

 Page 2157

A Symmetric Load Balancing Algorithm with Performance

Guarantees for Distributed Hash Tables

Dr K S VijayaSimha, M.Tech,PhD

Department Of Computer Science & Engineering

Krishna Murthy Institute of Technology & Engineering,

Ghatkesar, Hyderabad

Yarramsetty Naga Savitri

Department Of Computer Science & Engineering

Krishna Murthy Institute of Technology & Engineering,

Ghatkesar, Hyderabad

Abstract—Peers participating in a distributed hash

table (DHT) may host numbers of virtual servers and

are enabled to balance their loads in the reallocation

of virtual servers. Most decentralized load balance

algorithms that are designed for DHTs based on

virtual servers do require the participating peers to be

asymmetric, where some serve as the rendezvous

nodes to pair virtual servers and participating peers,

thereby introducing another load imbalance problem.

The state-of-art studies introduce significant

algorithmic overheads and guarantee no rigorous

performance metrics. Here, a novel symmetric load

balancing algorithm for DHTs is presented by having

the participating peers approximate the system state

with histograms and cooperatively implement a

global index. Each peer independently does

reallocate in our proposal its locally hosted virtual

servers by publishing and inquiring the global index

based on their histograms. Unlike competitive

algorithms, our proposal exhibits analytical

performance guarantees in terms of the load balance

factor and the algorithmic convergence rate, and

introduces no load imbalance problem due to the

algorithmic workload. Through computer

simulations, we show that our proposal clearly

outperforms existing distributed algorithms in terms

of load balance factor with a comparable movement

cost.

Key Terms—Distributed hash tables, load balance,

virtual server.

1 INTRODUCTION

Dibuted hash tables (DHTs) are key building blocks in

the implementation and design of successful

distributed applications. Examples of DHTs are Chord

[1] and Pastry [2]. Applications/infrastructures built

based on DHTs include storage clouds [3], file-sharing

network [4], and distributed file systems [5], among

many others. In a typical DHT, the participating peers

(or nodes) cooperatively manage a global hash table.

Essentially, DHTs provide the GET(x) operation to

retrieve a published object whose key is x as well as

the PUT(y; v) operation to store the value v of an

object with hash key y.

As peers that are participating in a DHT are often

heterogeneous, the work in [1] introduces the notion of

virtual servers to cope with peer heterogeneity. Let N

be the set of participating peers in the DHT and V be

the set of virtual servers hosted by the peers in N.

(Typically, denotes the

cardinality of a set.) let Su be the hash subspace

managed by virtual server

Thus, peer heterogeneity can be

exploited because the participating peers can host

different numbers of virtual servers [1].

In particular, load balancing algorithms designed for

DHTs based on virtual servers need to take the

following into consideration:

 Load balance and movement cost. By load

balance, we mean that each peer manages the load

proportional to its capacity. Previous studies (e.g.,

[6]) suggest migrating virtual servers among the

participating peers in order to balance peer load.

However, this is at the expense of introducing

movement cost due to the migration of virtual

 Page 2158

servers. How to balance peer load while reducing

movement cost as much as possible thus is a

critical issue.

 System dynamics. Load balancing algorithms need

to bear the system dynamics in mind because

nodes may dynamically join and leave DHTs. In

addition, the load of a virtual server may change

from time to time, aggravating the load imbalance

problem in the DHTs.

 Algorithmic robustness and workload. Load

balancing algorithms need to be robust without

introducing the performance bottleneck and the

single point of failure. In addition, as load

balancing algorithms incur algorithmic workloads,

such workloads shall not induce another load

imbalance problem. On the other hand, a well-

designed load balancing algorithm will not

generate considerable overheads.

 Performance guarantee. Load balancing algorithms

shall work well with performance guarantee, given

any system instance. Specifically, DHT networks

may operate in dynamic and large-scale

environments, thus presenting a large number of

problem instances for performance investigation.

2 RELATED WORK

Assume an object set O and a peer set N. Conventional

DHTs assume that the loads of objects in O are

identical. In this way, the load of a peer can be

estimated as the number of objects hosted by the peer.

