
 ISSN No: 2348-4845

 Volume No: 2 (2015), Issue No: 7 (July) July 2015
 www.ijmetmr.com Page 1321

International Journal & Magazine of Engineering,
Technology, Management and Research

A Peer Reviewed Open Access International Journal

For instance, in a geography information system, range
search can be deployed to find all restaurants in a cer-
tain area, while nearest neighbor retrieval can discover
the restaurant closest to a given address. Today, the
widespread use of search engines has made it realistic
to write spatial queries in a brand new way. Conven-
tionally, queries focus on objects’ geometric proper-
ties only, such as whether a point is in a rectangle, or
how close two points are from each other. We have
seen some modern applications that call for the abil-
ity to select objects based on both of their geometric
coordinates and their associated texts. For example, it
would be fairly useful if a search engine can be used
to find the nearest restaurant that offers “steak, spa-
ghetti, and brandy” all at the same time. Note that this
is not the “globally” nearest restaurant (which would
have been returned by a traditional nearest neighbor
query), but the nearest restaurant among only those
providing all the demanded foods and drinks. In this
paper, we design a variant of inverted index that is op-
timized for multidimensional points, and is thus named
the spatial inverted index (SI-index).

This access method successfully incorporates point
coordinates into a conventional inverted index with
small extra space, owing to a delicate compact storage
scheme. Meanwhile, an SI-index preserves the spatial
locality of data points, and comes with an R-tree built on
every inverted list at little space overhead. As a result,
it offers two competing ways for query processing. We
can (sequentially) merge multiple lists very much like
merging traditional inverted lists by ids. Alternatively,
we can also leverage the Rtrees to browse the points
of all relevant lists in ascending order of their distances
to the query point. As demonstrated by experiments,
the SI-index significantly outperforms the IR 2 -tree in
query efficiency, often by a factor of orders of magni-
tude.

II. EXISTING SYSTEM:
Spatial queries with keywords have not been exten-
sively explored.

Abstract:

Conventional abstraction queries, like vary search and
nearest neighbor retrieval, involve solely conditions on
objects’ geometric properties. Today, several trendy
applications involve novel kinds of queries that aim to
seek out objects satisfying each a abstraction predi-
cate, and a predicate on their associated texts. as an
example, rather than considering all the restaurants, a
nearest neighbor question would instead elicit the eat-
ing house that’s the highest among those whose menus
contain “steak, spaghetti, brandy” all at an equivalent
time. Presently the most effective resolution to such
queries is predicated on the IR2-tree, which, as shown
during this paper, features a few deficiencies that seri-
ously impact its potency. Impelled by this, we tend to
develop a replacement access methodology known as
the abstraction inverted index that extends the stan-
dard inverted index to address flat knowledge, and
comes with algorithms that may answer nearest neigh-
bor queries with keywords in real time. As verified by
experiments, the projected techniques outgo the IR2-
tree in question latent period considerably, typically by
an element of orders of magnitude.

Keywords:

R-tree, UML, diagrams, brandy, index, R-tree.

I. INTRODUCTION:

A spatial database manages multidimensional objects
(such as points, rectangles, etc.), and provides fast ac-
cess to those objects based on different selection cri-
teria. The importance of spatial databases is reflected
by the convenience of modeling entities of reality in
a geometric manner. For example, locations of res-
taurants, hotels, hospitals and so on are often repre-
sented as points in a map, while larger extents such as
parks, lakes, and landscapes often as a combination of
rectangles. Many functionalities of a spatial database
are useful in various ways in specific contexts.

Karunakar Reddy
M.Tech Student,

Dept of CSE,
Vasthalya Institute of Science and Technology.

Ajay kumar
Assistant professor,

Dept of CSE,
Vasthalya Institute of Science and Technology.

A Method for the Nearest Position Retrieving System

 ISSN No: 2348-4845

 Volume No: 2 (2015), Issue No: 7 (July) July 2015
 www.ijmetmr.com Page 1322

International Journal & Magazine of Engineering,
Technology, Management and Research

A Peer Reviewed Open Access International Journal

Furthermore, because the SI-index relies on the tradi-
tional technology of inverted index, it’s without delay
incorporable in an exceedingly business computer pro-
gramme that applies large similarity, implying its imme-
diate industrial deserves.

IV. DESIGN ANALYSIS:

UML Diagrams: UML is a method for describing the sys-
tem architecture in detail using the blueprint. UML rep-
resents a collection of best engineering practices that
have proven successful in the modeling of large and
complex systems. UML is a very important part of de-
veloping objects oriented software and the software
development process. UML uses mostly graphical no-
tations to express the design of software projects.

