

 Page 2315

The Client Assignment Problem for Continuous DIA: Analysis,

Algorithms, and Evaluation.

Koraveni Vijay

M.Tech Student

Department of CSE

Global Group Of Institutions

Batasingaram,

Ranga Reddy (Dist), India

Mr. S Dilli Babu, M. Tech

Assistant. Professor,

Department of CSE

Global Group Of Institutions

Batasingaram,

Ranga Reddy (Dist), India.

Mr. M V Narayana, M. Tech(Ph.D)

Associate Professor & HOD

Department of CSE

Global Group Of Institutions

Batasingaram,

Ranga Reddy (Dist), India.

Abstract—Quality of user experience in Distributed

Interactive Applications (DIAs) highly depends on

the network latencies during the system execution. In

DIAs, each user is assigned to a server and

communication with any other client is performed

through its assigned server. Hence, latency measured

between two clients, called interaction time, consists

of two components. One is the latency between the

client and its assigned server, and the other is the

inter-server latency, that is the latency between

servers that the clients are assigned. In this paper, we

investigate a real-time client to server assignment

scheme in a DIA where the objective is to minimize

the interaction time among clients. The client

assignment problem is known to be NP-complete and

heuristics play an important role in finding near

optimal solutions. We propose two distributed

heuristic algorithms to the online client assignment

problem in a dynamic DIA system. We utilized real-

time Internet latency data on the PlanetLab platform

and performed extensive experiments using

geographically distributed PlanetLab nodes where

nodes can arbitrarily join/leave the system. The

experimental results demonstrate that our proposed

algorithms can reduce the maximum interaction time

among clients up to 45% compared to an existing

baseline technique.

Index Terms—distributed interactive application,

client assignment, interactivity, consistency, fairness,

NP-complete

INTRODUCTION

Distributed Interactive Applications (DIAs) are

network applications that enable interaction between

clients geographically distributed around the world.

Online games, military simulations and collaborative

designs are some examples of DIAs . In a DIA,

minimizing the communication delay is a crucial

objective that attracts more clients to join the system.

The communication delay in DIA is defined as the

time duration between when a client triggers an

operation and when this operation is transferred to

other clients . Different architectures have been

proposed to decrease the interaction time between

clients which can be classified into three groups,

namely client-server, peer-to-peer and mirrored

distributed server architectures. In the client-server

architecture, one server controls the application and

each client connects to the system through that single

entity. Consistency is one of the important advantages

because each client is directly informed by the central

server and each receives other clients’ operations

simultaneously. However, since clients can only

connect to a central server, this server may become a

bottleneck for the application. In peerto-peer

architecture, instead of using a central server, clients

are connected to each other and share the workload

among them. Workload sharing can be done in

different ways such as partitioning the environment

into regions, and assigning each of the regions to one

client. However, the problem in the peerto-peer system

arises when the performance of a client is bad relative

to the others. For example, in online games, clients

may handle the processing of region assignments

 Page 2316

instead of receiving game updates which decreases the

user satisfaction.

When issuing an operation, a client first sends the

operation to its assigned server. Then, the server

forward the operation to all the other servers. On

receiving the operation, each server calculates the new

state of the application and sends a state update to all

the clients assigned to it. Thus, the clients interact with

one another through their assigned servers. The

interaction time between any pair of clients must

include the network latencies between the clients and

their assigned servers, and the network latency

between their assigned servers. These network

latencies are directly affected by how the clients are

assigned to the servers. In addition, the interaction

time is also influenced by the consistency and fairness

requirements of DIAs. Consistency means that shared

common views of the application state must be created

among all clients to support meaningful interactions

.Fairness, on the other hand, is to ensure that all clients

have the same chance of participation regardless of

their network conditions . Maintaining consistency and

fairness in DIAs usually introduces artificial

synchronization delays in the interactions among

clients due to diverse network latencies . These

synchronization delays are also dependent on the

assignment of clients to servers. Therefore, how to

assign the clients to the servers in DIAs is of crucial

importance to their interactivity performance.

