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Abstract—Peers participating in a distributed hash 

table (DHT) may host numbers of virtual servers and 

are enabled to balance their loads in the reallocation 

of virtual servers. Most decentralized load balance 

algorithms that are designed for DHTs based on 

virtual servers do require the participating peers to be 

asymmetric, where some serve as the rendezvous 

nodes to pair virtual servers and participating peers, 

thereby introducing another load imbalance problem. 

The state-of-art studies introduce significant 

algorithmic overheads and guarantee no rigorous 

performance metrics. Here, a novel symmetric load 

balancing algorithm for DHTs is presented by having 

the participating peers approximate the system state 

with histograms and cooperatively implement a 

global index. Each peer independently does 

reallocate in our proposal its locally hosted virtual 

servers by publishing and inquiring the global index 

based on their histograms. Unlike competitive 

algorithms, our proposal exhibits analytical 

performance guarantees in terms of the load balance 

factor and the algorithmic convergence rate, and 

introduces no load imbalance problem due to the 

algorithmic workload. Through computer 

simulations, we show that our proposal clearly 

outperforms existing distributed algorithms in terms 

of load balance factor with a comparable movement 

cost. 

 

Key Terms—Distributed hash tables, load balance, 

virtual server. 

 

1  INTRODUCTION 

Dibuted hash tables (DHTs) are key building blocks in 

the implementation and design of successful 

distributed applications. Examples of DHTs are Chord 

[1] and Pastry [2]. Applications/infrastructures built 

based on DHTs include storage clouds [3], file-sharing 

network [4], and distributed file systems [5], among 

many others. In a typical DHT, the participating peers 

(or nodes) cooperatively manage a global hash table. 

Essentially, DHTs provide the GET(x) operation to 

retrieve a published object whose key is x as well as 

the PUT(y; v) operation to store the value v of an 

object with hash key y. 

 

As peers that are participating in a DHT are often 

heterogeneous, the work in [1] introduces the notion of 

virtual servers to cope with peer heterogeneity. Let N 

be the set of participating peers in the DHT and V be 

the set of virtual servers hosted by the peers in N. 

(Typically,  denotes the 

cardinality of a set.) let Su be the hash subspace 

managed by virtual server 

Thus, peer heterogeneity can be 

exploited because the participating peers can host 

different numbers of virtual servers [1]. 

 

In particular, load balancing algorithms designed for 

DHTs based on virtual servers need to take the 

following into consideration: 

 

 Load balance and movement cost. By load 

balance, we mean that each peer manages the load 

proportional to its capacity. Previous studies (e.g., 

[6]) suggest migrating virtual servers among the 

participating peers in order to balance peer load. 

However, this is at the expense of introducing 

movement cost due to the migration of virtual 
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servers. How to balance peer load while reducing 

movement cost as much as possible thus is a 

critical issue. 

 

 System dynamics. Load balancing algorithms need 

to bear the system dynamics in mind because 

nodes may dynamically join and leave DHTs. In 

addition, the load of a virtual server may change 

from time to time, aggravating the load imbalance 

problem in the DHTs. 

 

 Algorithmic robustness and workload. Load 

balancing algorithms need to be robust without 

introducing the performance bottleneck and the 

single point of failure. In addition, as load 

balancing algorithms incur algorithmic workloads, 

such workloads shall not induce another load 

imbalance problem. On the other hand, a well-

designed load balancing algorithm will not 

generate considerable overheads. 

 Performance guarantee. Load balancing algorithms 

shall work well with performance guarantee, given 

any system instance. Specifically, DHT networks 

may operate in dynamic and large-scale 

environments, thus presenting a large number of 

problem instances for performance investigation. 

 

2 RELATED WORK 

Assume an object set O and a peer set N. Conventional 

DHTs  assume that the loads of objects in O are 

identical. In this way, the load of a peer can be 

estimated as the number of objects hosted by the peer. 

