
 
 

  
Page 1631 

 

Implementation of Parallel Prefix Adders Using Reversible  

Logic Gates 
 

Lakkakula Karthik 

ES&VLSID (M.E.) 

Department of ECE 

MVSR Engineering College, Nadergul 

 

E.V.Nagalakshmi 

Assistant Professor 

Department of ECE 

MVSR Engineering College, Nadergul 

 

ABSTRACT:-  

In Very Large Scale Integration (VLSI) designs, 

Parallel prefix adders (PPA) have the better delay 

performance. This paper presents four types of 

PPA’s Reversible Kogge Stone Adder (RKSA), 

Reversible Spanning Tree Adder (RSTA), 

Reversible Brent Kung Adder (RBKA) and 

Reversible Sparse Kogge Stone Adder (RSKA). 

Additionally Ripple Carry Adder (RCA) is also 

investigated. These adders are implemented using 

Verilog Hardware Description Language (HDL) in 

Cadence 180nm technology, nc-sim for simulation, 

Simvision to view the waveforms and Encounter tool 

is used for synthesis. The parallel prefix-adder’s 

Delay, Power and Area are Optimized and 

compared successively. 
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1. INTRODUCTION 

The binary addition is the basic arithmetic operation in 

digital circuits and it became essential in most of the 

digital systems including Arithmetic and Logic Unit 

(ALU), Microprocessors and Digital Signal Processing 

(DSP). At present, the research continues on increasing 

the adder’s delay performance. The choice of which 

adder architecture to use is of utmost importance, since 

the performance of adders may determine the whole 

system performance. Area and power consumption are 

also relevant figures of merit to be considered, 

especially when the design targets VLSI realization. 

Recently energy-efficiency has also become an 

important metric due to the dramatic growth of battery 

powered portable device marked. Parallel prefix adders 

have better performance. The delays of the adders are 

discussed. In this paper, above mentioned PPA’s and 

RCA are implemented in Cadence 180nm technology. 

Finally, delay, power and area for the designed adders 

are presented and compared. 

 

2. DRAWBACKS OF RIPPLE CARRY AND 

CARRY LOOKAHEAD ADDER 

The first sum bit should wait until input carry is given; 

the second sum bit should wait until previous Carry is 

propagated and so on. Finally the output sum should 

wait until all previous carries are generated. 

 
Fig1: Ripple Carry Adder 

In order to reduce the delay in RCA an Carry Look 

Ahead Adder(CLA)is to propagate the carry in advance, 

we go for carry look ahead adder .Basically this adder 

works on two operations called propagate and generate 

The propagate and generate equations are given by. 

               Pi = Ai xor Bi, …….(1) 

 

              Gi = Ai .Bi, …………(2) 
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Fig.2. Carry Look Ahead Adder 

 

For 4 bit CLA, the propagated carry equations are given 

as 

C1 = G0 + P0 .C0,…………. (3) 

C2 = G1 + P1 C1 = G1 + P1 G0 + P1 P0       

C0………….(4) 

C3 = G2 + P2 C2 = G2 + P2 G1 + P2 P1 G0 + P2 P1 P0 

C0,…………. (5) 

C4 = G3 + P3 C3 = G3 + P3 G2 + P3 P2 G1 + P3 P2 P1 G0 + 

P3 P2 P1 P0 C0,………….(6). 

 

Equations (3), (4), (5) and (6) are observed that, the 

carry complexity increases by increasing the adder bit 

width. So designing higher bit CLA becomes 

complexity. In this way, for the higher bit of CLA’s, the 

carry complexity increases by increasing the width of 

the adder. So results in bounded fan-in rather than 

unbounded fan-in, when designing wide width adders. 

In order to compute the carries in advance without 

delay and complexity, there is a concept called Parallel 

prefix approach. 

 

3. DIFFERENT TYPES OF PARALLEL-PREFIX 

ADDERS 

The PPA’s pre-computes generate and propagate 

signals are presented in [2].Using the fundamental carry 

operator (FCO), these computed signals are combined 

in [3].The fundamental carry operator is denoted by the 

symbol ‘o’.( gL,pL)o(gR,pR)=(gL+pL.gR , pL .  pR)         (7) 

For example, 4 bit CLA carry equation is given by 

C4 =( g 4,p4)o[(g3,p3)o[(g4,p4)o(g3,p3)]]--
(8) 

For example, 4 bit PPA carry equation is given by C4 =[( 

g4 , p4 )o ( g3 , p3 )]o [( g4 , p4 )o ( g3 , p3 )] (9) 

Equations (8) and (9) are observed that, the carry look 

ahead adder takes 3 steps to generate the carry, but the 

bit PPA takes 2 steps to generate the carry. 

Parallel-prefix structures are found to be common in 

high performance adders because of the delay is 

logarithmically proportional to the adder width [2]. 

