes of an R-tree on an inverted
list. As each leaf is a block, all the leaves can be stored
in a blocked SI-index as described in Section Building
the non leaf levels is trivial, because they are invisible
to the merging-based query algorithms, and hence, do
not need to preserve any common ordering. We are
free to apply any of the existing R-tree construction
algorithms. It is note worthy that the non leaf levels
add only a small amount to the overall space overhead
because, in an R-tree, the number of non leaf nodes is
by far lower than that of leaf nodes.

III. PROPOSED SYSTEM:

A spatial info manages dimensional objects (such as
points, rectangles, etc.), and provides quick access to
those objects supported totally different choice crite-
ria. The importance of spatial databases is mirrored by
the convenience of modeling entities of reality in an
exceedingly geometric manner. for instance, locations
of restaurants, hotels, hospitals so on square measure
typically described as points in an exceedingly map,
whereas larger extents like parks, lakes, and land-
scapes typically as a mix of rectangles.

 Volume No: 2 (2015), Issue No: 7 (July) July 2015
 www.ijmetmr.com Page 366

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

4.1. Structural Diagrams:

The UML‘s four structural diagrams exist to visualize,
specify, construct and document the static aspects of
a system. Can View the static parts of a system using
one of the following diagrams. Structural diagrams
consist of Class Diagram, Object Diagram, Component
Diagram, and Deployment Diagram.

4.2. Behavioral Diagrams:

The UML’s five behavioral diagrams are used to visual-
ize, specify, construct, and document the dynamic as-
pects of a system. The UML’s behavioral diagrams are
roughly organized around the major ways which can
model the dynamics of a system. Behavioral diagrams
consists of Use case Diagram, Sequence Diagram, Col-
laboration Diagram, State chart Diagram, Activity Dia-
gram

4.3. Use-Case diagram:

A use case is a set of scenarios that describing an in-
teraction between a user and a system. A use case dia-
gram displays the relationship among actors and use
cases. The two main components of a use case diagram
are use cases and actors.

Figure.3. Use Case Diagram

An actor is represents a user or another system that
will interact with the system you are modeling. A use
case is an external view of the system that represents
some action the user might perform in order to com-
plete a task.

Contents:

1. Use cases
2. Actors
3. Dependency, Generalization, and association rela-
tionships
4. System boundary

Figure.2. UML Diagram Types

Uses of UML: The UML is intended primarily for soft-
ware intensive systems. It has been used effectively
for such domain as Enterprise Information System,
Banking and Financial Services, Telecommunications,
Transportation, Defense/Aerospace, Retails, Medical
Electronics, Scientific Fields, Distributed Web. Building
blocks of UML: The vocabulary of the UML encompass-
es 3 kinds of building blocks

1.Things
2.Relationships
3.Diagrams

Things:

Things are the data abstractions that are first class citi-
zens in a model. Things are of 4 types Structural Things,
Behavioral Things, Grouping Things, An notational
Things

Relationships:

Relationships tie the things together. Relationships in
the UML are Dependency, Association, Generalization
and Specialization.

UML Diagrams:

A diagram is the graphical presentation of a set of ele-
ments, most often rendered as a connected graph of
vertices (things) and arcs (relationships).
There are two types of diagrams, they are:
Structural and Behavioral Diagrams

 Volume No: 2 (2015), Issue No: 7 (July) July 2015
 www.ijmetmr.com Page 365

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

several functionalities of a spatial info square measure
helpful in varied ways in which in specific contexts. as
an example, in an exceedingly geographics system,
vary search will be deployed to search out all restau-
rants in an exceedingly sure space, whereas nearest
neighbor retrieval will discover the eating place near-
est to a given address.

Furthermore, because the SI-index relies on the tradi-
tional technology of inverted index, it’s without delay
incorporable in an exceedingly business computer pro-
gramme that applies large similarity, implying its imme-
diate industrial deserves.
IV. DESIGN ANALYSIS

UML Diagrams: UML is a method for describing the sys-
tem architecture in detail using the blueprint. UML rep-
resents a collection of best engineering practices that
have proven successful in the modeling of large and
complex systems. UML is a very important part of de-
veloping objects oriented software and the software
development process. UML uses mostly graphical no-
tations to express the design of software projects.