RELATED WORK

The literature presents few studies that directly address

the client assignment problem in DIAs. In [7] and [8],

authors propose mirrored server placement algorithm

for content distribution networks (CDN). In these

works, the objective is to serve clients in a fast manner

by redirecting incoming clients into one of the

mirrored servers. Given the set of servers, authors

investigate the placement of these servers to maximize

the performance. In contrast to CDN, in DIA rather

than finding optimal geographical server placement the

idea is to find optimal client to server assignments.

Moreover, each client in DIA is connected to one

server and clients interact with each other through their

assigned servers.

In [5] and [9], authors prove that the client assignment

problem is NP-complete and there is no polynomial

time algorithm to find the optimal solution. For that

reason, they propose four heuristic algorithms. In

Nearest-Server Assignment, clients are greedily

assigned to their nearest server. In Longest-FirstBatch

Assignment, the first client is assigned to its nearest

server. All other clients which are not far away from

this client are assigned to the same server since they

will not increase the interaction delay. If that is not the

case, then the client will be assigned to its nearest

server and the interaction delay is updated accordingly.

The Greedy Assignment works similar to Longest-

First-Batch Assignment and the only difference is that

they use a cost metric to decide which server to assign

the client.

In Distributed-Greedy Assignment, the process starts

with the initial assignment and continues to modify

client assignments until the point where maximum

interaction path cannot be reduced further. They utilize

the Meridian [10] internet latency data in the

evaluation of their algorithms. In [11] and [12],

authors propose an approach to enhance the

interactivity of DIAs by only considering the network

latencies between client and server pairs. After the

server placement, proposed algorithm uses the network

latencies during the client assignment. However, as we

show in Section VI, the interserver latencies also play

a critical role in improving the interactivity in DIAs.

 In [13], the proposed solution is based on a virtual

environment that is partitioned into several zones and

each zone is controlled by a server. Clients in the same

zone can interact with each other and clients can move

to other zones as well. They propose two algorithms

namely, Initial Assignment 1http://www.planet-

lab.org/ where zones are sorted based on the total

weight of clients then assign the first zone to the first

server, and Refined Assignment where they further

reduce the Initial Assignment by reassigning the

 Page 2317

clients whose communication delay to their current

server exceed a pre-defined threshold. In [14], the

assignment problem is mathematically modeled and an

approximation algorithm is proposed. The study shows

that finding the optimal client-server assignment with

predefined requirements is NP-hard and relaxed

convex optimization is proposed to find an

approximate solution. The main idea behind the

proposed optimization algorithm is to divide servers

into two groups recursively until the point where no

further split can be applied.

In [15], a partitioning algorithm is proposed to reduce

the inconsistency in a multi-server distributed virtual

environment. The main purpose is to efficiently

distribute the network traffic generated by avatars

among different servers in the system. By using the

metric time-space inconsistency [16], the problem is

formulated as a mixed integer programming problem.

Alternating optimization is used to divide the problem

into two sub-problems. In [17], the authors investigate

the update scheduling for distributed virtual

environment (DVE). The key idea is to keep the DVE

consistent where state updates are applied based on

their potential impacts on the consistency. They

propose three algorithms that utilize current network

delays and estimate inconsistencies that may occur in

future and show that the proposed algorithms

significantly outperform the intuitive update

algorithms. Different from our work, where we aim to

find near optimal client to server assignments, they

focus on how to schedule particular updates by using

network capacity and delay.

In [18] and [19], the existing algorithms in [5] and [9]

are modified to handle dynamic network conditions.

Since the Meridian [10] set does not consider the

latency variation over time, authors collect pairwise

latency data from Planetlab-AllPairs-Ping [20] over a

one day period. By using collected Internet latency

data, they experimentally evaluate the proposed

algorithms with dynamic client join/leave. However,

they still consider an offline version of the client

assignment problem using latencies between clients

and servers known beforehand hence not real-time. In

contrast, we examine the online client assignment

problem in this work.

