A New Type of Automatic Alarming Device to Rescue Accident Injured in Time

Kandakatla Sandeep Kumar
Pathfinder Engineering College
Rangashaipet, Warangal, Telangana

Srujana.M
Pathfinder Engineering College
Rangashaipet, Warangal, Telangana

Abstract—The motorcycle accident is a major public problem in many countries. Despite awareness campaign, this problem is still increasing due to rider's poor behaviors such as speed driving, drunk driving, riding with no helmet protection, riding without sufficient sleep, etc. The numbers of death and disability are very high because of late assistance to people who got the accident. These cause huge social and economic burdens to people involved. Therefore, several research group and major motorcycle manufacturers including have developed safety devices to protect riders from accidental injuries. However, good safety device for motorcycle is difficult to implement and very expensive.

Introduction
Embedded systems are electronic devices that incorporate microprocessors with in Their implementations. The main purposes of the microprocessors are to simplify the system design and provide flexibility. Having a microprocessor in the device means that removing the bugs, making modifications, or adding new features are only matters of rewriting the software that controls the device. Or in other words embedded computer systems are electronic systems that include a microcomputer to perform a specific dedicated application. The computer is hidden inside these products. Embedded systems are ubiquitous. Every week millions of tiny computer chips come pouring out of factories finding their way into our everyday products. Embedded systems are self-contained programs that are embedded within a piece of hardware. Whereas a regular computer has many different applications and software that can be applied to various tasks, embedded systems are usually set to a specific task that cannot be altered without physically manipulating the circuitry. Another way to think of an embedded system is as a computer system that is created with optimal efficiency, thereby allowing it to complete specific functions as quickly as possible.

EASE OF USE
The LPC2141/42/44/46/48 microcontrollers are based on a 16-bit/32-bit ARM7TDMI-S CPU with real-time emulation and embedded trace support, that combine microcontroller with embedded high speed flash memory ranging from 32 kB to 512 kB. A 128-bit wide memory interface and a unique accelerator architecture enable 32-bit code execution at the maximum clock rate. For critical code size applications, the alternative 16-bit Thumb mode reduces code by more than 30% with minimal performance penalty. Due to their tiny size and low power consumption, LPC2141/42/44/46/48 are ideal for applications where miniaturization is a key requirement, such as access control and point-of-sale.

Serial communications interfaces ranging from a USB 2.0 Full-speed device, multiple UARTs, SPI, SSP to I2C-bus and on-chip SRAM of 8kB up to 40kB, make these devices very well suited for communication gateways and protocol converters, soft modems, voice recognition and low end imaging, providing both large buffer size and high processing power. Various 32-bit timers, single or dual 10-bit ADC(s), 10-bit DAC, PWM channels and 45 fast GPIO lines with up to nine edge or level sensitive external interrupt pins make these microcontrollers suitable for industrial control and medical systems.

The application program may also erase and/or program the flash while the application is running,
allowing a great degree of flexibility for data storage field firmware upgrades, etc.

Features:

- 16-bit/32-bit ARM7TDMI-S microcontroller in a tiny LQFP64 package.
- 8kB to 40kB of on-chip static RAM and 32kB to 512kB of on-chip flash memory. 128-bit wide interface/accelerator enables high-speed 60 MHz operation.
- In-System Programming/In-Application Programming (ISP/IAP) via on-chip boot loader software. Single flash sector or full chip erase in 400ms and programming of 256 bytes in 1ms.
- EmbeddedICE RT and Embedded Trace interfaces offer real-time debugging with the on-chip RealMonitor software and high-speed tracing of instruction execution.
- USB 2.0 Full-speed compliant device controller with 2kB of endpoint RAM. In addition, the LPC2146/48 provides 8kB of on-chip RAM accessible to USB by DMA.
- One or two (LPC2141/42 vs. LPC2144/46/48) 10-bit ADCs provide a total of 6/14 analog inputs, with conversion times as low as 2.44μs per channel.
- Single 10-bit DAC provides variable analog output (LPC2142/44/46/48 only).
- Two 32-bit timers/external event counters (with four capture and four compare channels each), PWM unit (six outputs) and watchdog.
- Low power Real-Time Clock (RTC) with independent power and 32 kHz clock input.

