

 Page 985

Distributed, Contemporary, And Independent Access To Encrypted

Cloud Databases

Gorige Raju

M.Tech Student

Department of CSE

Prasad College of Engineering

Siddipet Rd, Jangaon, Telangana.

Dr.K.Babu Rao

Professor

Department of CSE

Prasad College of Engineering

Siddipet Rd, Jangaon, Telangana.

ABSTRACT

Placing critical data to a cloud provider data at rest, in

motion, come with a guarantee of security and

availability, and be in use. Data privacy is a service

paradigm for database storage services solutions are still

immature in many ways. We have data on the encrypted

data confidentiality and the opportunity to run concurrent

operations that connects to the cloud database services,

proposed a novel structure. The encrypted database

connected directly to the cloud, and modifying the

structure of the database, including the implementation of

joint and independent operations, the first solution that

helps geographically distributed clients. The proposed

building the internal cloud-based solutions that the

elasticity, availability, and scalability feature that limit

the further advantage of eliminating intermediate agents.

The ability of the proposed building clients and network

latencies TPC- C standard benchmark to different

numbers based on the implementation of innovative and

extensive theoretical analysis of the experimental results

evaluated.

I. INTRODUCTION:

Cloud computing can and does mean different things to

different people. The common characteristics most

interpretations share are on-demand scalability of highly

available and reliable pooled computing resources, secure

access to metered services from nearly anywhere, and

displacement of data and services from inside to outside

the organization. While aspects of these characteristics

have been realized to a certain extent, cloud computing

remains a work in progress. This publication provides an

overview of the security and privacy challenges pertinent

to public cloud computing and points out considerations

organizations should take when outsourcing data,

applications, and infrastructure to a public cloud

environment. This article describes the design,

implementation, and evaluation of Depot, a cloud storage

system that minimizes trust assumptions. Depot tolerates

buggy or malicious behavior by any number of clients or

servers, yet it provides safety and liveness guarantees to

correct clients. Depot provides these guarantees using

two-layer architecture. First, Depot ensures that the

updates observed by correct nodes are consistently

ordered under Fork-Join-Causal consistency (FJC). FJC

is a slight weakening of causal consistency that can be

both safe and live despite faulty nodes. Second, Depot

implements protocols that use this consistent ordering of

updates to provide other desirable consistency, staleness,

durability, and recovery properties.

Our evaluations suggests that the costs of these

guarantees are modest and that Depot can tolerate faults

and maintain good availability, latency, overhead, and

staleness even when significant faults occur. We explore

a novel paradigm for data management in which a third

party service provider hosts "database as a service",

providing its customers with seamless mechanisms to

create, store, and access their databases at the host site.

Such a model alleviates the need for organizations to

purchase expensive hardware and software, deal with

software upgrades, and hire professionals for

administrative and maintenance tasks which are taken

over by the service provider. We have developed and

deployed a database service on the Internet, called

NetDB2, which is in constant use. In a sense, a data

management model supported by NetDB2 provides an

effective mechanism for organizations to purchase data

 Page 986

management as a service, thereby freeing them to

concentrate on their core businesses. Among the primary

challenges introduced by "database as a service" are the

additional overhead of remote access to data, an

infrastructure to guarantee data privacy, and user

interface design for such a service. These issues are

investigated. We identify data privacy as a particularly

vital problem and propose alternative solutions based on

data encryption. The paper is meant as a challenge for the

database community to explore a rich set of research

issues that arise in developing such a service.

II. RELATED WORK:

We propose a fully homomorphic encryption scheme --

i.e., a scheme that allows one to evaluate circuits over

encrypted data without being able to decrypt. Our

solution comes in three steps. First, we provide a general

result -- that, to construct an encryption scheme that

permits evaluation of arbitrary circuits, it suffices to

construct an encryption scheme that can evaluate (slightly

augmented versions of) its own decryption circuit; we

call a scheme that can evaluate its (augmented)

decryption circuit bootstrappable. Next, we describe a

public key encryption scheme using ideal lattices that is

almost bootstrappable. Lattice-based cryptosystems

typically have decryption algorithms with low circuit

complexity, often dominated by an inner product

computation that is in NC1. Also, ideal lattices provide

both additive and multiplicative homomorphisms

(modulo a public-key ideal in a polynomial ring that is

represented as a lattice), as needed to evaluate general

circuits. Unfortunately, our initial scheme is not quite

bootstrappable -- i.e., the depth that the scheme can

correctly evaluate can be logarithmic in the lattice

dimension, just like the depth of the decryption circuit,

but the latter is greater than the former. In the final step,

we show how to modify the scheme to reduce the depth

of the decryption circuit, and thereby obtain a

bootstrappable encryption scheme, without reducing the

depth that the scheme can evaluate. Abstractly, we

accomplish this by enabling the encrypted to start the

decryption process, leaving less work for the decrypted,

much like the server leaves less work for the decrypted in

a server-aided cryptosystem.