EXISTING SYSTEM

Distributed interactive applications (DIAs), such as

multiplayer online games and distributed interactive

simulations, allow participants at different locations to

interact with one another through networks. Thus, the

interactivity of DIAs is important for participants to

have enjoyable interaction experiences. Normally,

interactivity is characterized by the duration from the

time when a participant issues an operation to the time

when the effect of the operation is presented to the

same participant or other participants . We refer to this

duration as the interaction time between participants.

Network latency is known as a major barrier to provide

good interactivity in DIAs . It cannot be eliminated

from the interactions among participants and has a

lower theoretical limit imposed by the speed of light.

DISADVANTAGES:-

 1. Interaction between the client and server not much

effective.

 2. It has more Network latency which barries

interactive of DIA.

PROPOSED SYSTEM

In this paper, we investigate the problem of effectively

assigning clients to servers for maximizing the

interactivity of DIAs. We focus on continuous DIAs

that change their states not only in response to user-

initiated operations but also due to the passing of time

Several heuristic assignment algorithms are then

proposed. Their approximation ratios are theoretically

analyzed. The performance of the algorithms is also

experimentally evaluated using real Internet latency

data. The results show that our proposed Greedy

Assignment and Distributed-Modify Assignment

algorithms generally produce near optimal interactivity

and significantly reduce the interaction time between

clients compared to the intuitive Nearest-Server

Assignment algorithm that assigns each client to its

nearest server. Distributed-Modify Assignment also

 Page 2318

has good adaptivity to dynamics in client participation

and network latency.

ADVANTAGES:-

1. Reducing network latency for improving

interactivity in DIAs.

2. Server calculation more effective than existing

system.

IMPLEMENTATION

Nearest-Server Assignment:-

The first algorithm is called Nearest-Server

Assignment, which intuitively assigns clients to their

nearest servers. This algorithm can be implemented by

having each client measure the network latencies

between itself and all servers, and select the server

with the lowest latency as its assigned server.

The assumption of the triangle inequality is commonly

made when theoretically analyzing the performance of

the approximation algorithms in facility location

problems When assuming that the network latency

satisfies the triangle inequality, we can show that

Nearest- Server Assignment has a tight approximation

ratio of 3. In the absence of the triangle inequality ,

Nearest-Server Assignment cannot achieve any

bounded approximation ratio. Please refer to Appendix

D of the online supplemental material for the detailed

proof.

Greedy Assignment:-

The second algorithm Greedy assignment adopts a

greedy approach to assign clients iteratively, starting

with an empty assignment. In each step, the algorithm

considers all the possibilities of assigning an

unassigned client to a server. If a client c is selected to

be assigned to a server s, then all unassigned clients

that are not farther from s than c are also assigned to s

as this would not increase the maximum interaction

path length. To minimize the amortized increase in the

maximum interaction path length, we use _l=_n as the

cost metric for selecting which client to be assigned to

which server. In each step, among all possible pairs of

unassigned client and server, the pair ðc; sÞ resulting

in the minimum cost _l=_n is selected and the

corresponding clients are then assigned to s. The

algorithm terminates when all clients have been

assigned to servers.

Distributed-Modify Assignment:-

The third algorithm Distributed-Modify Assignment is

performed in a distributed manner without requiring

the global knowledge of the network at any single

server. It starts with an initial assignment. Then, the

assignment is continuously modified for reducing the

maximum interaction path length D until it cannot be

further reduced. This process is referred to as the

assignment modification. One server is elected as a

coordinator responsible for calculating D and selecting

the server to perform the assignment modification. To

calculate D of the initial assignment, each server

measures its distances (network latencies) to all the

other servers. It also measures its distances to all the

clients that are assigned to it and maintain them as a

sorted list. Then, each server s broadcasts to all the

other servers its longest distance lðsÞ to its clients, and

sends the interserver distances to the coordinator. The

coordinator calculates D based on the received

information.

Dealing with Server Capacity Constraints:-

So far, our proposed assignment algorithms have not

assumed any capacity limitation at the servers. These

“uncapacitated” algorithms are suitable for the

scenario where each server site has abundant server

resources or server resources can be added to these

sites as needed . However, if the server capacity at

each site is limited, assigning more clients to a server

than its capacity may result in significant increase in

the processing delay at the server, damaging the

interactivity of the DIA. Therefore, we now discuss

how to adapt each proposed assignment algorithm to

deal with server capacity constraints.