The ARM7TDMI-S is a general purpose 32-bit microprocessor, which offers high performance and very low power consumption. The ARM architecture is based on Reduced Instruction Set Computer (RISC) principles, and the instruction set and related decode mechanism are much simpler than those of microprogrammed Complex Instruction Set Computers (CISC). This simplicity results in a high instruction throughput and impressive real-time interrupt response from a small and cost-effective processor core. Pipeline techniques are employed so that all parts of the processing and memory systems can operate continuously. Typically, while one instruction is being executed, its successor is being decoded, and a third instruction is being fetched from memory.

The ARM7TDMI-S processor also employs a unique architectural strategy known as Thumb, which makes it ideally suited to high-volume applications with memory restrictions, or applications where code density is an issue. The key idea behind Thumb is that of a super-reduced instruction set. Essentially, the ARM7TDMI-S processor has two instruction sets:

- The standard 32-bit ARM set.
- A 16-bit Thumb set.

The Thumb set’s 16-bit instruction length allows it to approach twice the density of standard ARM code while retaining most of the ARM’s performance advantage over a traditional 16-bit processor using 16-bit registers. This is possible because Thumb code operates on the same 32-bit register set as ARM code. Thumb code is able to provide up to 65 % of the code size of ARM, and 160 % of the performance of an equivalent ARM processor connected to a 16-bit memory system. The particular flash implementation in the LPC2141/42/44/46/48 allows for full speed execution also in ARM mode. It is recommended to program performance critical and short code sections (such as interrupt service routines and DSP algorithms) in ARM mode. The impact on the overall code size will be minimal but the speed can be increased by 30% over Thumb mode.

a) the copy of affiliation 1. Repeat as necessary for each additional affiliation.

b) Reassign number of columns: Place your cursor to the right of the last character of the last affiliation line of an even numbered affiliation (e.g., if there are five affiliations, place your cursor at end of fourth affiliation). Drag the cursor up to highlight all of the above author and affiliation lines. Go to Column icon and select “2 Columns”. If you have an odd number of affiliations, the final affiliation will be centered on the page; all previous will be in two columns.
Identify the Headings:

Headings, or heads, are organizational devices that guide the reader through your paper. There are two types: component heads and text heads. Component heads identify the different components of your paper and are not topically subordinate to each other. Examples include ACKNOWLEDGMENTS and REFERENCES, and for these, the correct style to use is “Heading 5.” Use “figure caption” for your Figure captions, and “table head” for your table title. Run-in heads, such as “Abstract,” will require you to apply a style (in this case, italic) in addition to the style provided by the drop down menu to differentiate the head from the text.

Text heads organize the topics on a relational, hierarchical basis. For example, the paper title is the primary text head because all subsequent material relates and elaborates on this one topic. If there are two or more sub-topics, the next level head (uppercase Roman numerals) should be used and, conversely, if there are not at least two sub-topics, then no subheads should be introduced. Styles named “Heading 1,” “Heading 2,” “Heading 3,” and “Heading 4” are prescribed.

UARTs:

LPC2141/42/44/46/48 each contains two UARTs. In addition to standard transmit and receive data lines, the LPC2144/46/48 UART1 also provide a full modem control handshake interface. Compared to previous LPC2000 microcontrollers, UARTs in LPC2141/42/44/46/48 introduce a fractional baud rate generator for both UARTs, enabling these microcontrollers to achieve standard baudrates such as 115200 with any crystal frequency above 2MHz. In addition, auto-CTS/RTS flow-control functions are fully implemented in hardware (UART1 in LPC2144/46/48 only).