If we use a uniform hash function, then the size of the

key subspace that is managed by a peer is proportional

to the number of objects hosted by the peer. In contrast

to evenly partitioning the number of objects and thus

the key space to each participating peer, Chord

suggests the notion of virtual servers to balance the

loads of the peers [1] further. Different virtual servers

in a system manage disjoint key subspaces, with a

virtual server serving as an elementary entity for

balancing loads among peers.

Note that if the key subspace S is managed by a vertual

server v, then the objects, which may have “unequal”

loads and whose keys are within S, contribute their

loads to v. As a result, the load of a virtual server may

not be proportional to the size of the key space

allocated to the virtual server. Whereas the technique

based on virtual servers is orthogonal to that of

uniformly partitioning the key space, the idea of virtual

servers enables a DHT to reallocate the virtual servers

by exploiting the heterogeneities of the objects and

peers, such that the resultant load of a peer is

proportional to its capacity.

Shen and Xu organize a DHT as a two-tier network,

where the higher level of the network consists of local

clusters. A node in a local cluster is selected as a

rendezvous. Objects with excess loads are moved to

the local cluster through the reallocation performed by

the rendezvous. For objects that cannot be moved to

the local cluster, they are transferred to foreign

clusters; this is accomplished by the reallocation

performed by the corresponding rendezvous in the

remote and local clusters. Although Shen and Xu’s

solution aims to migrate objects for load balancing,

their solution can be adopted by DHTs with virtual

servers by having each virtual server serve as the

elementary entity for load migration. Here, our

proposal does not assume any specific geometry of

DHTs and is thus applicable to any DHT.

In the recent proposal by Hsiao et al., each peer i

performs its load balancing algorithm based on the

histograms it doews estimate for representing the

system state.here , in this paper, we present novel

histograms for nodes to estimate and represent the

system state, and 2) that the participating peers in our

proposal maintain a global index in a distributed

manner. These techniques enable the light peers to

query and allocate virtual servers of interest precisely,

intending to introduce no contention of reallocation of

virtual servers and thus redundant traffic. In addition,

with the histograms and the global index, our proposal

provides rigorous performance guarantees.

 Page 2159

3 OUR LOAD BALANCE ALGORITHM

3.1 Notation and Problem Definition

Let N be the set of participating peers in a DHT and V

be the set of virtual servers deployed over N. Each

peer has a maximum capacity of and

hosts a set of virtual servers

 Each

virtual server has a load denoted by Lv

(where Lv ≥ 0). Our objective in this study is to

develop a load balancing algorithm A to reallocate and

balance the loads among the participating peers, such

that any peer i manages the total load of virtual servers

proportional to That is, A computes a subset

 for each peer i, such that the following

equation is minimized:

Definition 1. The load per unit capacity, µ, which is a

peer that hosts in a load-balanced DHT, is defined as

Without loss of generality, we assume that

3.2 Overview

Here, In this paper, we have proposed load balancing

algorithm based on the Chord DHT. We assume in the

following discussion that each virtual server in Chord

has a unique ID selected uniformly at random from the

key space [0,1].

In our proposal, each peer estimates the ideal

load (i.e., Ii) it will host in a load-balanced state and

then computes its remaining capacity Ci. If i is heavy,

in order to balance i’s load, i registers a subset of its

local virtual servers with a pending pool P (see Fig. 1).

Thus, if migrating such virtual servers, i’s resultant

load will be no more than Ii. By the “registration” of a

virtual server v hosted by peer i, we mean that i hosts v

and simply provides the tuple information

In contrast, if i is a light peer, i queries P and then

allocates some virtual servers from corresponding

peers. I requests the virtual servers in P as many times

as possible without exceeding its Ii.

One key design aspect of our proposal is that for each

virtual server we estimate the cumulative

distribution function (CDF), denoted by

 for the random variable X that

represents the total load of virtual servers in P, with

each having a load value no more than Lv.

Additionally, we let

 represent the CDF

for the random variable Y that denotes the total

remaining capacity of light peers, with each having a

remaining capacity smaller than (or no more than) Ci.