Using the UML helps project teams communicate, ex-
plore potential designs, and validate the architectural
design of the software. Definition: UML is a general-
purpose visual modeling language that is used to spec-
ify, visualize, construct, and document the artifacts of
the software system. UML is a language: It will provide
vocabulary and rules for communications and func-
tion on conceptual and physical representation. So it is
modeling language.

UML Specifying:

Specifying means building models that are precise,
unambiguous and complete. In particular, the UML ad-
dress the specification of all the important analysis, de-
sign and implementation decisions that must be made
in developing and displaying a software intensive sys-
tem.

UML Visualization:

The UML includes both graphical and textual represen-
tation. It makes easy to visualize the system and for
better understanding. UML Constructing: UML models
can be directly connected to a variety of programming
languages and it is sufficiently expressive and free from
any ambiguity to permit the direct execution of mod-
els. UML Documenting: UML provides variety of docu-
ments in addition raw executable codes.

In the past years, the community has sparked enthu-
siasm in studying keyword search in relational data-
bases. It is until recently that attention was diverted
to multidimensional data. Existing works mainly focus
on finding top-k Nearest Neighbors, where each node
has to match the whole querying keywords .It does
not consider the density of data objects in the spatial
space. Also these methods are low efficient for incre-
mental query. We have finished explaining how to
build the leaf nodes of an R-tree on an inverted list. As
each leaf is a block, all the leaves can be stored in a
blocked SI-index as described in Section 6.1. Building
the non leaf levels is trivial, because they are invisible
to the merging-based query algorithms, and hence, do
not need to preserve any common ordering. We are
free to apply any of the existing R-tree construction
algorithms. It is noteworthy that the non leaf levels
add only a small amount to the overall space overhead
because, in an R-tree, the number of non leaf nodes is
by far lower than that of leaf nodes We have finished
explaining how to build the leaf nodes of an R-tree on
an inverted list. As each leaf is a block, all the leaves
can be stored in a blocked SI-index as described in Sec-
tion Building the non leaf levels is trivial, because they
are invisible to the merging-based query algorithms,
and hence, do not need to preserve any common or-
dering. We are free to apply any of the existing R-tree
construction algorithms. It is note worthy that the non
leaf levels add only a small amount to the overall space
overhead because, in an R-tree, the number of non leaf
nodes is by far lower than that of leaf nodes.

III. PROPOSED SYSTEM:

A spatial info manages dimensional objects (such as
points, rectangles, etc.), and provides quick access to
those objects supported totally different choice crite-
ria. The importance of spatial databases is mirrored by
the convenience of modeling entities of reality in an
exceedingly geometric manner. for instance, locations
of restaurants, hotels, hospitals so on square measure
typically described as points in an exceedingly map,
whereas larger extents like parks, lakes, and landscapes
typically as a mix of rectangles. several functionalities
of a spatial info square measure helpful in varied ways
in which in specific contexts. as an example, in an ex-
ceedingly geographics system, vary search will be de-
ployed to search out all restaurants in an exceedingly
sure space, whereas nearest neighbor retrieval will dis-
cover the eating place nearest to a given address.

 ISSN No: 2348-4845 ISSN No: 2348-4845

 Volume No: 2 (2015), Issue No: 7 (July) July 2015
 www.ijmetmr.com Page 1323

International Journal & Magazine of Engineering,
Technology, Management and Research

A Peer Reviewed Open Access International Journal

4.1. Structural Diagrams:

The UML‘s four structural diagrams exist to visualize,
specify, construct and document the static aspects of
a system. Can View the static parts of a system using
one of the following diagrams. Structural diagrams
consist of Class Diagram, Object Diagram, Component
Diagram, and Deployment Diagram.

4.2. Behavioral Diagrams:

The UML’s five behavioral diagrams are used to visual-
ize, specify, construct, and document the dynamic as-
pects of a system. The UML’s behavioral diagrams are
roughly organized around the major ways which can
model the dynamics of a system. Behavioral diagrams
consists of Use case Diagram, Sequence Diagram, Col-
laboration Diagram, State chart Diagram, Activity Dia-
gram

4.3. Use-Case diagram:

A use case is a set of scenarios that describing an in-
teraction between a user and a system. A use case dia-
gram displays the relationship among actors and use
cases. The two main components of a use case diagram
are use cases and actors.

Figure.3. Use Case Diagram

An actor is represents a user or another system that
will interact with the system you are modeling. A use
case is an external view of the system that represents
some action the user might perform in order to com-
plete a task.