Features:

- 16 byte receive and transmit FIFOs.
- Register locations conform to ‘550 industry standard.
- Receiver FIFO trigger points at 1, 4, 8, and 14 bytes

POWER SUPPLY

In this project we have power supplies with +5V & -5V option normally +5V is enough for total circuit. Another (-5V) supply is used in case of OP amp circuit. Transformer primary side has 230/50HZ AC voltage whereas at the secondary winding the voltage is step downed to 12/50hz and this voltage is rectified using two full wave rectifiers. The rectified output is given to a filter circuit to filter the unwanted ac in the signal. After that the output is again applied to a regulator LM7805(to provide +5v) regulator.

Vibrating Sensor:

Vibration sensors are utilized in a number of applications to measure acceleration and/or vibration activity. Vibration sensors can be utilized to determine whether the is operating properly. Vibration sensors can be useful for monitoring the condition of rotating machinery, where overheating or excessive vibration could indicate excessive loading, inadequate lubrication, or bearing wear. Such sensors are also utilized in geophysical and applications requiring accelerometers. For example, vibration sensors are commonly placed in windows of buildings to sense glass breakage and in car alarm to detect vehicle tampering. Commercial vibration sensors use a piezoelectric ceramic strain transducer attached to a metallic proof mass in order to respond to an externally imposed acceleration. Piezoelectric vibration sensors used for detecting vibration from various vibration sources are generally classified into two large types, resonant type and non resonant type.

MOTORS

Motor is a device that creates motion, not an engine; it usually refers to either an electrical motor or an internal combustion engine. It may also refer to:

- Electric motor, a machine that converts electricity into a mechanical motion.
AC motor, an electric motor that is driven by alternating current

Synchronous motor, an alternating current motor distinguished by a rotor spinning with coils passing magnets at the same rate as the alternating current and resulting magnetic field which drives it

Induction motor, also called a squirrel-cage motor, a type of asynchronous alternating current motor where power is supplied to the rotating device by means of electromagnetic induction.

WORKING OF DC MOTOR

In any electric motor, operation is based on simple electromagnetism. A current-carrying conductor generates a magnetic field; when this is then placed in an external magnetic field, it will experience a force proportional to the current in the conductor, and to the strength of the external magnetic field. As you are well aware of from playing with magnets as a kid, opposite (North and South) polarities attract, while like polarities (North and North, South and South) repel. The internal configuration of a DC motor is designed to harness the magnetic interaction between a current-carrying conductor and an external magnetic field to generate rotational motion.

Principle

When a rectangular coil carrying current is placed in a magnetic field, a torque acts on the coil which rotates it continuously. When the coil rotates, the shaft attached to it also rotates and thus it is able to do mechanical work.

RELAY

A relay is used to isolate one electrical circuit from another. It allows a low current control circuit to make or break an electrically isolated high current circuit path. The basic relay consists of a coil and a set of contacts. The most common relay coil is a length of magnet wire wrapped around a metal core. When voltage is applied to the coil, current passes through the wire and creates a magnetic field. This magnetic field pulls the contacts together and holds them there until the current flow in the coil has stopped. The diagram below shows the parts of a simple relay.

LIQUID CRYSTAL DISPLAY

LCD stands for Liquid Crystal Display. LCD is finding widespread use replacing LEDs (seven segment LEDs or other multi segment LEDs) because of the following reasons:

1. The declining prices of LCDs.
2. The ability to display numbers, characters and graphics. This is in contrast to LEDs, which are limited to numbers and a few characters.
3. Incorporation of a refreshing controller into the LCD, thereby relieving the CPU of the task of refreshing the LCD. In contrast, the LED must be refreshed by the CPU to keep displaying the data.
4. Ease of programming for characters and graphics.
5. These components are “specialized” for being used with the microcontrollers, which means that they cannot be activated by standard IC circuits. They are used for writing different messages on a miniature LCD.