 Each light peer i computes

 then requests the virtual

servers in P satisfying

Fig. 2 illustrates an example showing our idea, where

there are five virtual servers {v1,v2, v3, v4, v5} with

loads of Lv1, Lv2 , Lv3 , Lv4 , Lv5 in P, and three light

peers {i1, i2, i3} with remaining capacities of Ci1 , Ci2

, and Ci3 in the system As shown in Fig. 2, v1

manages the ratio of the load to the total load of virtual

servers in P equal to (50/100) Such ratios for v2, v3,

v4, and v5 are (20/100), (10/100), (10/100) and

(10/100) respectively

 Page 2160

 and

 Moreover, the ratio of the remaining

capacity of i1 to the aggregate remaining capacity of

the system is (50/100)

3.3 Histogram-Based Probability Distribution

Given a probability distribution PrðZÞ (where the

random variable Z represents both X and Y), we rely

on histograms as defined in the following to

approximate the distribution.

 Fig. 3 depicts the concept of using histograms

to approximate a probability distribution Pr(Z) given

 We illustrate an example in Fig. 4, where there

are 15 elements in the population for a CDF, Pr(Z).

Among the 15 elements, 10 are sampled randomly to

approximate Pr(Z). here, is 0.2, and there are five

histograms, each containing

two samples Note that each consists of three

elements in the population. Consequently, the

probability of samples appearing in each

This ideally approximates the

probability of the elements within

 in the population.

4 THEORETICAL PERFORMANCE ANALYSIS

4.1 Load Balance Factor

In our proposal, as each heavy peer selects its virtual

servers with small sizes to migrate, the resultant

movement cost is small. Thus, analyzing the load

balance factor for each peer suffices. The load balance

factor of peer I (denoted by LBFi) is defined as

follows:

 Page 2161

where A represents our load balancing algorithm.

Consequently, due to (1), we have

as

much as possible suffices for our load balancing

algorithm.

4.2 Analytical Results

Our analysis mainly relies on the Dvoretzky-Kiefer-

Wolfowitz inequality [28] as stated in the following:

Theorem 1. Let Z1;Z2; . . . ;Zk be independent and

identical distribution random variables with a CDF

F(.). Let Fk(.) denote the empirical CDF, which

approximates F(.), defined as

Fig. 5 demonstrates the effectiveness of approximating

a probability distribution based on sampling, where we

only depict the probability distribution estimated by

some peer (say, peer i) for the capacities of peers in the

system (i.e., Pr(Y)). Notably, in the experiment, 1)

Pr(Y) is a Pareto distribution, 2) i samples k =

50;100;200 peers to estimate Pr(Y), and 3) up to

10,000 peers are in the system. (Details of the

experimental setting will be discussed in Section 5.)

As we can see in Fig. 5, the approximation for a

probability distribution based on sampling is very

effective in case a modest number of samples (e.g.,

200 samples among 10,000 peers) is performed.

4.2.1 Load Balance Factor for Imprecisely

Estimated Pr(X) and Pr(Y)

We are now ready to show the load balance factor of

each participating peer through our imprecise

estimation of Pr(X) and Pr(Y). We denote the

probability distribution, our proposal estimates for the

remaining capacities of the participating peers, as

~Pr(Y)

Proof. As mentioned, through the Chernoff bound

[31], if any peer i samples peers with each

peer j having Cj > 0, then

is the value our proposal estimates for CA based on the

set S of the k samples. But we have

 Page 2162

Due to above last two equations, and

 with a probability no less than

Fig. 6 shows the simulation results. Here, we measure

the load deviation (i.e for

each participating peer i by varying the number of

samples performed by each participating peer. n and m

are 10,000 and 100,000, respectively, and the number

of samples investigated in the experiment is 100, 200,

400, 800, 1,600, 3,200, and 6,400. In Fig. 6, we also

provide the theoretical upper bound based on (21) in

Theorem 3 for each participating peer. More

specifically, each peer i has the expected load

deviation of less than

Notably, the load deviation presented in Fig. 6 is

averaged over all participating peers. As seen in Fig. 6,

the measured load deviation is clearly bounded from

above by the theoretical result

5 SIMULATIONS

5.1 Simulation Results

Fig. 7 presents the simulation results for the load

balance factor, where W/O represents the distribution

of the load balance factors of participating peers before

the load balancing algorithms are performed. As

shown in Fig. 7, the studied load balancing algorithms

improve the load balance factor. Precisely, there are

around 98, 70, 60, 70, and 90 percent of nodes with

load balance factors within (0:7, 0:9) in the centralized

directory approach (Dir), the tree-based solution

(Tree), the two-tier-based solution (2-tier), Hsiao’s

algorithm (Hsiao), and our proposal (Ours),

respectively.