Contents:

1. Use cases
2. Actors
3. Dependency, Generalization, and association rela-
tionships
4. System boundary

Figure.2. UML Diagram Types

Uses of UML:

The UML is intended primarily for software intensive
systems. It has been used effectively for such domain
as Enterprise Information System, Banking and Finan-
cial Services, Telecommunications, Transportation, De-
fense/Aerospace, Retails, Medical Electronics, Scien-
tific Fields, Distributed Web.

Building blocks of UML:

The vocabulary of the UML encompasses 3 kinds of
building blocks

1.Things
2.Relationships
3.Diagrams

Things:
Things are the data abstractions that are first class citi-
zens in a model. Things are of 4 types Structural Things,
Behavioral Things, Grouping Things, An notational
Things

Relationships:
Relationships tie the things together. Relationships in
the UML are Dependency, Association, Generalization
and Specialization

UML Diagrams:
A diagram is the graphical presentation of a set of ele-
ments, most often rendered as a connected graph of
vertices (things) and arcs (relationships).
There are two types of diagrams, they are:
Structural and Behavioral Diagrams

 Volume No: 2 (2015), Issue No: 7 (July) July 2015
 www.ijmetmr.com Page 1324

International Journal & Magazine of Engineering,
Technology, Management and Research

A Peer Reviewed Open Access International Journal

Figure.5. Class Diagram

4.5. Sequence diagram:

The processes are represented vertically and interac-
tions are show as arrows. This article explains the pur-
pose and the basics of Sequence diagrams.

Figure.6. Basic Sequence Diagram.

Figure.7. User Sequence Diagram

Figure.4.UML Class Diagram with Relationships

4.4. Class Diagram:

Class diagrams are widely used to describe the types
of objects in a system and their relationships. Class dia-
grams model class structure and contents using design
elements such as classes, packages and objects.

Class diagrams describe three different perspectives
when designing a system, conceptual, specification,
and implementation. These perspectives become evi-
dent as the diagram is created and help solidify the de-
sign. Class diagrams are arguably the most used UML
diagram type.

It is the main building block of any object oriented so-
lution. It shows the classes in a system, attributes and
operations of each class and the relationship between
each class. In most modeling tools a class has three
parts, name at the top, attributes in the middle and op-
erations or methods at the bottom.

In large systems with many classes related classes are
grouped together to to create class diagrams. Different
relationships between diagrams are show by different
types of Arrows. Below is a image of a class diagram.
Follow the scenario

 ISSN No: 2348-4845 ISSN No: 2348-4845

 Volume No: 2 (2015), Issue No: 7 (July) July 2015
 www.ijmetmr.com Page 1323

International Journal & Magazine of Engineering,
Technology, Management and Research

A Peer Reviewed Open Access International Journal

4.1. Structural Diagrams:

The UML‘s four structural diagrams exist to visualize,
specify, construct and document the static aspects of
a system. Can View the static parts of a system using
one of the following diagrams. Structural diagrams
consist of Class Diagram, Object Diagram, Component
Diagram, and Deployment Diagram.

4.2. Behavioral Diagrams:

The UML’s five behavioral diagrams are used to visual-
ize, specify, construct, and document the dynamic as-
pects of a system. The UML’s behavioral diagrams are
roughly organized around the major ways which can
model the dynamics of a system. Behavioral diagrams
consists of Use case Diagram, Sequence Diagram, Col-
laboration Diagram, State chart Diagram, Activity Dia-
gram

4.3. Use-Case diagram:

A use case is a set of scenarios that describing an in-
teraction between a user and a system. A use case dia-
gram displays the relationship among actors and use
cases. The two main components of a use case diagram
are use cases and actors.

Figure.3. Use Case Diagram

An actor is represents a user or another system that
will interact with the system you are modeling. A use
case is an external view of the system that represents
some action the user might perform in order to com-
plete a task.

Contents:

1. Use cases
2. Actors
3. Dependency, Generalization, and association rela-
tionships
4. System boundary

Figure.2. UML Diagram Types

Uses of UML:

The UML is intended primarily for software intensive
systems. It has been used effectively for such domain
as Enterprise Information System, Banking and Finan-
cial Services, Telecommunications, Transportation, De-
fense/Aerospace, Retails, Medical Electronics, Scien-
tific Fields, Distributed Web.