PPA’s basically consists of 3 stages as follows: 

• Pre computation 

• Prefix stage 

• Final computation 

 

The Parallel-Prefix Structure is shown in below 

 
Fig3: Architecture of Parallel Prefix Adder. 

 

A. Pre computation: 

In Pre Computation Stage, the work of Propagation and 

Generation are computed for the given inputs using the 

basic equations (1) and (2). 

 

B. Prefix stage: 

In the prefix stage, group generate/propagate signals are 

computed at each bit using the given equations. The 

black cell (BC) generates the ordered pair in equation 

(7), the gray cell (GC) generates only left signal, 

following [2]. 

 
 

More practically, the equations (10) and (11) can be 

expressed using a symbol ”o” denoted by Brent and 

Kung. Its function is exactly same as that of a Black 

Cell and Gray Cell. 

 

C. Final computation: 

In the final computation, the sum and carryout are the 

final output. 
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Where “-1” is the position of carry-input. The 

generate/propagate signals can be grouped in different 

fashion to get the same correct carries. Based on 

different ways of grouping the generate/propagate 

signals, different prefix architectures can be created.  

 

4.1 Introduction to Reversible Logic Gates 

Energy dissipation is one of the major issues in present 

day technology. Energy dissipation due to information 

loss in high technology circuits and systems constructed 

using irreversible hardware was demonstrated by R. 

Landauer in the year 1960. According to Landauer’s 

principle, the loss of one bit of information lost, will 

dissipate kT*ln (2) joules of energy where, k is the 

Boltzmann’s constant and k=1.38x10 -23 J/K, T is the 

absolute temperature in Kelvin. The primitive 

combinational logic circuits dissipate heat energy 

for every bit of information that is lost during the 

operation. This is because according to second law of 

thermodynamics, information once lost cannot be 

recovered by any methods. In 1973, Bennett, showed 

that in order to avoid kTln2 joules of energy dissipation 

in a circuit it must be built from reversible 

circuits. According to Moore’s law the numbers of 

transistors will double every 18 months. Thus energy 

conservative devices are the need of the day. The 

amount of energy dissipated in a system bears a direct 

relationship to the number of bits erased during 

computation. Reversible circuits are those circuits that 

do not lose information. The most prominent 

application of reversible logic lies in quantum 

computers. A quantum computer will be viewed as a 

quantum network (or a family of quantum 

networks) composed of quantum logic gates; It has 

applications in various research areas such as 

Low Power CMOS design, quantum computing, 

nanotechnology and DNA computing. Quantum 

networks composed of quantum logic gates; each gate 

performing an elementary unitary operation on one, two 

or more two–state quantum systems called qubits. Each 

qubit represents an elementary unit of information; 

corresponding to the classical bit values 0 and 1. Any 

unitary operation is reversible and hence quantum 

networks effecting elementary arithmetic operations 

such as addition, multiplication and exponentiation 

cannot be directly deduced from their classical Boolean 

counterparts (classical logic gates such as AND or OR 

are clearly irreversible). Thus, quantum arithmetic must 

be built from reversible logical components. Reversible 

computation in a system can be performed only when 

the system comprises of reversible gates. A circuit/gate 

is said to be reversible if the input vector can be 

uniquely recovered from the output vector and there is a 

one-to-one correspondence between its input and output 

assignments. An N*N reversible gate can be 

represented as  

Iv=(I1,I2,I3,I4,……………………IN)  

Ov=(O1,O2,O3,………………….ON).  

Where Iv and Ov represent the input and output vectors 

respectively.  In quantum computing, by considering 

the need of reversible gates, a literature survey has been 

done and the mostly available reversible logic gates are 

presented in this  paper. 

 

4.2 Basic Definitions Pertaining To Reversible Logic 

A. Reversible Function: 

The multiple output Boolean function F(x1; x2; :::; xn) 

of n Boolean variables is called reversible if: (a) The 

number of outputs is equal to the number of inputs; 

(b) Any output pattern has a unique pre-image. 

 

B. Reversible logic gate:  

Reversible Gates are circuits in which number of 

outputs is equal to the number of inputs and there is a 

one to one correspondence between the vector of inputs 

and outputs. It not only helps us to determine the 

outputs from the inputs but also helps us to uniquely 

recover the inputs from the outputs.  

 

C. Ancilla inputs/ Constant inputs:  

This refers to the number of inputs that are to be 

maintain constant at either 0 or 1 in order to synthesize 

the given logical function. 

 

D. Garbage outputs:  
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Additional inputs or outputs can be added so as to make 

the number of inputs and outputs equal whenever 

necessary. This also refers to the number of outputs 

which are not used in the synthesis of a given function. 