FIG 1:SYSTEM ARCHITECTURE

III. SYSTEM PREMELIRIES:

A. SETUP PHASE:

We describe how to initialize a Secure DBaaS

architecture from a cloud database service acquired by a

tenant from a cloud provider. We assume that the DBA

creates the metadata storage table that at the beginning

contains just the database metadata, and not the table

metadata. The DBA populates the database metadata

through the Secure DBaaS client by using randomly

generated encryption keys for any combinations of data

types and encryption types, and stores them in the

metadata storage table after encryption through the

master key. Then, the DBA distributes the master key to

the legitimate users. User access control policies are

administrated by the DBA through some standard data

control language as in any unencrypted database. In the

following steps, the DBA creates the tables of the

encrypted database.

B. META DATA MODULE:

We develop Meta data. So our system does not require a

trusted broker or a trusted proxy because tenant data and

metadata stored by the cloud database are always

encrypted. In this module, we design such as Tenant data,

data structures, and metadata must be encrypted before

exiting from the client. The information managed by

SecureDBaaS includes plaintext data, encrypted data,

metadata, and encrypted metadata. Plaintext data consist

of information that a tenant wants to store and process

remotely in the cloud DBaaS. SecureDBaaS clients

 Page 987

produce also a set of metadata consisting of information

required to encrypt and decrypt data as well as other

administration information. Even metadata are encrypted

and stored in the cloud DBaaS.

C. SEQUENTIAL SQL OPERATIONS:

The first connection of the client with the cloud DBaaS is

for authentication purposes. Secure DBaaS relies on

standard authentication and authorization mechanisms

pro-vided by the original DBMS server. After the

authentication, a user interacts with the cloud database

through the Secure DBaaS client. Secure DBaaS analyzes

the original operation to identify which tables are

involved and to retrieve their metadata from the cloud

database. The metadata are decrypted through the master

key and their information is used to translate the original

plain SQL into a query that operates on the encrypted

database. Translated operations contain neither plaintext

database (table and column names) nor plaintext tenant

data. Nevertheless, they are valid SQL operations that the

Secure DBaaS client can issue to the cloud database.

Translated operations are then executed by the cloud

database over the encrypted tenant data. As there is a

one-to-one correspondence between plaintext tables and

encrypted tables, it is possible to prevent a trusted

database user from accessing or modifying some tenant

data by granting limited privileges on some tables. User

privileges can be managed directly by the untrusted and

encrypted cloud database. The results of the translated

query that includes encrypted tenant data and metadata

are received by the Secure DBaaS client, decrypted, and

delivered to the user. The complexity of the translation

process depends on the type of SQL statement.

D. CONCURRENT SQL OPERATIONS:

The support to concurrent execution of SQL statements

issued by multiple independent (and possibly

geographically distributed) clients is one of the most

important benefits of Secure DBaaS with respect to state-

of-the-art solutions. Our architecture must guarantee

consistency among encrypted tenant data and encrypted

metadata because corrupted or out-of-date metadata

would prevent clients from decoding encrypted tenant

data resulting in permanent data losses. A thorough

analysis of the possible issues and solutions related to

concurrent SQL operations on encrypted tenant data.

Here, we remark the importance of distinguishing two

classes of statements that are supported by Secure

DBaaS: SQL operations not causing modifications to the

database structure, such as read, write, and update;

operations involving alterations of the database structure

through creation, removal, and modification of database

tables (data definition layer operators).

IV. CONCLUSION

We propose an innovative architecture that guarantees

confidentiality of data stored in public cloud databases.