Building blocks of UML:

The vocabulary of the UML encompasses 3 kinds of
building blocks

1.Things
2.Relationships
3.Diagrams

Things:
Things are the data abstractions that are first class citi-
zens in a model. Things are of 4 types Structural Things,
Behavioral Things, Grouping Things, An notational
Things

Relationships:
Relationships tie the things together. Relationships in
the UML are Dependency, Association, Generalization
and Specialization

UML Diagrams:
A diagram is the graphical presentation of a set of ele-
ments, most often rendered as a connected graph of
vertices (things) and arcs (relationships).
There are two types of diagrams, they are:
Structural and Behavioral Diagrams

 Volume No: 2 (2015), Issue No: 7 (July) July 2015
 www.ijmetmr.com Page 1324

International Journal & Magazine of Engineering,
Technology, Management and Research

A Peer Reviewed Open Access International Journal

Figure.5. Class Diagram

4.5. Sequence diagram:

The processes are represented vertically and interac-
tions are show as arrows. This article explains the pur-
pose and the basics of Sequence diagrams.

Figure.6. Basic Sequence Diagram.

Figure.7. User Sequence Diagram

Figure.4.UML Class Diagram with Relationships

4.4. Class Diagram:

Class diagrams are widely used to describe the types
of objects in a system and their relationships. Class dia-
grams model class structure and contents using design
elements such as classes, packages and objects.

Class diagrams describe three different perspectives
when designing a system, conceptual, specification,
and implementation. These perspectives become evi-
dent as the diagram is created and help solidify the de-
sign. Class diagrams are arguably the most used UML
diagram type.

It is the main building block of any object oriented so-
lution. It shows the classes in a system, attributes and
operations of each class and the relationship between
each class. In most modeling tools a class has three
parts, name at the top, attributes in the middle and op-
erations or methods at the bottom.

In large systems with many classes related classes are
grouped together to to create class diagrams. Different
relationships between diagrams are show by different
types of Arrows. Below is a image of a class diagram.
Follow the scenario

 ISSN No: 2348-4845 ISSN No: 2348-4845

 Volume No: 2 (2015), Issue No: 7 (July) July 2015
 www.ijmetmr.com Page 1325

International Journal & Magazine of Engineering,
Technology, Management and Research

A Peer Reviewed Open Access International Journal

4.7. State machine diagrams:

State machine diagrams are similar to activity diagrams
although notations and usage changes a bit. They are
sometime known as state diagrams or start chart dia-
grams as well. These are very useful to describe the
behavior of objects that act different according to the
state they are at the moment. Below State machine
diagram show the basic states and actions.

4.8. Activity diagram:

Activity diagrams describe the workflow behavior of a
system. Activity diagrams are similar to state diagrams
because activities are the state of doing something.
The diagrams describe the state of activities by show-
ing the sequence of activities performed. Activity dia-
grams can show activities that are conditional or paral-
lel.

Activity diagrams show the flow of activities through
the system. Diagrams are read from top to bottom and
have branches and forks to describe conditions and
parallel activities. A fork is used when multiple activi-
ties are occurring at the same time. The diagram below
shows a fork after activity1.

This indicates that both activity2 and activity3 are oc-
curring at the same time. After activity2 there is a
branch. The branch describes what activities will take
place based on a set of conditions. All branches at
some point are followed by a merge to indicate the
end of the conditional behavior started by that branch.
After the merge all of the parallel activities must be
combined by a join before transitioning into the final
activity state.

Activity diagrams should be used in conjunction with
other modeling techniques such as interaction dia-
grams and state diagrams. The main reason to use ac-
tivity diagrams is to model the workflow behind the
system being designed. Activity Diagrams are also use-
ful for: analyzing a use case by describing what actions
need to take place and when they should occur; de-
scribing a complicated sequential algorithm; and mod-
eling applications with parallel processes.

4.6. Collaboration diagram:

Communication diagram was called collaboration dia-
gram in UML 1. It is similar to sequence diagrams but
the focus is on messages passed between objects. The
same information can be represented using a sequence
diagram and different objects.

Figure.8. Collaboration Diagram.

Figure.9. Admin & User State machine diagrams

 Volume No: 2 (2015), Issue No: 7 (July) July 2015
 www.ijmetmr.com Page 1326

International Journal & Magazine of Engineering,
Technology, Management and Research

A Peer Reviewed Open Access International Journal

Figure.12. Deployment diagram

SCREENSHOTS:

Figu re.10. Admin & User Activity diagrams

4.9. Component diagram:

A component diagram displays the structural relation-
ship of components of a software system. These are
mostly used when working with complex a system that
has many components. Components communicate
with each other using interfaces. The interfaces are
linked using connectors. Below images shows a com-
ponent diagram.