Fig. 8 shows the movement costs for Dir, Tree, 2-tier,

Hsiao, and our proposal. Dir introduces a significant

movement cost, as the centralized directory maintains

the global knowledge and thus performs as many

matches as possible. Compared with Dir, our proposal

generates less movement cost. Notably, although our

proposal has movement cost comparable with that of

Tree, 2-tir, and Hsiao, it obviously outperforms Tree,

2-tir, and Hsiao in terms of the load balance factor.

Unlike Tree, 2-tir, and Hsiao, our load balancing

algorithm, which is based on the estimation of the

probability distributions of the capacities of

participating peers and the loads of virtual servers, is

very effective, such that the virtual servers with heavy

(light) loads can be effectively reallocated to capable

(incapable) peers.

 Page 2163

We present in Fig. 9 the protocol message overhead,

where the details of the protocol behaviors in Dir,

Tree, 2-tier, Hsiao, and our proposal are simulated.

Hsiao takes more message overheads because in

Hsiao, a virtual server may receive multiple

reallocation requests issued from different light peers.

In contrast, in Dir, Tree, and 2-tier, a virtual server

selected for migration receives only one reallocation

request from a light peer. The reason is that these

approaches heavily rely on rendezvous nodes to match

virtual servers and light peers.

Fig. 10 further details the number of messages sent by

each participating peer. We plot the CDF function

regarding the number of messages sent by each peer in

Fig. 10. Fig. 10 illustrates that while each peer in

Hsiao and our proposal introduces a nearly identical

number of protocol messages to manipulate its load

balancing algorithm, ours considerably outperforms

Hsiao as each peer in our proposal takes ≈50% of

messages required in Hsiao. In contrast to ours, in Dir,

Tree, and 2-tier, the participating peers perceives

imbalance algorithmic workloads in balancing their

loads. In particular, several peers (i.e., the rendezvous)

in Dir, Tree, and 2-tier generate considerable messages

for matching virtual servers and light peers,

introducing another load imbalance issue due to the

load balancing algorithms. Compared with Dir, Tree,

and 2-tier, ours performs very well in terms of loads

due to the load balancing algorithm, thus simplifying

the system provisioning and maintenance. This

validates our analytical results in Lemma 2 and

Corollary 1.

5.1.1 Convergence

In this section, we demonstrate the load balance factor

against algorithmic rounds for the 1-, 5-, 10-, 90-, 95-

and 99-percentile peers. Fig. 11 depicts the simulation

results, where the algorithmic rounds investigated for

our proposal are 1, 2, 3, and 10. Here, the 0 round

denotes the initial situation that no peer performs our

proposal and that the y-axis is in a logarithmic scale.

The experimental results clearly demonstrate that the

light and heavy peers in our proposal improve their

load balance factors through the algorithm rounds

toward the ideal value.

 Page 2164

5.1.2 Effect of Numbers of Samples

A few samples of the capacities of peers and the loads

of virtual servers are sufficient to estimate the system

state effectively, i.e., the probability distribution for

the capacities of peers (i.e., Pr(Y)) and the probability

distribution for the loads of virtual servers (i.e., Pr(X)).

Note that in our implementation, each peer issues a

random walker to sample the capacities of peers and

the loads of virtual servers simultaneously. That is,

when a random walker visits a peer, the walker not

only collects the capacity value of the visited peer but

also gathers the load values of the virtual servers the

visited peer selects to migrate.

Fig. 12 shows the simulation results for the effect of

different numbers of random walk steps in our

proposal. Apparently, 200 walk steps performed by

each peer are sufficient to estimate the system state,

such that the resultant load balance factors of the

participating peers are comparable with those based on

more walk steps (e.g., 400 and 800).