Using the UML helps project teams communicate, ex-
plore potential designs, and validate the architectural
design of the software. Definition: UML is a general-
purpose visual modeling language that is used to spec-
ify, visualize, construct, and document the artifacts of
the software system. UML is a language: It will provide
vocabulary and rules for communications and func-
tion on conceptual and physical representation. So it is
modeling language

UML Specifying: Specifying means building models that
are precise, unambiguous and complete. In particular,
the UML address the specification of all the important
analysis, design and implementation decisions that
must be made in developing and displaying a software
intensive system. UML Visualization: The UML includes
both graphical and textual representation.

It makes easy to visualize the system and for better
understanding. UML Constructing: UML models can
be directly connected to a variety of programming lan-
guages and it is sufficiently expressive and free from
any ambiguity to permit the direct execution of mod-
els. UML Documenting: UML provides variety of docu-
ments in addition raw executable codes.

II. EXISTING SYSTEM:

Spatial queries with keywords have not been exten-
sively explored. In the past years, the community has
sparked enthusiasm in studying keyword search in
relational databases. It is until recently that attention
was diverted to multidimensional data. Existing works
mainly focus on finding top-k Nearest Neighbors, where
each node has to match the whole querying keywords
.It does not consider the density of data objects in the
spatial space. Also these methods are low efficient for
incremental query. We have finished explaining how to
build the leaf nodes of an R-tree on an inverted list. As
each leaf is a block, all the leaves can be stored in a
blocked SI-index as described in Section 6.1. Building
the non leaf levels is trivial, because they are invisible
to the merging-based query algorithms, and hence, do
not need to preserve any common ordering. We are
free to apply any of the existing R-tree construction
algorithms.

It is noteworthy that the non leaf levels add only a
small amount to the overall space overhead because,
in an R-tree, the number of non leaf nodes is by far low-
er than that of leaf nodes We have finished explaining
how to build the leaf nodes of an R-tree on an inverted
list. As each leaf is a block, all the leaves can be stored
in a blocked SI-index as described in Section Building
the non leaf levels is trivial, because they are invisible
to the merging-based query algorithms, and hence, do
not need to preserve any common ordering. We are
free to apply any of the existing R-tree construction
algorithms. It is note worthy that the non leaf levels
add only a small amount to the overall space overhead
because, in an R-tree, the number of non leaf nodes is
by far lower than that of leaf nodes.

III. PROPOSED SYSTEM:

A spatial info manages dimensional objects (such as
points, rectangles, etc.), and provides quick access to
those objects supported totally different choice crite-
ria. The importance of spatial databases is mirrored by
the convenience of modeling entities of reality in an
exceedingly geometric manner. for instance, locations
of restaurants, hotels, hospitals so on square measure
typically described as points in an exceedingly map,
whereas larger extents like parks, lakes, and land-
scapes typically as a mix of rectangles.

 Volume No: 2 (2015), Issue No: 7 (July) July 2015
 www.ijmetmr.com Page 366

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

4.1. Structural Diagrams:

The UML‘s four structural diagrams exist to visualize,
specify, construct and document the static aspects of
a system. Can View the static parts of a system using
one of the following diagrams. Structural diagrams
consist of Class Diagram, Object Diagram, Component
Diagram, and Deployment Diagram.

4.2. Behavioral Diagrams:

The UML’s five behavioral diagrams are used to visual-
ize, specify, construct, and document the dynamic as-
pects of a system. The UML’s behavioral diagrams are
roughly organized around the major ways which can
model the dynamics of a system. Behavioral diagrams
consists of Use case Diagram, Sequence Diagram, Col-
laboration Diagram, State chart Diagram, Activity Dia-
gram

4.3. Use-Case diagram:

A use case is a set of scenarios that describing an in-
teraction between a user and a system. A use case dia-
gram displays the relationship among actors and use
cases. The two main components of a use case diagram
are use cases and actors.

Figure.3. Use Case Diagram

An actor is represents a user or another system that
will interact with the system you are modeling. A use
case is an external view of the system that represents
some action the user might perform in order to com-
plete a task.