Figure.11. Component diagram
4.10. Deployment Diagram:

A deployment diagrams shows the hardware of your
system and the software in those hardware. Deploy-
ment diagrams are useful when your software solution
is deployed across multiple machines with each having
a unique configuration. Below is an example deploy-
ment diagram.

 ISSN No: 2348-4845 ISSN No: 2348-4845

 Volume No: 2 (2015), Issue No: 7 (July) July 2015
 www.ijmetmr.com Page 1325

International Journal & Magazine of Engineering,
Technology, Management and Research

A Peer Reviewed Open Access International Journal

4.7. State machine diagrams:

State machine diagrams are similar to activity diagrams
although notations and usage changes a bit. They are
sometime known as state diagrams or start chart dia-
grams as well. These are very useful to describe the
behavior of objects that act different according to the
state they are at the moment. Below State machine
diagram show the basic states and actions.

4.8. Activity diagram:

Activity diagrams describe the workflow behavior of a
system. Activity diagrams are similar to state diagrams
because activities are the state of doing something.
The diagrams describe the state of activities by show-
ing the sequence of activities performed. Activity dia-
grams can show activities that are conditional or paral-
lel.

Activity diagrams show the flow of activities through
the system. Diagrams are read from top to bottom and
have branches and forks to describe conditions and
parallel activities. A fork is used when multiple activi-
ties are occurring at the same time. The diagram below
shows a fork after activity1.

This indicates that both activity2 and activity3 are oc-
curring at the same time. After activity2 there is a
branch. The branch describes what activities will take
place based on a set of conditions. All branches at
some point are followed by a merge to indicate the
end of the conditional behavior started by that branch.
After the merge all of the parallel activities must be
combined by a join before transitioning into the final
activity state.

Activity diagrams should be used in conjunction with
other modeling techniques such as interaction dia-
grams and state diagrams. The main reason to use ac-
tivity diagrams is to model the workflow behind the
system being designed. Activity Diagrams are also use-
ful for: analyzing a use case by describing what actions
need to take place and when they should occur; de-
scribing a complicated sequential algorithm; and mod-
eling applications with parallel processes.

4.6. Collaboration diagram:

Communication diagram was called collaboration dia-
gram in UML 1. It is similar to sequence diagrams but
the focus is on messages passed between objects. The
same information can be represented using a sequence
diagram and different objects.

Figure.8. Collaboration Diagram.

Figure.9. Admin & User State machine diagrams

 Volume No: 2 (2015), Issue No: 7 (July) July 2015
 www.ijmetmr.com Page 1326

International Journal & Magazine of Engineering,
Technology, Management and Research

A Peer Reviewed Open Access International Journal

Figure.12. Deployment diagram

SCREENSHOTS:

Figu re.10. Admin & User Activity diagrams

4.9. Component diagram:

A component diagram displays the structural relation-
ship of components of a software system. These are
mostly used when working with complex a system that
has many components. Components communicate
with each other using interfaces. The interfaces are
linked using connectors. Below images shows a com-
ponent diagram.

Figure.11. Component diagram
4.10. Deployment Diagram:

A deployment diagrams shows the hardware of your
system and the software in those hardware. Deploy-
ment diagrams are useful when your software solution
is deployed across multiple machines with each having
a unique configuration. Below is an example deploy-
ment diagram.

 ISSN No: 2348-4845 ISSN No: 2348-4845

 Volume No: 2 (2015), Issue No: 7 (July) July 2015
 www.ijmetmr.com Page 1327

International Journal & Magazine of Engineering,
Technology, Management and Research

A Peer Reviewed Open Access International Journal

A successful test is one that uncovers a yet undiscov-
ered error. Any engineering product can be tested in
one of the two ways: The purpose of testing is to dis-
cover errors. Testing is the process of trying to discover
every conceivable fault or weakness in a work product.
It provides a way to check the functionality of compo-
nents, sub assemblies, assemblies and/or a finished
product It is the process of exercising software with
the intent of ensuring that the Software system meets
its requirements and user expectations and does not
fail in an unacceptable manner. There are various types
of test. Each test type addresses a specific testing re-
quirement.

VI. TYPES OF TESTS :

6.1. Unit testing: Unit testing involves the design of
test cases that validate that the internal program logic
is functioning properly, and that program inputs pro-
duce valid outputs. All decision branches and internal
code flow should be validated. It is the testing of indi-
vidual software units of the application .it is done after
the completion of an individual unit before integration.
This is a structural testing, that relies on knowledge of
its construction and is invasive. Unit tests perform ba-
sic tests at component level and test a specific business
process, application, and/or system configuration. Unit
tests ensure that each unique path of a business pro-
cess performs accurately to the documented specifica-
tions and contains clearly defined inputs and expected
results.