 Nearest-Server Assignment: Each client

chooses its server and makes the request to

connect to the server independently. Each

server accepts the client requests on a first-

come-first-serve basis until it is saturated. A

 Page 2319

client first attempts to choose the nearest

server. If the nearest server is saturated, the

client in turn tries the second nearest server,

the third nearest server and so on, until its

connection request is accepted by a server.

 Greedy Assignment: When selecting the pair

of unassigned client and server in each step,

the algorithm considers unsaturated servers

only. After a client c is selected to be assigned

to a server s in a step, if the algorithm cannot

assign to server s all clients closer to s than c

due to the capacity constraint of s, only a

portion of these clients are assigned to server s

to fill it to capacity. Accordingly, the

calculation of _n is adjusted to reflect the

capacity limitations of the servers.

 Distributed-Modify Assignment: At each

assignment modification, a client is allowed to

be reassigned to unsaturated servers only.

The approximation ratios previously analyzed for

“uncapacitated” assignment algorithms are not

applicable to “capacitated” assignment algorithms.

Distributed-Modify Assignment has unbounded

approximation ratio even without server capacity

limitation. Thus, the same is also true when the server

capacity is limited.” Nearest-Server Assignment and

the “capacitated” Greedy Assignment, respectively,

when assuming that the network latency satisfies the

triangle inequality. Please refer to Appendices G and H

of the online supplemental material for the detailed

proofs.

CONCLUSION

In distributed interactive applications, each client is

connected to one of the servers and pushes/retrieves

updates in the system through their connected servers.

Thus, any interaction between two clients consists of

both client to server latency and inter-server latency

which is called an interaction path. Our objective is to

minimize the maximum of these interaction paths

between any of the client pairs in the system. Previous

works, that addressed the same problem, all considered

a static system with previously calculated Internet

latency values. The problem is proven to be NP-

complete. Three heuristic assignment algorithms are

presented. Their approximation ratios are theoretically

analyzed and their performance is experimentally

evaluated using real Internet latency data. The results

show that: 1) our proposed Greedy Assignment and

Distributed-Modify Assignment algorithms

significantly outperform the intuitive Nearest-Server

Assignment algorithm; 2) Distributed-Modify

Assignment requires only a small proportion of clients

to perform assignment modifications for improving

interactivity; and 3) Distributed-Modify Assignment

has good adaptivity to dynamics in both client

participation and network latency.

The interaction path from a client ci to another client cj

can be considered as a directed path that is different

from the interaction path from cj to ci. It is easy to

show that if we change the definition of D to be the

maximum length of all the directed interaction paths

between clients, the consistency and fairness

requirements can still be satisfied. herefore, the

objective of the client assignment problem becomes to

minimize the maximum length of all directed

interaction paths. For the heuristic algorithms, we can

simply use the lengths of the directed routing paths

between clients and servers in the calculation without

modifying the algorithms. However, the approximation

ratios of the algorithms may change. We leave the

detailed analysis to the future work.

REFERENCES

[1] “LotRO server list,” http://lotro-

wiki.com/index.php/List_ of_Worlds, 2013.

[2] “Planetlab All-Pairs-Pings,”

http://pdos.lcs.mit.edu/strib/, 2013.

[3] WoW Server List,

http://www.wowwiki.com/Realms_list, 2013.

[4] L.D. Bricen˜ o, H.J. Siegel, A.A. Maciejewski, Y.

Hong, B. Lock, M.N. Teli, F. Wedyan, C. Panaccione,

C. Klumph, K. Willman, and C. Zhang, “Robust

Resource Allocation in a Massive Multiplayer Online

Gaming Environment,” Proc. Fourth Int’l Conf.

Foundations of Digital Games, pp. 232-239, 2009.

http://lotro-wiki.com/index.php/List_
http://lotro-wiki.com/index.php/List_

 Page 2320

[5] J. Brun, F. Safaei, and P. Boustead, “Managing

Latency and Fairness in Networked Games,” Comm.