Contents:

1. Use cases
2. Actors
3. Dependency, Generalization, and association rela-
tionships
4. System boundary

Figure.2. UML Diagram Types

Uses of UML: The UML is intended primarily for soft-
ware intensive systems. It has been used effectively
for such domain as Enterprise Information System,
Banking and Financial Services, Telecommunications,
Transportation, Defense/Aerospace, Retails, Medical
Electronics, Scientific Fields, Distributed Web. Building
blocks of UML: The vocabulary of the UML encompass-
es 3 kinds of building blocks

1.Things
2.Relationships
3.Diagrams

Things:

Things are the data abstractions that are first class citi-
zens in a model. Things are of 4 types Structural Things,
Behavioral Things, Grouping Things, An notational
Things

Relationships:

Relationships tie the things together. Relationships in
the UML are Dependency, Association, Generalization
and Specialization.

UML Diagrams:

A diagram is the graphical presentation of a set of ele-
ments, most often rendered as a connected graph of
vertices (things) and arcs (relationships).
There are two types of diagrams, they are:
Structural and Behavioral Diagrams

 Volume No: 2 (2015), Issue No: 7 (July) July 2015
 www.ijmetmr.com Page 367

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

Figure.5. Class Diagram

4.5. Sequence diagram:

The processes are represented vertically and interac-
tions are show as arrows. This article explains the pur-
pose and the basics of Sequence diagrams.

Figure.6. Basic Sequence Diagram

Figure.7. User Sequence Diagram

Figure.4.UML Class Diagram with Relationships

4.4. Class Diagram:

Class diagrams are widely used to describe the types
of objects in a system and their relationships. Class dia-
grams model class structure and contents using design
elements such as classes, packages and objects. Class
diagrams describe three different perspectives when
designing a system, conceptual, specification, and im-
plementation.

These perspectives become evident as the diagram is
created and help solidify the design. Class diagrams
are arguably the most used UML diagram type. It is the
main building block of any object oriented solution. It
shows the classes in a system, attributes and opera-
tions of each class and the relationship between each
class.

In most modeling tools a class has three parts, name
at the top, attributes in the middle and operations or
methods at the bottom. In large systems with many
classes related classes are grouped together to to cre-
ate class diagrams.

Different relationships between diagrams are show by
different types of Arrows. Below is a image of a class
diagram. Follow the scenario

 Volume No: 2 (2015), Issue No: 7 (July) July 2015
 www.ijmetmr.com Page 368

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

Figure.9. Admin & User State machine diagrams

All branches at some point are followed by a merge to
indicate the end of the conditional behavior started by
that branch. After the merge all of the parallel activi-
ties must be combined by a join before transitioning
into the final activity state.

Activity diagrams should be used in conjunction with
other modeling techniques such as interaction dia-
grams and state diagrams. The main reason to use ac-
tivity diagrams is to model the workflow behind the
system being designed.

Activity Diagrams are also useful for: analyzing a use
case by describing what actions need to take place
and when they should occur; describing a complicated
sequential algorithm; and modeling applications with
parallel processes.

4.6. Collaboration diagram: Communication diagram
was called collaboration diagram in UML 1. It is similar
to sequence diagrams but the focus is on messages
passed between objects. The same information can be
represented using a sequence diagram and different
objects.

Figure.8. Collaboration Diagram

4.7. State machine diagrams:

State machine diagrams are similar to activity diagrams
although notations and usage changes a bit. They are
sometime known as state diagrams or start chart dia-
grams as well. These are very useful to describe the
behavior of objects that act different according to the
state they are at the moment. Below State machine
diagram show the basic states and actions.

4.8. Activity diagram:

Activity diagrams describe the workflow behavior of
a system. Activity diagrams are similar to state dia-
grams because activities are the state of doing some-
thing. The diagrams describe the state of activities by
showing the sequence of activities performed. Activ-
ity diagrams can show activities that are conditional or
parallel. Activity diagrams show the flow of activities
through the system. Diagrams are read from top to
bottom and have branches and forks to describe con-
ditions and parallel activities.