5.1.3 Effect of

To cope with the approximation error each light peer i

seeks virtual servers with load indices within

 We investigate the effect

of various values of _i on the resultant load balance

factor of i. Fig. 13 presents the simulation results. In

Fig. 13, although our proposal can effectively estimate

Pr(X) and Pr(Y), it cannot perform very well without

dealing with the approximation error

. In contrast, if ,

then a virtual server in the pending pool is likely to be

acquired by multiple light peers.

5.1.4 Effect of System Dynamics

In this section, We study the impact of system

dynamics on our proposal. In the experiment, we first

stabilize the system for 20 minutes, where no peer

joins and leaves the system. Then, peers start to join

and leave the system, and the expected lifetime of each

participating peer is 100 minutes. We investigate the

system operating for 3,600 minutes. Given the

probability distribution of the capacities of peers, the

probability distribution of the loads of virtual servers is

varied during the 3,600-minute simulation period, such

that the ideal load balance factors in the periods of [0,

1,200], [1,200], [2,400], and [2,400], [3,600] are 0.81,

0.16, and 0.49, respectively. Note that in the

experiment, each message takes 0.1 minute in our

proposal to traverse an overlay link.

As a result, at most 200 distinct peers are visited by a

 Page 2165

random walker every 20 minutes. Each participating

peer performs our load balancing algorithm every 20

minutes.

Fig. 14 illustrates the simulation results, where we

measure the load balance factors for the 1-, 5-, 10-, 50-

, 90-, 95-, and 99-percentile peers. The simulation

results indicate that our proposal performs very well as

the participating peers strive to manage their load

balance factors close to the ideal value even if the ideal

load balance factor varies over time.

6 CONCLUSION

In this project we achieve a load balancing algorithm

for the reallocation of virtual servers in DHTs. Our

load balancing algorithm operates in a fully

decentralized manner by having each participating

peer estimate the probability distribution of loads of

virtual servers selected for migration and the

probability distribution of the remaining capacities of

under-loaded peers.

REFERENCES

[1] I. Stoica, R. Morris, D. Liben-Nowell, D.R. Karger,

M.F. Kaashoek, F. Dabek, and H. Balakrishnan,

“Chord: A Scalable Peer-to-PeerLookup Protocol

for Internet Applications,” IEEE/ACM

Trans.Networking, vol. 11, no. 1, pp. 17-21, Feb.

2003.

[2] A. Rowstron and P. Druschel, “Pastry: Scalable,

Distributed ObjectLocation and Routing for Large-

Scale Peer-to-Peer Systems,” Proc.IFIP/ACM Int’l

Conf. Distributed Systems Platforms, pp. 161-

172,Nov. 2001.

[3] G. DeCandia, D. Hastorun, M. Jampani, G.

Kakulapati, A.Lakshman, A. Pilchin, S.

Sivasubramanian, P. Vosshall, and W.Vogels,

“Dynamo: Amazon’s Highly Available Key-Value

Store,”Proc. 21st ACM Symp. Operating Systems

Principles (SOSP ’07),pp. 205-220, Oct. 2007.

[4] BitTorrent, http://www.bittorrent.org/index.html,

2012.

[5] J. Stribling, E. Sit, M.F. Kaashoek, J. Li, and R.

Morris, “Don’t GiveUp on Distributed File

Systems,” Proc. Sixth Int’l Workshop Peer-to-Peer

Systems (IPTPS ’07), Feb. 2007.

[6] A. Rao, K. Lakshminarayanan, S. Surana, R. Karp,

and I. Stoica,“Load Balancing in Structured P2P

Systems,” Proc. Second Int’lWorkshop Peer-to-

Peer Systems (IPTPS ’02), pp. 68-79, Feb. 2003.

[7] S. Surana, B. Godfrey, K. Lakshminarayanan, R.

Karp, and I.Stoica, “Load Balancing in Dynamic

Structured P2P Systems,”Performance Evaluation,

vol. 63, no. 6, pp. 217-240, Mar. 2006.

[8] C. Chen and K.-C. Tsai, “The Server Reassignment

Problem forLoad Balancing in Structured P2P

Systems,” IEEE Trans. ParallelDistributed Systems,

vol. 12, no. 2, pp. 234-246, Feb. 2008.