In certain cases these become mandatory to 

achieve reversibility. Garbage is the number of outputs 

added to make an n-input k-output function  ((n; k) 

function) reversible. We use the words ―constant 

inputs to denote the present value inputs that were 

added to an (n; k) function to make it reversible. The 

following simple formula shows the relation between 

the number of garbage outputs and constant 

inputs. Input + constant input = output + garbage.  

 

E. Quantum cost:  

Quantum cost refers to the cost of the circuit in terms of 

the cost of a primitive gate. It is calculated knowing the 

number of primitive reversible logic gates (1*1 or 2*2) 

required to realize the circuit. The quantum cost of a 

circuit is the minimum number of 2*2 unitary gates to 

represent the circuit keeping the output unchanged. The 

quantum cost of a 1*1 gate is 0 and that of any 2*2 gate 

is the same, which is 1.  

 

F. Flexibility: 

Flexibility refers to the universality of a reversible logic 

gate in realizing more functions.  

 

G. Gate Level:  

This refers to the number of levels in the circuit which 

are required to realize the given logic functions. 

 

H. Hardware Complexity:  

This refers to the total number of logic operation in a 

circuit. Means the total number of AND, OR and 

EXOR operation in a circuit The following are the 

important design constraints for reversible logic 

circuits.  

 Reversible logic gates do not allow fan-outs.  

 Reversible logic circuits should have minimum 

quantum cost.  

 The design can be optimized so as to produce 

minimum number of garbage outputs.  

 The reversible logic circuits must use minimum 

number of constant inputs.  

 The reversible logic circuits must use a minimum 

logic depth or gate levels 

 

Goals of reversible logic: 

 1. Minimize the garbage outputs 

 2. Minimize the constant inputs 

 3. Minimize the total number of gates 

 4. Minimize the quantum cost 

 

Several reversible logic gates have been proposed in the 

past years. Some of them are: Feynman gate(FG), 

Toffoli gate(TG), Fredkin gate(FRG), Peres gate(PG), 

New Gate(NG), TSG gate(TSG), MKG gate(MKG) and 

HNG gate(HNG).  

 

In this section we review these reversible logic gates. 

Some of them are presented to allow for comparison 

with existing studies. 

 

 
 

Fig 4. Feynman gate 

 
 

Fig 5. Toffoli gate 

 

 
 

Fig.6.Reversible HNG gate 
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The reversible HNG gate can work singly as a 

reversible full adder. If the input vector IV = (A, B, Cin, 

0), then the output vector becomes OV = (P=A, Q=Cin, 

R=Sum, S=Cout) 

 

Reversible Parallel Prefix Adders are classified into  

1. Reversible Kogge- Stone Adder  

2. Reversible Brent-Kung Adder  

3. Reversible Sparse- Kogge Stone Adder 

4. Reversible Spanning Tree Adder 

 

1.Reversible Kogge - Stone Adder 

 Reversible Kogge-Stone adder is a parallel prefix form 

carry look ahead adder. The Kogge-Stone adder [3] was 

developed by peter M. Kogge and Harold S. Stone 

which they published in 1973. In RKSA all 

conventional full adders are replaced with reversible 

HNG gate. Reversible Kogge-Stone prefix adder is a 

fast adder design.  

 

 
Fig 7: 16-bit Reversible Kogge Stone Adder 

 

KS adder has best performance in VLSI 

implementations. Reversible Kogge-Stone adder has 

large area with minimum fan-out. The Reversible 

Kogge Stone Adder is widely known as a parallel prefix 

adder that performs fast logical addition. Reversible 

Kogge Stone adder is used for wide adders because it 

shows the less delay among other architectures. In each 

vertical stage produces Propagate and Generate bits. 

Generate bits are produced in the last stage and these 

bits are XORed with the initial propagate after the input 

to produce the sum bits. 

 

2. Reversible Brent-Kung Adder 

 

Fig 8: 16-bit Reversible Brent Kogge Adder 

The ReversibleBrentKung adder is a parallel prefix add

er.The BrentKung adder was developed by Brentand Ku

ng which they published in 1982. Brent Kung adder has 

maximum logic depth and minimum area. The number 

of  cells is calculated  by using 2(n-1) -Log2n.The 16bit 

Reversible Brent Kung adder figures are shown below. 

 

3. Reversible Spanning tree adder 

RSTA is also tested. Like the RSKA, this adder also 

terminates with a RCA. It also uses the BC’s and GC’s 

and full adder blocks like RSKA’s but the difference is 

the interconnection between them [7].The 16 bit RSTA 

is shown in the Fig 9. 

 
Fig 9: 16-bit Reversible Spanning tree    adder 
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4. Reversible Sparse kogge stone adder 

 
Fig10:16 bit Reversible sparse kogge stone adder 

 

The 16 bit RSKA uses black cells and gray cells as well 

as HNG gates blocks too. This adder computes the 

carries using the BC’s and GC’s and terminates with 4 

bit RRCA’s.  