A fork is used when multiple activities are occurring at
the same time. The diagram below shows a fork after
activity1. This indicates that both activity2 and activity3
are occurring at the same time. After activity2 there is
a branch. The branch describes what activities will take
place based on a set of conditions.

 Volume No: 2 (2015), Issue No: 7 (July) July 2015
 www.ijmetmr.com Page 367

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

Figure.5. Class Diagram

4.5. Sequence diagram:

The processes are represented vertically and interac-
tions are show as arrows. This article explains the pur-
pose and the basics of Sequence diagrams.

Figure.6. Basic Sequence Diagram

Figure.7. User Sequence Diagram

Figure.4.UML Class Diagram with Relationships

4.4. Class Diagram:

Class diagrams are widely used to describe the types
of objects in a system and their relationships. Class dia-
grams model class structure and contents using design
elements such as classes, packages and objects. Class
diagrams describe three different perspectives when
designing a system, conceptual, specification, and im-
plementation.

These perspectives become evident as the diagram is
created and help solidify the design. Class diagrams
are arguably the most used UML diagram type. It is the
main building block of any object oriented solution. It
shows the classes in a system, attributes and opera-
tions of each class and the relationship between each
class.

In most modeling tools a class has three parts, name
at the top, attributes in the middle and operations or
methods at the bottom. In large systems with many
classes related classes are grouped together to to cre-
ate class diagrams.

Different relationships between diagrams are show by
different types of Arrows. Below is a image of a class
diagram. Follow the scenario

 Volume No: 2 (2015), Issue No: 7 (July) July 2015
 www.ijmetmr.com Page 368

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

Figure.9. Admin & User State machine diagrams

All branches at some point are followed by a merge to
indicate the end of the conditional behavior started by
that branch. After the merge all of the parallel activi-
ties must be combined by a join before transitioning
into the final activity state.

Activity diagrams should be used in conjunction with
other modeling techniques such as interaction dia-
grams and state diagrams. The main reason to use ac-
tivity diagrams is to model the workflow behind the
system being designed.

Activity Diagrams are also useful for: analyzing a use
case by describing what actions need to take place
and when they should occur; describing a complicated
sequential algorithm; and modeling applications with
parallel processes.

4.6. Collaboration diagram: Communication diagram
was called collaboration diagram in UML 1. It is similar
to sequence diagrams but the focus is on messages
passed between objects. The same information can be
represented using a sequence diagram and different
objects.

Figure.8. Collaboration Diagram

4.7. State machine diagrams:

State machine diagrams are similar to activity diagrams
although notations and usage changes a bit. They are
sometime known as state diagrams or start chart dia-
grams as well. These are very useful to describe the
behavior of objects that act different according to the
state they are at the moment. Below State machine
diagram show the basic states and actions.

4.8. Activity diagram:

Activity diagrams describe the workflow behavior of
a system. Activity diagrams are similar to state dia-
grams because activities are the state of doing some-
thing. The diagrams describe the state of activities by
showing the sequence of activities performed. Activ-
ity diagrams can show activities that are conditional or
parallel. Activity diagrams show the flow of activities
through the system. Diagrams are read from top to
bottom and have branches and forks to describe con-
ditions and parallel activities.

A fork is used when multiple activities are occurring at
the same time. The diagram below shows a fork after
activity1. This indicates that both activity2 and activity3
are occurring at the same time. After activity2 there is
a branch. The branch describes what activities will take
place based on a set of conditions.

 Volume No: 2 (2015), Issue No: 7 (July) July 2015
 www.ijmetmr.com Page 369

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

Figure.12. Deployment diagram
SCREENSHOTS

Figu re.10. Admin & User Activity diagrams

4.9. Component diagram:

A component diagram displays the structural relation-
ship of components of a software system. These are
mostly used when working with complex a system that
has many components. Components communicate
with each other using interfaces. The interfaces are
linked using connectors. Below images shows a com-
ponent diagram.

Figure.11. Component diagram

4.10. Deployment Diagram:

A deployment diagrams shows the hardware of your
system and the software in those hardware. Deploy-
ment diagrams are useful when your software solution
is deployed across multiple machines with each having
a unique configuration. Below is an example deploy-
ment diagram.