If we use a uniform hash function, then the size of the 

key subspace that is managed by a peer is proportional 

to the number of objects hosted by the peer. In contrast 

to evenly partitioning the number of objects and thus 

the key space to each participating peer, Chord 

suggests the notion of virtual servers to balance the 

loads of the peers [1] further. Different virtual servers 

in a system manage disjoint key subspaces, with a 

virtual server serving as an elementary entity for 

balancing loads among peers.  

 

Note that if the key subspace S is managed by a vertual 

server v, then the objects, which may have “unequal” 

loads and whose keys are within S, contribute their 

loads to v. As a result, the load of a virtual server may 

not be proportional to the size of the key space 

allocated to the virtual server. Whereas the technique 

based on virtual servers is orthogonal to that of 

uniformly partitioning the key space, the idea of virtual 

servers enables a DHT to reallocate the virtual servers 

by exploiting the heterogeneities of the objects and 

peers, such that the resultant load of a peer is 

proportional to its capacity. 

 

Shen and Xu organize a DHT as a two-tier network, 

where the higher level of the network consists of local 

clusters. A node in a local cluster is selected as a 

rendezvous. Objects with excess loads are moved to 

the local cluster through the reallocation performed by 

the rendezvous. For objects that cannot be moved to 

the local cluster, they are transferred to foreign 

clusters; this is accomplished by the reallocation 

performed by the corresponding rendezvous in the 

remote and local clusters. Although Shen and Xu’s 

solution aims to migrate objects for load balancing, 

their solution can be adopted by DHTs with virtual 

servers by having each virtual server serve as the 

elementary entity for load migration. Here, our 

proposal does not assume any specific geometry of 

DHTs and is thus applicable to any DHT. 

 

In the recent proposal by Hsiao et al., each peer i 

performs its load balancing algorithm based on the 

histograms it doews estimate for representing the 

system state.here , in this paper, we present novel 

histograms for nodes to estimate and represent the 

system state, and 2) that the participating peers in our 

proposal maintain a global index in a distributed 

manner. These techniques enable the light peers to 

query and allocate virtual servers of interest precisely, 

intending to introduce no contention of reallocation of 

virtual servers and thus redundant traffic. In addition, 

with the histograms and the global index, our proposal 

provides rigorous performance guarantees. 
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3 OUR LOAD BALANCE ALGORITHM 

3.1 Notation and Problem Definition 

Let N be the set of participating peers in a DHT and V 

be the set of virtual servers deployed over N. Each 

peer  has a maximum capacity of  and 

hosts a set of virtual servers 

 Each 

virtual server  has a load denoted by Lv 

(where Lv ≥ 0). Our objective in this study is to 

develop a load balancing algorithm A to reallocate and 

balance the loads among the participating peers, such 

that any peer i manages the total load of virtual servers 

proportional to  That is, A computes a subset  

 for each peer i, such that the following 

equation is minimized: 

 

 
 

Definition 1. The load per unit capacity, µ, which is a 

peer that hosts in a load-balanced DHT, is defined as 

 

 
Without loss of generality, we assume that 

 
 

3.2 Overview 

Here, In this paper, we have proposed load balancing 

algorithm based on the Chord DHT. We assume in the 

following discussion that each virtual server in Chord 

has a unique ID selected uniformly at random from the 

key space [0,1]. 

 

In our proposal, each peer  estimates the ideal 

load (i.e., Ii) it will host in a load-balanced state and 

then computes its remaining capacity Ci. If i is heavy, 

in order to balance i’s load, i registers a subset of its 

local virtual servers with a pending pool P (see Fig. 1). 

Thus, if migrating such virtual servers, i’s resultant 

load will be no more than Ii. By the “registration” of a 

virtual server v hosted by peer i, we mean that i hosts v 

and simply provides the tuple information 

 
 

 
 

In contrast, if i is a light peer, i queries P and then 

allocates some virtual servers from corresponding 

peers. I requests the virtual servers in P as many times 

as possible without exceeding its Ii. 