6.2. Integration testing:

Integration tests are designed to test integrated soft-
ware components to determine if they actually run as
one program. Testing is event driven and is more con-
cerned with the basic outcome of screens or fields.
Integration tests demonstrate that although the com-
ponents were individually satisfaction, as shown by
successfully unit testing, the combination of compo-
nents is correct and consistent. Integration testing is
specifically aimed at exposing the problems that arise
from the combination of components.

6.3. Functional test:

Functional tests provide systematic demonstrations
that functions tested are available as specified

V. TESTING:

Testing is a process of executing a program with the
intent of finding an error. A good test case is one that
has a high probability of finding an as-yet –undiscov-
ered error. A successful test is one that uncovers an
as-yet- undiscovered error. System testing is the stage
of implementation, which is aimed at ensuring that the
system works accurately and efficiently as expected
before live operation commences. It verifies that the
whole set of programs hang together. System testing
requires a test consists of several key activities and
steps for run program, string, system and is important
in adopting a successful new system. This is the last
chance to detect and correct errors before the system
is installed for user acceptance testing.

The software testing process commences once the
program is created and the documentation and related
data structures are designed. Software testing is essen-
tial for correcting errors. Otherwise the program or the
project is not said to be complete. Software testing is
the critical element of software quality assurance and
represents the ultimate the review of specification de-
sign and coding. Testing is the process of executing the
program with the intent of finding the error. A good
test case design is one that as a probability of finding a
yet undiscovered error.

 Volume No: 2 (2015), Issue No: 7 (July) July 2015
 www.ijmetmr.com Page 1328

International Journal & Magazine of Engineering,
Technology, Management and Research

A Peer Reviewed Open Access International Journal

Black box tests, as most other kinds of tests, must
be written from a definitive source document, such
as specification or requirements document, such as
specification or requirements document. It is a testing
in which the software under test is treated, as a black
box .you cannot “see” into it. The test provides inputs
and responds to outputs without considering how the
software works.

6.1.1. Unit Testing:

Unit testing is usually conducted as part of a combined
code and unit test phase of the software lifecycle, al-
though it is not uncommon for coding and unit testing
to be conducted as two distinct phases.

Test strategy and approach:

Field testing will be performed manually and functional
tests will be written in detail.

Test objectives :

1.All field entries must work properly.
2. Pages must be activated from the identified link.
3. The entry screen, messages and responses must not
be delayed.

Features to be tested :

1. Verify that the entries are of the correct format
2. No duplicate entries should be allowed
3. All links should take the user to the correct page.

Integration Testing:

Software integration testing is the incremental inte-
gration testing of two or more integrated software
components on a single platform to produce failures
caused by interface defects. The task of the integration
test is to check that components or software applica-
tions, e.g. components in a software system or – one
step up – software applications at the company level
– interact without error.
Test Results: All the test cases mentioned above passed
successfully. No defects encountered.
Acceptance Testing: User Acceptance Testing is a criti-
cal phase of any project and requires significant partici-
pation by the end user. It also ensures that the system
meets the functional requirements.

by the business and technical requirements, system
documentation, and user manuals. Functional testing
is centered on the following items:

Valid Input : identified classes of valid input must be
accepted.
Invalid Input : identified classes of invalid input must
be rejected.
Functions : identified functions must be exercised.
Output : identified classes of application outputs must
be exercised.

Systems/Procedures: interfacing systems or proce-
dures must be invoked.

Organization and preparation of functional tests is fo-
cused on requirements, key functions, or special test
cases. In addition, systematic coverage pertaining to
identify Business process flows; data fields, predefined
processes, and successive processes must be consid-
ered for testing.Before functional testing is complete,
additional tests are identified and the effective value of
current tests is determined.

6.4. System Test:

System testing ensures that the entire integrated soft-
ware system meets requirements. It tests a configura-
tion to ensure known and predictable results. An ex-
ample of system testing is the configuration oriented
system integration test. System testing is based on
process descriptions and flows, emphasizing pre-driv-
en process links and integration points.

6.5. White Box Testing:

White Box Testing is a testing in which in which the
software tester has knowledge of the inner workings,
structure and language of the software, or at least its
purpose. It is purpose. It is used to test areas that can-
not be reached from a black box level.

6.6. Black Box Testing:

Black Box Testing is testing the software without any
knowledge of the inner workings, structure or lan-
guage of the module being tested.