 Volume No: 2 (2015), Issue No: 7 (July) July 2015
 www.ijmetmr.com Page 370

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

The purpose of testing is to discover errors. Testing
is the process of trying to discover every conceivable
fault or weakness in a work product.It provides a way
to check the functionality of components, sub assem-
blies, assemblies and/or a finished product It is the pro-
cess of exercising software with the intent of ensuring
that the Software system meets its requirements and
user expectations and does not fail in an unacceptable
manner. There are various types of test. Each test type
addresses a specific testing requirement.

VI. TYPES OF TESTS:
6.1. Unit testing:

Unit testing involves the design of test cases that vali-
date that the internal program logic is functioning prop-
erly, and that program inputs produce valid outputs.
All decision branches and internal code flow should be
validated. It is the testing of individual software units
of the application .it is done after the completion of an
individual unit before integration. This is a structural
testing, that relies on knowledge of its construction
and is invasive. Unit tests perform basic tests at com-
ponent level and test a specific business process, appli-
cation, and/or system configuration. Unit tests ensure
that each unique path of a business process performs
accurately to the documented specifications and con-
tains clearly defined inputs and expected results.

6.2. Integration testing:

Integration tests are designed to test integrated soft-
ware components to determine if they actually run as
one program. Testing is event driven and is more con-
cerned with the basic outcome of screens or fields.
Integration tests demonstrate that although the com-
ponents were individually satisfaction, as shown by
successfully unit testing, the combination of compo-
nents is correct and consistent. Integration testing is
specifically aimed at exposing the problems that arise
from the combination of components.

6.3. Functional test:

Functional tests provide systematic demonstrations
that functions tested are available as specified by the
business and technical requirements, system docu-
mentation, and user manuals. Functional testing is
centered on the following items: Valid Input : identified
classes of valid input must be accepted.

V. TESTING:

Testing is a process of executing a program with the
intent of finding an error. A good test case is one that
has a high probability of finding an as-yet –undiscov-
ered error. A successful test is one that uncovers an
as-yet- undiscovered error. System testing is the stage
of implementation, which is aimed at ensuring that the
system works accurately and efficiently as expected
before live operation commences. It verifies that the
whole set of programs hang together. System testing
requires a test consists of several key activities and
steps for run program, string, system and is important
in adopting a successful new system. This is the last
chance to detect and correct errors before the system
is installed for user acceptance testing. The software
testing process commences once the program is creat-
ed and the documentation and related data structures
are designed. Software testing is essential for correct-
ing errors. Otherwise the program or the project is not
said to be complete. Software testing is the critical ele-
ment of software quality assurance and represents the
ultimate the review of specification design and coding.
Testing is the process of executing the program with
the intent of finding the error. A good test case design
is one that as a probability of finding a yet undiscov-
ered error. A successful test is one that uncovers a yet
undiscovered error. Any engineering product can be
tested in one of the two ways:

 Volume No: 2 (2015), Issue No: 7 (July) July 2015
 www.ijmetmr.com Page 369

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

Figure.12. Deployment diagram
SCREENSHOTS

Figu re.10. Admin & User Activity diagrams

4.9. Component diagram:

A component diagram displays the structural relation-
ship of components of a software system. These are
mostly used when working with complex a system that
has many components. Components communicate
with each other using interfaces. The interfaces are
linked using connectors. Below images shows a com-
ponent diagram.

Figure.11. Component diagram

4.10. Deployment Diagram:

A deployment diagrams shows the hardware of your
system and the software in those hardware. Deploy-
ment diagrams are useful when your software solution
is deployed across multiple machines with each having
a unique configuration. Below is an example deploy-
ment diagram.

 Volume No: 2 (2015), Issue No: 7 (July) July 2015
 www.ijmetmr.com Page 370

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

The purpose of testing is to discover errors. Testing
is the process of trying to discover every conceivable
fault or weakness in a work product.It provides a way
to check the functionality of components, sub assem-
blies, assemblies and/or a finished product It is the pro-
cess of exercising software with the intent of ensuring
that the Software system meets its requirements and
user expectations and does not fail in an unacceptable
manner. There are various types of test. Each test type
addresses a specific testing requirement.