 

One key design aspect of our proposal is that for each 

virtual server  we estimate the cumulative 

distribution function (CDF), denoted by 

 for the random variable X that 

represents the total load of virtual servers in P, with 

each having a load value no more than Lv. 

Additionally, we let 

 represent the CDF 

for the random variable Y that denotes the total 

remaining capacity of light peers, with each having a 

remaining capacity smaller than (or no more than) Ci. 

 Each light peer i computes 

 then requests the virtual 

servers in P satisfying 

 
 

Fig. 2 illustrates an example showing our idea, where 

there are five virtual servers {v1,v2, v3, v4, v5} with 

loads of  Lv1, Lv2 , Lv3 , Lv4 , Lv5 in P, and three light 

peers {i1, i2, i3} with remaining capacities of Ci1 , Ci2 

, and Ci3 in the system As shown in Fig. 2, v1 

manages the ratio of the load to the total load of virtual 

servers in P equal to (50/100) Such ratios for v2, v3, 

v4, and v5 are (20/100), (10/100), (10/100) and 

(10/100) respectively 
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 and 

 Moreover, the ratio of the remaining 

capacity of  i1 to the aggregate remaining capacity of 

the system is (50/100) 

 

 
 

3.3 Histogram-Based Probability Distribution 

Given a probability distribution PrðZÞ (where the 

random variable Z represents both X and Y), we rely 

on histograms as defined in the following to 

approximate the distribution. 

 

 
 

 Fig. 3 depicts the concept of using histograms 

to approximate a probability distribution Pr(Z) given 

 We illustrate an example in Fig. 4, where there 

are 15 elements in the population for a CDF, Pr(Z). 

Among the 15 elements, 10 are sampled randomly to 

approximate Pr(Z). here, is 0.2, and there are five 

histograms, each  containing 

two samples Note that each consists of three 

elements in the population. Consequently, the 

probability of samples appearing in each 

This ideally approximates the 

probability of the elements within 

 in the population. 

 

 
 

4 THEORETICAL PERFORMANCE ANALYSIS 

4.1 Load Balance Factor 

In our proposal, as each heavy peer selects its virtual 

servers with small sizes to migrate, the resultant 

movement cost is small. Thus, analyzing the load 

balance factor for each peer suffices. The load balance 

factor of peer I (denoted by LBFi) is defined as 

follows: 
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where A represents our load balancing algorithm. 

Consequently, due to (1), we have 

 

 

as 

much as possible suffices for our load balancing 

algorithm. 

 

4.2 Analytical Results 

Our analysis mainly relies on the Dvoretzky-Kiefer-

Wolfowitz inequality [28] as stated in the following:  

Theorem 1. Let Z1;Z2; . . . ;Zk be independent and 

identical distribution random variables with a CDF 

F(.). Let Fk(.) denote the empirical CDF, which 

approximates F(.), defined as 

 

 
 

Fig. 5 demonstrates the effectiveness of approximating 

a probability distribution based on sampling, where we 

only depict the probability distribution estimated by 

some peer (say, peer i) for the capacities of peers in the 

system (i.e., Pr(Y)). Notably, in the experiment, 1) 

Pr(Y) is a Pareto distribution, 2) i samples k = 

50;100;200 peers to estimate Pr(Y), and 3) up to 

10,000 peers are in the system. (Details of the 

experimental setting will be discussed in Section 5.) 

As we can see in Fig. 5, the approximation for a 

probability distribution based on sampling is very 

effective in case a modest number of samples (e.g., 

200 samples among 10,000 peers) is performed. 