 ISSN No: 2348-4845 ISSN No: 2348-4845

 Volume No: 2 (2015), Issue No: 7 (July) July 2015
 www.ijmetmr.com Page 1327

International Journal & Magazine of Engineering,
Technology, Management and Research

A Peer Reviewed Open Access International Journal

A successful test is one that uncovers a yet undiscov-
ered error. Any engineering product can be tested in
one of the two ways: The purpose of testing is to dis-
cover errors. Testing is the process of trying to discover
every conceivable fault or weakness in a work product.
It provides a way to check the functionality of compo-
nents, sub assemblies, assemblies and/or a finished
product It is the process of exercising software with
the intent of ensuring that the Software system meets
its requirements and user expectations and does not
fail in an unacceptable manner. There are various types
of test. Each test type addresses a specific testing re-
quirement.

VI. TYPES OF TESTS :

6.1. Unit testing: Unit testing involves the design of
test cases that validate that the internal program logic
is functioning properly, and that program inputs pro-
duce valid outputs. All decision branches and internal
code flow should be validated. It is the testing of indi-
vidual software units of the application .it is done after
the completion of an individual unit before integration.
This is a structural testing, that relies on knowledge of
its construction and is invasive. Unit tests perform ba-
sic tests at component level and test a specific business
process, application, and/or system configuration. Unit
tests ensure that each unique path of a business pro-
cess performs accurately to the documented specifica-
tions and contains clearly defined inputs and expected
results.

6.2. Integration testing:

Integration tests are designed to test integrated soft-
ware components to determine if they actually run as
one program. Testing is event driven and is more con-
cerned with the basic outcome of screens or fields.
Integration tests demonstrate that although the com-
ponents were individually satisfaction, as shown by
successfully unit testing, the combination of compo-
nents is correct and consistent. Integration testing is
specifically aimed at exposing the problems that arise
from the combination of components.

6.3. Functional test:

Functional tests provide systematic demonstrations
that functions tested are available as specified

V. TESTING:

Testing is a process of executing a program with the
intent of finding an error. A good test case is one that
has a high probability of finding an as-yet –undiscov-
ered error. A successful test is one that uncovers an
as-yet- undiscovered error. System testing is the stage
of implementation, which is aimed at ensuring that the
system works accurately and efficiently as expected
before live operation commences. It verifies that the
whole set of programs hang together. System testing
requires a test consists of several key activities and
steps for run program, string, system and is important
in adopting a successful new system. This is the last
chance to detect and correct errors before the system
is installed for user acceptance testing.

The software testing process commences once the
program is created and the documentation and related
data structures are designed. Software testing is essen-
tial for correcting errors. Otherwise the program or the
project is not said to be complete. Software testing is
the critical element of software quality assurance and
represents the ultimate the review of specification de-
sign and coding. Testing is the process of executing the
program with the intent of finding the error. A good
test case design is one that as a probability of finding a
yet undiscovered error.

 Volume No: 2 (2015), Issue No: 7 (July) July 2015
 www.ijmetmr.com Page 1328

International Journal & Magazine of Engineering,
Technology, Management and Research

A Peer Reviewed Open Access International Journal

Black box tests, as most other kinds of tests, must
be written from a definitive source document, such
as specification or requirements document, such as
specification or requirements document. It is a testing
in which the software under test is treated, as a black
box .you cannot “see” into it. The test provides inputs
and responds to outputs without considering how the
software works.

6.1.1. Unit Testing:

Unit testing is usually conducted as part of a combined
code and unit test phase of the software lifecycle, al-
though it is not uncommon for coding and unit testing
to be conducted as two distinct phases.

Test strategy and approach:

Field testing will be performed manually and functional
tests will be written in detail.

Test objectives :

1.All field entries must work properly.
2. Pages must be activated from the identified link.
3. The entry screen, messages and responses must not
be delayed.

Features to be tested :

1. Verify that the entries are of the correct format
2. No duplicate entries should be allowed
3. All links should take the user to the correct page.

Integration Testing:

Software integration testing is the incremental inte-
gration testing of two or more integrated software
components on a single platform to produce failures
caused by interface defects. The task of the integration
test is to check that components or software applica-
tions, e.g. components in a software system or – one
step up – software applications at the company level
– interact without error.
Test Results: All the test cases mentioned above passed
successfully. No defects encountered.
Acceptance Testing: User Acceptance Testing is a criti-
cal phase of any project and requires significant partici-
pation by the end user. It also ensures that the system
meets the functional requirements.

by the business and technical requirements, system
documentation, and user manuals. Functional testing
is centered on the following items:

Valid Input : identified classes of valid input must be
accepted.
Invalid Input : identified classes of invalid input must
be rejected.
Functions : identified functions must be exercised.
Output : identified classes of application outputs must
be exercised.