ACM, vol. 49, no. 11, pp. 46-51, 2006.

[6] E. Cronin, B. Filstrup, and A. Kurc, “A Distributed

Multiplayer Game Server System,” technical report,

Univ. of Michigan, 2001.

[7] E. Cronin, S. Jamin, C. Jin, A.R. Kurc, D. Raz, and

Y. Shavitt, “Constrained Mirror Placement on the

Internet,” IEEE J. Selected Areas Comm., vol. 20, no.

7, pp. 1369-1382, Sept. 2002.

[8] E. Cronin, A.R. Kurc, B. Filstrup, and S. Jamin,

“An Efficient Synchronization Mechanism for

Mirrored Game Architectures,” Multimedia Tools and

Applications, vol. 23, no. 1, pp. 7-30, 2004.

[9] D. Delaney, T. Ward, and S. McLoone, “On

Consistency and Network Latency in Distributed

Interactive Applications: A Survey-Part I,” Presence:

Teleoperators and Virtual Environments, vol. 15, no.

2, pp. 218-234, 2006.

[10] M.R. Garey and D.S. Johnson, “Computers and

Intractability: A Guide to the Theory of NP-

Completeness,” WH Freeman and Company, San

Francisco, Calif, 1979.

[11] L. Gautier, C. Diot, and J. Kurose, “End-to-End

Transmission Control Mechanisms for Multiparty

Interactive Applications on the Internet,” Proc. IEEE

INFOCOM ’99, pp. 1470-1479, 1999.

[12] K.P. Gummadi, S. Saroiu, and S.D. Gribble,

“King: Estimating Latency between Arbitrary Internet

End Hosts,” Proc. Second ACM SIGCOMM

Workshop Internet Measurement, pp. 5-18, 2002.

[13] Y. He, M. Faloutsos, S. Krishnamurthy, and B.

Huffaker, “On Routing Asymmetry in the Internet,”

Proc. IEEE Global Telecomm. Conf. (GLOBECOM

’05), 2005.

[14] C. Jay, M. Glencross, and R. Hubbold, “Modeling

the Effects of Delayed Haptic and Visual Feedback in

a Collaborative Virtual Environment,” ACM Trans.

Computer-Human Interaction, vol. 14, no. 2, article 8,

2007.

[15] M.R. Korupolu, C.G. Plaxton, and R. Rajaraman,

“Analysis of a Local Search Heuristic for Facility

Location Problems,” J. Algorithms, vol. 37, no. 1, pp.

146-188, 2000.

[16] K.W. Lee, B.J. Ko, and S. Calo, “Adaptive Server

Selection for Large Scale Interactive Online Games,”

Computer Networks, vol. 49, no. 1, pp. 84-102, 2005.

[17] Y.J. Lin, K. Guo, and S. Paul, “Sync-MS:

Synchronized Messaging Service for Real-Time Multi-

Player Distributed Games,” Proc. IEEE 10th Int’l

Conf. Network Protocols (ICNP ’02), 2002.

[18] C. Lumezanu, R. Baden, N. Spring, and B.

Bhattacharjee, “Triangle Inequality and Routing Policy

Violations in the Internet,” Proc. 10th Int’l Conf.

Passive and Active Network Measurement (PAM ’09),

pp. 45-54, 2009.

[19] M. Marzolla, S. Ferretti, and G. D’Angelo,

“Dynamic Resource Provisioning for Cloud-Based

Gaming Infrastructures,” ACM Computers in

Entertainment, to be published.

[20] M. Mauve, J. Vogel, V. Hilt, and W. Effelsberg,

“Local-Lag and Timewarp: Providing Consistency for

Replicated Continuous Applications,” IEEE Trans.

Multimedia, vol. 6, no. 1, pp. 47-57, Feb. 2004.

[21] L. Qiu, V.N. Padmanabhan, and G.M. Voelker,

“On the Placement of Web Server Replicas,” Proc.

IEEE INFOCOM ’01, pp. 1587-1596. 2001.