 

 
 

4.2.1 Load Balance Factor for Imprecisely 

Estimated Pr(X) and Pr(Y) 

We are now ready to show the load balance factor of 

each participating peer through our imprecise 

estimation of Pr(X) and Pr(Y). We denote the 

probability distribution, our proposal estimates for the 

remaining capacities of the participating peers, as 

~Pr(Y) 

 

 
 

Proof. As mentioned, through the Chernoff bound 

[31], if any  peer i samples  peers with each 

peer j having Cj > 0, then 

 

 
is the value our proposal estimates for CA based on the 

set S of the k samples. But we have 
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Due to above last two equations, and  

 with a probability no less than 

 

 
Fig. 6 shows the simulation results. Here, we measure 

the load deviation (i.e  for 

each participating peer i by varying the number of 

samples performed by each participating peer. n and m 

are 10,000 and 100,000, respectively, and the number 

of samples investigated in the experiment is 100, 200, 

400, 800, 1,600, 3,200, and 6,400. In Fig. 6, we also 

provide the theoretical upper bound based on (21) in 

Theorem 3 for each participating peer. More 

specifically, each peer i has the expected load 

deviation of less than 

Notably, the load deviation presented in Fig. 6 is 

averaged over all participating peers. As seen in Fig. 6, 

the measured load deviation is clearly bounded from 

above by the theoretical result 

 

 
 

5 SIMULATIONS 

5.1 Simulation Results 

Fig. 7 presents the simulation results for the load 

balance factor, where W/O represents the distribution 

of the load balance factors of participating peers before 

the load balancing algorithms are performed. As 

shown in Fig. 7, the studied load balancing algorithms 

improve the load balance factor. Precisely, there are 

around 98, 70, 60, 70, and 90 percent of nodes with 

load balance factors within (0:7, 0:9) in the centralized 

directory approach (Dir), the tree-based solution 

(Tree), the two-tier-based solution (2-tier), Hsiao’s 

algorithm (Hsiao), and our proposal (Ours), 

respectively. 

 

 
 

Fig. 8 shows the movement costs for Dir, Tree, 2-tier, 

Hsiao, and our proposal. Dir introduces a significant 

movement cost, as the centralized directory maintains 

the global knowledge and thus performs as many 

matches as possible. Compared with Dir, our proposal 

generates less movement cost. Notably, although our 

proposal has movement cost comparable with that of 

Tree, 2-tir, and Hsiao, it obviously outperforms Tree, 

2-tir, and Hsiao in terms of the load balance factor. 

Unlike Tree, 2-tir, and Hsiao, our load balancing 

algorithm, which is based on the estimation of the 

probability distributions of the capacities of 

participating peers and the loads of virtual servers, is 

very effective, such that the virtual servers with heavy 

(light) loads can be effectively reallocated to capable 

(incapable) peers. 
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We present in Fig. 9 the protocol message overhead, 

where the details of the protocol behaviors in Dir, 

Tree, 2-tier, Hsiao, and our proposal are simulated. 

Hsiao takes more message overheads because in 

Hsiao, a virtual server may receive multiple 

reallocation requests issued from different light peers. 

In contrast, in Dir, Tree, and 2-tier, a virtual server 

selected for migration receives only one reallocation 

request from a light peer. The reason is that these 

approaches heavily rely on rendezvous nodes to match 

virtual servers and light peers. 

 

Fig. 10 further details the number of messages sent by 

each participating peer. We plot the CDF function 

regarding the number of messages sent by each peer in 

Fig. 10. Fig. 10 illustrates that while each peer in 

Hsiao and our proposal introduces a nearly identical 

number of protocol messages to manipulate its load 

balancing algorithm, ours considerably outperforms 

Hsiao as each peer in our proposal takes ≈50% of 

messages required in Hsiao. In contrast to ours, in Dir, 

Tree, and 2-tier, the participating peers perceives 

imbalance algorithmic workloads in balancing their 

loads. In particular, several peers (i.e., the rendezvous) 

in Dir, Tree, and 2-tier generate considerable messages 

for matching virtual servers and light peers, 

introducing another load imbalance issue due to the 

load balancing algorithms. Compared with Dir, Tree, 

and 2-tier, ours performs very well in terms of loads 

due to the load balancing algorithm, thus simplifying 

the system provisioning and maintenance. This 

validates our analytical results in Lemma 2 and 

Corollary 1. 