Totally it uses 16 HNG gates. In this adder, first the 

input bits (a, b) are converted as propagate and generate 

(p, g). Then propagate and generate terms are given to 

BC’s and GC’s. The carries are propagated in advance 

using these cells. Later these are given to reversible full 

adder Blocks.  

 

5. SIMULATION AND SYNTHESIS RESULTS  

Various adders were designed using Verilog language 

The performance of proposed adders are analyzed and 

compared. In this proposed architecture, the 

implementation code for 16-bit Reversible Kogge-

Stone, Reversible Brent-Kung adder, Reversible 

Spanning Tree adder, Reversible  Sparse Kogge Stone 

Adder  were developed and corresponding values of 

Delay, Power and Area were observed. Table1 shows 

the trade-off between different topologies and table2 

shows the comparison of adders. The simulated outputs 

of 16-bit proposed adders are shown in Figure. 

 
Fig11: Simulation Result of 16-bit Reversible kogge 

Stone Adder 

 

 
  Fig12: Timing report of 16-bit RKSA (Delay) 

 

Simulated waveform and delay of of 16 bit Reversible 

Kogge Stone Adder are shown in Figure 8 and 9. Delay 

of RKSA is 2260ps. 

 

 
Fig13: Simulation Result of 16-bit Reversible Brent 

Kung adder. 
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Fig14: Power dissipation of 16-bit  Reversible Brent 

Kung Adder 

 

6. DISCUSSION OF RESULTS 

Now we Synthesis and Simulate all above adders for 16 

bit and tabulated the results are show in Table 6. 

 

Name of the 

Adder 

Area Dela

y(ps) 

Power(nW) 

Conentional 

full adder 

36195

9 

 

1802 

  2283288.622    

Full adder 

using HNG 

39016

9 

1866 4112047.300 

16-bit RCA 78570

5 

4277 34898774.286 

16-bit RCA 

using HNG 

78561

7 

4205 37095520.112 

16-bit SKA 78598

3 

2756 37063920.518 

16-bit RSKA 78599

5 

2710 37065902.603 

16-bit STA 78596

5 

2753 37063554.575 

16-bit RSTA 78597

7 

2707 37065536.660 

16-bit BKA 78627

2 

2617 31611171.994 

16-bit RBKA 78617

5 

2567 31609616.964 

16-bit KSA 78668

6 

2389 37086958.405 

16-bit RKSA 78654

8 

2260 36932884.418 

 

Table  6. Area, Delay and Power of FA, HNG, RCA, 

RCA using HNG, RSKA, RSTA, RKSA & RBKA 

 

7. CONCLUSION 

Full adder is the basic logic element in all the 16-bit 

adders discussed in this thesis. One bit full adder is 

simulated and synthesized in cadence (180nm 

technology) and one bit full adder is realized using 

HNG gate (i.e. reversible full adder). From the Table 6 

the area, delay and power dissipation of reversible one 

bit full adder is more when compared to the 

conventional one bit full adder. 

16-bit ripple carry adder is simulated and 

synthesized followed by the synthesis of 16-bit 

reversible ripple carry adder. From the Table 6 the 

area, delay and power dissipation of reversible 16-

bit ripple carry adder is less when compared to the 

conventional16-bit ripple carry adder. Thus we can 

conclude that as the number of bits is increasing 

reversible full adder is advantageous when 

compared to conventional full adder. Hence 

conventional full adders in 16-bit parallel prefix 

adders are replaced with reversible full adder. 

16-bit brent kung adder (BKA) is simulated and 

synthesized followed by 16-bit reversible brent kung 

adder (RBKA). From the Table 6 the area, delay and 

power dissipation of RBKA is less when compared 

to BKA. 

16-bit Kogge stone adder(KSA) and then 16-bit 

reversible kogge stone adder(RKSA) are simulated 

and synthesized. From the Table 6 the area, delay 
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and power dissipation of RKSA is less when 

compared to KSA. 

Finally from Table 6 we can conclude that the delay 

of 16-bit Reversible Kogge Stone Adder is less 

when compared to all other adders. The delay of 16-

bit reversible kogge stone adder is 46.53% less than 

the delay of 16-bit ripple carry adder.  

The power of Reversible Brent Kung Adder is less 

compared to all other adders. The power dissipation 

of 16-bit reversible brent kung adder is 16.55% less 

than the power dissipation of 16-bit ripple carry 

adder. 

Thus Reversible kogge stone adder is used for high 

speed applications and Reversible brent kung adder 

is used for low power applications. 

FUTURE SCOPE 

If the complete architecture of Parallel Prefix Adders 

are implemented by using reversible logic gates then 

area, delay & power can be reduced further. 
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