Systems/Procedures: interfacing systems or proce-
dures must be invoked.

Organization and preparation of functional tests is fo-
cused on requirements, key functions, or special test
cases. In addition, systematic coverage pertaining to
identify Business process flows; data fields, predefined
processes, and successive processes must be consid-
ered for testing.Before functional testing is complete,
additional tests are identified and the effective value of
current tests is determined.

6.4. System Test:

System testing ensures that the entire integrated soft-
ware system meets requirements. It tests a configura-
tion to ensure known and predictable results. An ex-
ample of system testing is the configuration oriented
system integration test. System testing is based on
process descriptions and flows, emphasizing pre-driv-
en process links and integration points.

6.5. White Box Testing:

White Box Testing is a testing in which in which the
software tester has knowledge of the inner workings,
structure and language of the software, or at least its
purpose. It is purpose. It is used to test areas that can-
not be reached from a black box level.

6.6. Black Box Testing:

Black Box Testing is testing the software without any
knowledge of the inner workings, structure or lan-
guage of the module being tested.

 ISSN No: 2348-4845 ISSN No: 2348-4845

 Volume No: 2 (2015), Issue No: 7 (July) July 2015
 www.ijmetmr.com Page 1329

International Journal & Magazine of Engineering,
Technology, Management and Research

A Peer Reviewed Open Access International Journal

[4] X. Cao, L. Chen, G. Cong, C. S. Jensen, Q. Qu, A. Sk-
ovsgaard, D. Wu, and M. L. Yiu. Spatial keyword query-
ing. In ER, pages 16–29, 2012.

[5] X. Cao, G. Cong, and C. S. Jensen. Retrieving top-k
prestige-based relevant spatial web objects. PVLDB,
3(1):373–384, 2010.

[6] X. Cao, G. Cong, C. S. Jensen, and B. C. Ooi. Col-
lective spatial keyword querying. In Proc. of ACM Man-
agement of Data (SIG-MOD), pages 373–384, 2011.

[7] B. Chazelle, J. Kilian, R. Rubinfeld, and A. Tal. The
bloomier filter: an efficient data structure for static
support lookup tables. In Proc. of the Annual ACM-SI-
AM Symposium on Discrete Algorithms (SODA), pages
30–39, 2004.

[8] Y.-Y. Chen, T. Suel, and A. Markowetz. Efficient
query processing in geographic web search engines. In
Proc. of ACM Management of Data (SIGMOD), pages
277–288, 2006.

[9] E. Chu, A. Baid, X. Chai, A. Doan, and J. Naughton.
Combining keyword search and forms for ad hoc que-
rying of databases. In Proc. of ACM Management of
Data (SIGMOD), 2009.

[10] G. Cong, C. S. Jensen, and D. Wu. Efficient retrieval
of the top-k most relevant s

Test Results:

All the test cases mentioned above passed successful-
ly. No defects encountered.

VII. CONCLUSION :

We have seen plenty of applications calling for a search
engine that is able to efficiently support novel forms
of spatial queries that are integrated with keyword
search. The existing solutions to such queries either
incur prohibitive space consumption or are unable to
give real time answers. In this paper, we have rem-
edied the situation by developing an access method
called the spatial inverted index (SI-index). Not only
that the SI-index is fairly space economical, but also it
has the ability to perform keyword-augmented nearest
neighbor search in time that is at the order of dozens
of milliseconds. Furthermore, as the SI-index is based
on the conventional technology of inverted index, it
is readily incorporable in a commercial search engine
that applies massive parallelism, implying its immedi-
ate industrial merits.

REFERENCES:

[1] S. Agrawal, S. Chaudhuri, and G. Das. Dbxplorer: A
system for keyword-based search over relational da-
tabases. In Proc. of International Conference on Data
Engineering (ICDE), pages 5–16, 2002.

[2] N. Beckmann, H. Kriegel, R. Schneider, and B. Seeger.
The R*-tree: An efficient and robust access method for
points and rectangles. In Proc. of ACM Management of
Data (SIGMOD), pages 322–331,1990.

[3] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and
S. Sudar- shan. Keyword searching and browsing in da-
tabases using banks. In Proc. of International Confer-
ence on Data ngineering (ICDE), pages 431–440, 2002.

 Volume No: 2 (2015), Issue No: 7 (July) July 2015
 www.ijmetmr.com Page 1330

International Journal & Magazine of Engineering,
Technology, Management and Research

A Peer Reviewed Open Access International Journal