 

 
 

 
 

5.1.1 Convergence 

In this section, we demonstrate the load balance factor 

against algorithmic rounds for the 1-, 5-, 10-, 90-, 95- 

and 99-percentile peers. Fig. 11 depicts the simulation 

results, where the algorithmic rounds investigated for 

our proposal are 1, 2, 3, and 10. Here, the 0 round 

denotes the initial situation that no peer performs our 

proposal and that the y-axis is in a logarithmic scale. 

The experimental results clearly demonstrate that the 

light   and heavy   peers in our proposal improve their 

load balance factors through the algorithm rounds 

toward the ideal value. 
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5.1.2 Effect of Numbers of Samples 

A few samples of the capacities of peers and the loads 

of virtual servers are sufficient to estimate the system 

state effectively, i.e., the probability distribution for 

the capacities of peers (i.e., Pr(Y)) and the probability 

distribution for the loads of virtual servers (i.e., Pr(X)). 

Note that in our implementation, each peer issues a 

random walker to sample the capacities of peers and 

the loads of virtual servers simultaneously. That is, 

when a random walker visits a peer, the walker not 

only collects the capacity value of the visited peer but 

also gathers the load values of the virtual servers the 

visited peer selects to migrate.  

 

Fig. 12 shows the simulation results for the effect of 

different numbers of random walk steps in our 

proposal. Apparently, 200 walk steps performed by 

each peer are sufficient to estimate the system state, 

such that the resultant load balance factors of the 

participating peers are comparable with those based on 

more walk steps (e.g., 400 and 800). 

 

 

5.1.3 Effect of  

To cope with the approximation error  each light peer i 

seeks virtual servers with load indices within 

 We investigate the effect 

of various values of _i on the resultant load balance 

factor of i. Fig. 13 presents the simulation results. In 

Fig. 13, although our proposal can effectively estimate 

Pr(X) and Pr(Y), it cannot perform very well without 

dealing with the approximation error

. In contrast, if , 

then a virtual server in the pending pool is likely to be 

acquired by multiple light peers. 

 

 
 

5.1.4 Effect of System Dynamics 

In this section, We study the impact of system 

dynamics on our proposal. In the experiment, we first 

stabilize the system for 20 minutes, where no peer 

joins and leaves the system. Then, peers start to join 

and leave the system, and the expected lifetime of each 

participating peer is 100 minutes. We investigate the 

system operating for 3,600 minutes. Given the 

probability distribution of the capacities of peers, the 

probability distribution of the loads of virtual servers is 

varied during the 3,600-minute simulation period, such 

that the ideal load balance factors in the periods of [0, 

1,200], [1,200], [2,400], and [2,400], [3,600] are 0.81, 

0.16, and 0.49, respectively. Note that in the 

experiment, each message takes 0.1 minute in our 

proposal to traverse an overlay link. 

As a result, at most 200 distinct peers are visited by a 
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random walker every 20 minutes. Each participating 

peer performs our load balancing algorithm every 20 

minutes. 

 

 
 

Fig. 14 illustrates the simulation results, where we 

measure the load balance factors for the 1-, 5-, 10-, 50-

, 90-, 95-, and 99-percentile peers. The simulation 

results indicate that our proposal performs very well as 

the participating peers strive to manage their load 

balance factors close to the ideal value even if the ideal 

load balance factor varies over time. 

 

6  CONCLUSION 

In this project we achieve a load balancing algorithm 

for the reallocation of virtual servers in DHTs. Our 

load balancing algorithm operates in a fully 

decentralized manner by having each participating 

peer estimate the probability distribution of loads of 

virtual servers selected for migration and the 

probability distribution of the remaining capacities of 

under-loaded peers. 
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