VI. TYPES OF TESTS:
6.1. Unit testing:

Unit testing involves the design of test cases that vali-
date that the internal program logic is functioning prop-
erly, and that program inputs produce valid outputs.
All decision branches and internal code flow should be
validated. It is the testing of individual software units
of the application .it is done after the completion of an
individual unit before integration. This is a structural
testing, that relies on knowledge of its construction
and is invasive. Unit tests perform basic tests at com-
ponent level and test a specific business process, appli-
cation, and/or system configuration. Unit tests ensure
that each unique path of a business process performs
accurately to the documented specifications and con-
tains clearly defined inputs and expected results.

6.2. Integration testing:

Integration tests are designed to test integrated soft-
ware components to determine if they actually run as
one program. Testing is event driven and is more con-
cerned with the basic outcome of screens or fields.
Integration tests demonstrate that although the com-
ponents were individually satisfaction, as shown by
successfully unit testing, the combination of compo-
nents is correct and consistent. Integration testing is
specifically aimed at exposing the problems that arise
from the combination of components.

6.3. Functional test:

Functional tests provide systematic demonstrations
that functions tested are available as specified by the
business and technical requirements, system docu-
mentation, and user manuals. Functional testing is
centered on the following items: Valid Input : identified
classes of valid input must be accepted.

V. TESTING:

Testing is a process of executing a program with the
intent of finding an error. A good test case is one that
has a high probability of finding an as-yet –undiscov-
ered error. A successful test is one that uncovers an
as-yet- undiscovered error. System testing is the stage
of implementation, which is aimed at ensuring that the
system works accurately and efficiently as expected
before live operation commences. It verifies that the
whole set of programs hang together. System testing
requires a test consists of several key activities and
steps for run program, string, system and is important
in adopting a successful new system. This is the last
chance to detect and correct errors before the system
is installed for user acceptance testing. The software
testing process commences once the program is creat-
ed and the documentation and related data structures
are designed. Software testing is essential for correct-
ing errors. Otherwise the program or the project is not
said to be complete. Software testing is the critical ele-
ment of software quality assurance and represents the
ultimate the review of specification design and coding.
Testing is the process of executing the program with
the intent of finding the error. A good test case design
is one that as a probability of finding a yet undiscov-
ered error. A successful test is one that uncovers a yet
undiscovered error. Any engineering product can be
tested in one of the two ways:

 Volume No: 2 (2015), Issue No: 7 (July) July 2015
 www.ijmetmr.com Page 371

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

6.1.1. Unit Testing:

Unit testing is usually conducted as part of a combined
code and unit test phase of the software lifecycle, al-
though it is not uncommon for coding and unit testing
to be conducted as two distinct phases.

Test strategy and approach:

Field testing will be performed manually and functional
tests will be written in detail.

Test objectives :

1.All field entries must work properly.
2. Pages must be activated from the identified link.
3. The entry screen, messages and responses must not
be delayed.

Features to be tested :

1. Verify that the entries are of the correct format
2. No duplicate entries should be allowed
3. All links should take the user to the correct page.

Integration Testing:

Software integration testing is the incremental inte-
gration testing of two or more integrated software
components on a single platform to produce failures
caused by interface defects. The task of the integration
test is to check that components or software applica-
tions, e.g. components in a software system or – one
step up – software applications at the company level
– interact without error.

Test Results:

All the test cases mentioned above passed successful-
ly. No defects encountered.

Acceptance Testing:

User Acceptance Testing is a critical phase of any proj-
ect and requires significant participation by the end
user. It also ensures that the system meets the func-
tional requirements.

Invalid Input : identified classes of invalid input must
be rejected.
Functions : identified functions must be exercised.
Output : identified classes of application outputs must
be exercised.

Systems/Procedures:

interfacing systems or procedures must be invoked.
Organization and preparation of functional tests is fo-
cused on requirements, key functions, or special test
cases. In addition, systematic coverage pertaining to
identify Business process flows; data fields, predefined
processes, and successive processes must be consid-
ered for testing.Before functional testing is complete,
additional tests are identified and the effective value of
current tests is determined.

6.4. System Test:

System testing ensures that the entire integrated soft-
ware system meets requirements. It tests a configura-
tion to ensure known and predictable results. An ex-
ample of system testing is the configuration oriented
system integration test. System testing is based on
process descriptions and flows, emphasizing pre-driv-
en process links and integration points.

6.5. White Box Testing:

White Box Testing is a testing in which in which the
software tester has knowledge of the inner workings,
structure and language of the software, or at least its
purpose. It is purpose. It is used to test areas that can-
not be reached from a black box level.

6.6. Black Box Testing:

Black Box Testing is testing the software without any
knowledge of the inner workings, structure or lan-
guage of the module being tested. Black box tests, as
most other kinds of tests, must be written from a de-
finitive source document, such as specification or re-
quirements document, such as specification or require-
ments document. It is a testing in which the software
under test is treated, as a black box .you cannot “see”
into it. The test provides inputs and responds to out-
puts without considering how the software works.

 Volume No: 2 (2015), Issue No: 7 (July) July 2015
 www.ijmetmr.com Page 372

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

[3] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and
S. Sudar- shan. Keyword searching and browsing in da-
tabases using banks. In Proc. of International Confer-
ence on Data ngineering (ICDE), pages 431–440, 2002.

[4] X. Cao, L. Chen, G. Cong, C. S. Jensen, Q. Qu, A. Sk-
ovsgaard, D. Wu, and M. L. Yiu. Spatial keyword query-
ing. In ER, pages 16–29, 2012.

[5] X. Cao, G. Cong, and C. S. Jensen. Retrieving top-k
prestige-based relevant spatial web objects. PVLDB,
3(1):373–384, 2010.

[6] X. Cao, G. Cong, C. S. Jensen, and B. C. Ooi. Col-
lective spatial keyword querying. In Proc. of ACM Man-
agement of Data (SIG-MOD), pages 373–384, 2011.

[7] B. Chazelle, J. Kilian, R. Rubinfeld, and A. Tal. The
bloomier filter: an efficient data structure for static
support lookup tables. In Proc. of the Annual ACM-SI-
AM Symposium on Discrete Algorithms (SODA), pages
30–39, 2004.

[8] Y.-Y. Chen, T. Suel, and A. Markowetz. Efficient
query processing in geographic web search engines. In
Proc. of ACM Management of Data (SIGMOD), pages
277–288, 2006.

[9] E. Chu, A. Baid, X. Chai, A. Doan, and J. Naughton.
Combining keyword search and forms for ad hoc que-
rying of databases. In Proc. of ACM Management of
Data (SIGMOD), 2009.

[10] G. Cong, C. S. Jensen, and D. Wu. Efficient retrieval
of the top-k most relevant s

Test Results:

All the test cases mentioned above passed successful-
ly. No defects encountered.

VII. CONCLUSION :

We have seen plenty of applications calling for a search
engine that is able to efficiently support novel forms
of spatial queries that are integrated with keyword
search. The existing solutions to such queries either
incur prohibitive space consumption or are unable to
give real time answers. In this paper, we have rem-
edied the situation by developing an access method
called the spatial inverted index (SI-index). Not only
that the SI-index is fairly space economical, but also it
has the ability to perform keyword-augmented nearest
neighbor search in time that is at the order of dozens
of milliseconds. Furthermore, as the SI-index is based
on the conventional technology of inverted index, it
is readily incorporable in a commercial search engine
that applies massive parallelism, implying its immedi-
ate industrial merits.

REFERENCES :

[1] S. Agrawal, S. Chaudhuri, and G. Das. Dbxplorer: A
system for keyword-based search over relational da-
tabases. In Proc. of International Conference on Data
Engineering (ICDE), pages 5–16, 2002.

[2] N. Beckmann, H. Kriegel, R. Schneider, and B. Seeger.
The R*-tree: An efficient and robust access method for
points and rectangles. In Proc. of ACM Management of
Data (SIGMOD), pages 322–331,1990.