A model described here is for its low price and great possibilities most frequently used in practice. It is based on the HD44780 microcontroller (Hitachi) and can display messages in two lines with 16 characters each. It displays all the alphabets, Greek letters, punctuation marks, mathematical symbols etc. In addition, it is possible to display symbols that user makes up on its own. Automatic shifting message on display (shift left and right), appearance of the pointer, backlight etc. are considered as useful characteristics.
GSM
Definition of GSM:
GSM (Global System for Mobile communications) is an open, digital cellular technology used for transmitting mobile voice and data services. GSM (Global System for Mobile communication) is a digital mobile telephone system that is widely used in Europe and other parts of the world.

GSM Frequencies
GSM networks operate in a number of different frequency ranges (separated into GSM frequency ranges for 2G and UMTS frequency bands for 3G). Most 2G GSM networks operate in the 900 MHz or 1800 MHz bands. Some countries in the Americas (including Canada and the United States) use the 850 MHz and 1900 MHz bands because the 900 and 1800 MHz frequency bands were already allocated. Most 3G GSM networks in Europe operate in the 2100 MHz frequency band. The rarer 400 and 450 MHz frequency bands are assigned in some countries where these frequencies were previously used for first-generation systems.

GSM Standards:
GSM uses narrowband TDMA, which allows eight simultaneous calls on the same radio frequency. There are three basic principles in multiple access, FDMA (Frequency Division Multiple Access), TDMA (Time Division Multiple Access), and CDMA (Code Division Multiple Access). All three principles allow multiple users to share the same physical channel. But the two competing technologies differ in the way user sharing the common resource.

Basic concept of GPS
A GPS receiver calculates its position by precisely timing the signals sent by GPS satellites high above the Earth. Each satellite continually transmits messages that include

- the time the message was transmitted
- precise orbital information (the ephemeris)
- the general system health and rough orbits of all GPS satellites (the almanac).

The receiver uses the messages it receives to determine the transit time of each message and computes the distance to each satellite. These distances along with the satellites' locations are used with the possible aid of trilateration depending on which algorithm is used, to compute the position of the receiver. This position is then displayed, perhaps with a moving map display or latitude and longitude; elevation information may be included. Many GPS units show derived information such as direction and speed, calculated from position changes.

Three satellites might seem enough to solve for position since space has three dimensions and a position near the Earth's surface can be assumed. However, even a very small clock error multiplied by the very large speed of light — the speed at which satellite signals propagate — results in a large positional error. Therefore receivers use four or more satellites to solve for the receiver's location and time. The very accurately computed time is effectively hidden by most GPS applications, which use only the location. A few specialized GPS applications do however use the time; these include time transfer traffic signal timing, and synchronization of cell phone base stations. Although four satellites are required for normal operation, fewer apply in special cases. If one variable is already known, a receiver can determine its position using only three satellites. For example, a ship or aircraft may have known elevation. Some GPS receivers may use additional clues or assumptions (such as reusing the last known altitude, dead reckoning, inertial navigation or including information from the vehicle computer) to give a less accurate (degraded) position when fewer than four satellites are visible.

Position calculation introduction

Two sphere surfaces intersecting in a circle
Surface of sphere intersecting a circle (not a solid disk) at two points

To provide an introductory description of how a GPS receiver works, error effects are deferred to a later section. Using messages received from a minimum of four visible satellites, a GPS receiver is able to determine the times sent and then the satellite positions corresponding to these times sent. The x, y, and z components of position, and the time sent, are designated as \([x_i, y_i, z_i, t_i]\) where the subscript \(i\) is the satellite number and has the value 1, 2, 3, or 4. Knowing the indicated time the message was received \(\hat{t_r}\), the GPS receiver could compute the transit time of the message as \(\hat{t_r} - t_i\), if \(\hat{t_r}\) would be equal to correct reception time, \(t_r\). A pseudo range, \(p_i = (\hat{t_r} - t_i)c\), would be the traveling distance of the message, assuming it traveled at the speed of light, \(c\).