Unlike state-of-the-art approaches, our solution does not

rely on an intermediate proxy that we consider a single

point of failure and a bottleneck limiting availability and

scalability of typical cloud database services. A large part

of the research includes solutions to support concurrent

SQL operations (including statements modifying the

database structure) on encrypted data issued by

heterogenous and possibly geographically dispersed

clients. The proposed architecture does not require

modifications to the cloud database, and it is immediately

applicable to existing cloud DBaaS, such as the

experimented PostgreSQL Plus Cloud Database [23],

Windows Azure [24], and Xeround [22]. There are no

theoretical and practical limits to extend our solution to

other platforms and to include new encryption

algorithms. It is worth observing that experimental results

based on the TPC-C standard benchmark show that the

performance impact of data encryption on response time

becomes negligible because it is masked by network

latencies that are typical of cloud scenarios. In particular,

concurrent read and write operations that do not modify

the structure of the encrypted database cause negligible

overhead. Dynamic scenarios characterized by (possibly)

concurrent modifications of the database structure are

supported, but at the price of high computational costs.

These performance results open the space to future

improvements that we are investigating.

REFERENCES

[1] M. Armbrust et al., “A View of Cloud Computing,”

Comm. of the ACM, vol. 53, no. 4, pp. 50-58, 2010.

 Page 988

[2] W. Jansen and T. Grance, “Guidelines on Security

and Privacy in Public Cloud Computing,” Technical

Report Special Publication 800-144, NIST, 2011.

[3] A.J. Feldman, W.P. Zeller, M.J. Freedman, and E.W.

Felten, “SPORC: Group Collaboration Using Untrusted

Cloud Resources,” Proc. Ninth USENIX Conf. Operating

Systems Design and Implementation, Oct. 2010.

[4] J. Li, M. Krohn, D. Mazie`res, and D. Shasha,

“Secure Untrusted Data Repository (SUNDR),” Proc.

Sixth USENIX Conf. Opearting Systems Design and

Implementation, Oct. 2004.

[5] P. Mahajan, S. Setty, S. Lee, A. Clement, L. Alvisi,

M. Dahlin, and M. Walfish, “Depot: Cloud Storage with

Minimal Trust,” ACM Trans. Computer Systems, vol. 29,

no. 4, article 12, 2011.

[6] H. Hacigu¨mu¨ s ,̧ B. Iyer, and S. Mehrotra,

“Providing Database as a Service,” Proc. 18th IEEE Int’l

Conf. Data Eng., Feb. 2002.

[7] C. Gentry, “Fully Homomorphic Encryption Using

Ideal Lattices,” Proc. 41st Ann. ACM Symp. Theory of

Computing, May 2009.

[8] R.A. Popa, C.M.S. Redfield, N. Zeldovich, and H.

Balakrishnan, “CryptDB: Protecting Confidentiality with

Encrypted Query Processing,” Proc. 23rd ACM Symp.

Operating Systems Principles, Oct. 2011.

[9] H. Hacigu¨mu¨ s¸, B. Iyer, C. Li, and S. Mehrotra,

“Executing SQL over Encrypted Data in the Database-

Service-Provider Model,” Proc. ACM SIGMOD Int’l

Conf. Management Data, June 2002.

[10] J. Li and E. Omiecinski, “Efficiency and Security

Trade-Off in Supporting Range Queries on Encrypted

Databases,” Proc. 19th Ann. IFIP WG 11.3 Working

Conf. Data and Applications Security, Aug. 2005.

[11] E. Mykletun and G. Tsudik, “Aggregation Queries in

the Database-as-a-Service Model,” Proc. 20th Ann. IFIP

WG 11.3 Working Conf. Data and Applications Security,

July/Aug. 2006.

[12] D. Agrawal, A.E. Abbadi, F. Emekci, and A.

Metwally, “Database Management as a Service:

Challenges and Opportunities,” Proc. 25th IEEE Int’l

Conf. Data Eng., Mar.-Apr. 2009.

[13] V. Ganapathy, D. Thomas, T. Feder, H. Garcia-

Molina, and R. Motwani, “Distributing Data for Secure

Database Services,” Proc. Fourth ACM Int’l Workshop

Privacy and Anonymity in the Information Soc., Mar.

2011.

[14] A. Shamir, “How to Share a Secret,” Comm. of the

ACM, vol. 22, no. 11, pp. 612-613, 1979.

[15] M. Hadavi, E. Damiani, R. Jalili, S. Cimato, and Z.

Ganjei, “AS5: A Secure Searchable Secret Sharing

Scheme for Privacy Preserving Database Outsourcing,”

Proc. Fifth Int’l Workshop Autonomous and Spontaneous

Security, Sept. 2013.