A satellite’s position and pseudo range define a sphere, centered on the satellite, with radius equal to the pseudo range. The position of the receiver is somewhere on the surface of this sphere. Thus with four satellites, the indicated position of the GPS receiver is at or near the intersection of the surfaces of four spheres. In the ideal case of no errors, the GPS receiver would be at a precise intersection of the four surfaces.

MEMS

Micro electro mechanical systems (MEMS) are small integrated devices or systems that combine electrical and mechanical components. They range in size from the sub micrometer (or sub micron) level to the millimeter level, and there can be any number, from a few to millions, in a particular system. MEMS extend the fabrication techniques developed for the integrated circuit industry to add mechanical elements such as beams, gears, diaphragms, and springs to devices.

Examples of MEMS device applications include inkjet-printer cartridges, accelerometers, miniature robots, micro engines, locks, inertial sensors, micro transmissions, micro mirrors, micro actuators, optical scanners, fluid pumps, transducers, and chemical, pressure and flow sensors. New applications are emerging as the existing technology is applied to the miniaturization and integration of conventional devices.

These systems can sense, control, and activate mechanical processes on the micro scale, and function individually or in arrays to generate effects on the macro scale. The micro fabrication technology enables fabrication of large arrays of devices, which individually perform simple tasks, but in combination can accomplish complicated functions.

What is MEMS Technology?

Micro-Electro-Mechanical Systems, or MEMS, is a technology that in its most general form can be defined as miniaturized mechanical and electro-mechanical elements (i.e., devices and structures) that are made using the techniques of micro fabrication. The critical physical dimensions of MEMS devices can vary from well below one micron on the lower end of the dimensional spectrum, all the way to several millimeters. Likewise, the types of MEMS devices can vary from relatively simple structures having no moving elements, to extremely complex electromechanical systems with multiple moving elements under the control of integrated microelectronics.

Software Description:

Software used:

Keil software for c programming

About Keil Software:

It is possible to create the source files in a text editor such as Notepad, run the Compiler on each C source
file, specifying a list of controls, run the Assembler on each Assembler source file, specifying another list of controls, run either the Library Manager or Linker (again specifying a list of controls) and finally running the Object-HEX Converter to convert the Linker output file to an Intel Hex File. Once that has been completed the Hex File can be downloaded to the target hardware and debugged. Alternatively KEIL can be used to create source files; automatically compile, link and covert using options set with an easy to use user interface and finally simulate or perform debugging on the hardware with access to C variables and memory. Unless you have to use the tolls on the command line, the choice is clear. KEIL Greatly simplifies the process of creating and testing an embedded application.

Projects:
The user of KEIL centers on “projects”. A project is a list of all the source files required to build a single application, all the tool options which specify exactly how to build the application, and – if required – how the application should be simulated. A project contains enough information to take a set of source files and generate exactly the binary code required for the application. Because of the high degree of flexibility required from the tools, there are many options that can be set to configure the tools to operate in a specific manner. It would be tedious to have to set these options up every time the application is being built; therefore they are stored in a project file. Loading the project file into KEIL informs KEIL which source files are required, where they are, and how to configure the tools in the correct way.

What's New in µVision3?
µVision3 adds many new features to the Editor like Text Templates, Quick Function Navigation, and Syntax Coloring with brace high lighting Configuration Wizard for dialog based startup and debugger setup. µVision3 is fully compatible to µVision2 and can be used in parallel with µVision2.

What is µVision3?
µVision3 is an IDE (Integrated Development Environment) that helps you write, compile, and debug embedded programs. It encapsulates the following components:
- A project manager.
- A make facility.
- Tool configuration.
- Editor.
- A powerful debugger.

CONCLUSION:
The project “A New Type of Automatic Alarming Device to Rescue Accident Injured in Time” has been successfully designed and tested. Integrating features of all the hardware components used have developed it. Presence of every module has been reasoned out and placed carefully thus contributing to the best working of the unit. Secondly, using highly advanced IC’s and with the help of growing technology the project has been successfully implemented.

Reference: