

 Page 2050

Dynamic Personalized Recommendation on Sparse Data

N.Shilpa Ambedkar

M.Tech Student

Department of CSE

Sri Venkateshwara Engineering College

Vazed Ahmed

Assistant Professor

Department of CSE

Sri Venkateshwara Engineering College

Abstract—Recommendation techniques are very

important in the areas of E-commerce and other

Web-based services. One of the main difficulties is to

provide high-quality recommendation on sparse data

dynamically. Here in this paper, we proposed a novel

dynamic personalized recommendation algorithm, in

which data contained in both profile and ratings

contents are utilized by exploring latent relations

between ratings, a set of dynamic features are

designed to describe user preferences in multiple

phases, and finally a recommendation is made by

adaptively weighting the features. Experimental

results on public datasets show that the proposed

algorithm is satisfying performance.

Key Terms—dynamic recommendation, dynamic

features, multiple phases of interest.

1 INTRODUCTION

In these days the internet became an indispensable part

of our lives, and it provides a platform for enterprises

to deliver information regarding products and services

conveniently. As the amount of this kind of

information is increasing rapidly, one great challenge

is making sure that proper information can be

delivered quickly to the customers. Personalized

recommendation is a desirable way to improve

customer satisfaction and retention [1], [2].

We have mainly three approaches to recommendation

engines based on different data analysis methods, i.e.,

rule-based, content-based and collaborative filtering.

In these, collaborative filtering (CF) needs only data

about past user behavior like ratings, and its two main

approaches are the neighborhood methods and latent

factor models. The neighborhood methods can be user-

oriented or item-oriented. They try to find like-minded

users or similar items based on co-ratings, and predict

based on ratings of the nearest neighbors. Latent factor

models try to learn latent factors from the pattern of

ratings using techniques like matrix factorization and

use the factors to compute the benfits of items to users.

CF has made great success and been proved to perform

well in scenarios where user preferences are relatively

static.

There are two problems that prevent accurate

prediction of ratings (in most dynamic scenarios,) – the

sparsity and the dynamic nature. Because a user can

only rate a very small proportion of all items, the U ×I

rating matrix is quite sparse and the amount of

information to estimate a candidate rating is less

enough. While latent factor models involve most

ratings to know the general taste of users, they still

have difficulties in catching up with the drifting signal

in dynamic recommendation because of sparsity, and it

is hard to physically explain the reason of the

involving. The dynamic nature decides that users’

preferences may drift over time in dynamic

recommendation, resulting in different taste to the

items in different phases of interest. In our

experiences, the interest cycle of differs from user to

user, and the pattern how user preferences changes

cannot be described by several simple functions.

Moreover, CF approaches usually accounter the cold-

start problem that is amplified in the dynamic scenario

since the rate of new users and new items would be

high.

Other researchers attempted to solve the above

problems. Hybrid approaches which combine

contentbased and collaborative filtering in different

 Page 2051

ways were proposed to alleviate the sparsity problem,

where more information were mined than just in each

of them. Prassas et al, classified items into so many

categories by using content information and did choose

recent categories for performing Item-Based

Collaborative Filtering (IBCF). Kim and Li proposed

group similarity by clustering and used it to modify

original item-item similarity matrix. The principle of

utilization of rating data in these algorithms is shown

in Fig. 1.(a). Some approaches emphasize utilization of

time information for dealing with the dynamic nature.

Here in this paper, we propose a novel hybrid dynamic

recommendation approach. Firstly, for utilizing more

information while keeping data consistency, we take

item content and user profile to extend the co-rate

relation between ratings through each attribute, as

shown in Fig. 1.(b). The involved ratings can reflect

similar users’ preferences and provide useful

information. And to enable the algorithm to catch up

with the changing of signals quickly and to be updated

conveniently, a set of dynamic features are proposed

based on time series analysis (TSA) technique, and

relevant ratings in each phase of interest are added up

by applying TSA to describe users’ preferences and

items’ reputations. Then we propose a personalized

recommendation algorithm by adaptively weighting

the features according to the amount of utilized rating

data. The experimental results show that the proposed

algorithm is effective with dynamic data and

significantly outperforms previous algorithms.

Fig. 1. Ratings associated in different methods, where

star, diamond shape and × represent destination rating,

involved rating and uninvolved rating, respectively. In

the U × I plane, ratings along a horizontal line are

from the same user and ratings along a vertical line are

of the same item. “Similar” here means “identical or

close in some attribute of the profiles”.

The main aim of this paper can be summarized as

follows: (a) More information can be used for

recommender systems by investigating the similar

relation among related user profile and item content.

We utilize the similarity among content in each profile

attribute so that more content information is used,

especially content in those attributes which are hard to

quantify. (b) A novel set of dynamic features is

proposed for describing users’ preferences, that is

more flexible and convenient to model the impacts of

preferences in different phases of interest compared

with dynamic methods used in previous works, since

the features are designed according to periodic

characteristics of users’ interest and a linear model of

the features can catch up with changes in user

preferences. (c) An adaptive weighting algorithm is

designed to combine the dynamic features for

personalized recommendation.

2 THE PROPOSED METHOD

In most cases, the drifting of users’ preferences or

items’ reputations is not too rapid, which makes it

possible to describe temporal state of them by using

some features. Here we first introduce a way to make

use of profiles to extend the co-rating relation, and

 Page 2052

then we propose a set of dynamic features to reflect

users’ preferences or items’ reputations, and then after

we propose an adaptive algorithm for dynamic

personalized recommendation.

2.1 Relation mining of rating data

For the sparsity of recommendation data, the main

issue of capturing users’ dynamic preferences is the

lack of useful information, which can be done from

three sources – user profiles, item profiles and

historical rating records. Classical algorithms highly

rely on the co-rate relation, which is rare when the data

is sparse. Required ratings are found using the co-rate

relation, which is simple, intuitional and physically

significant when we go one or two steps along, but it

keeps limits to the amount of data used in each

prediction.

We try to find a different way to find useful ratings

instead of searching neighboring nodes. We notice that

when considering the factors which affect a rating r(u,

i), we keep more focus on some attributes of u and i in

their profiles, instead of the user himself or the item

itself. For example, if the movie “Gone with the Wind”

is given high ratings by middle-aged people and lower

ratings by teenagers with no doubt, we first check on

the age attribute in a user’s profile when predicting

rating, instead of other descriptions of the user or how

the user has rated other movies. It may not be

necessary to stick only to the co-rate relation, and we

introduce the semi-co-rate relation between ratings

whose corresponding user profiles or item contents

have similar or identical content in one or more

attributes.

Let U={uj}
m

j=1 be the entire user set with |U| = m,

I= {ik}
n

k=1 be the entire item set with |I| = n, R be a

m × n matrix such that its element Rj,k refers to the

rating user uj gave to item ik, and T be the

corresponding time matrix such that Tj,k denotes the

timestamp of Rj,k. We note the set whose ratings is

semi-co-rate related with the candidate rating via the

p-th attribute in user profile as RU
p , and similarly we

define RI
q , as shown in Fig. 2. If we note the set whose

rating is co-rate related with the candidate rating via

user as RU
0 and similarly we define RI

0

, we have RU
0 =(∩pRu

p) and RI
0 =(∩qRi

q). Clearly the

semi-co-rate is much looser than the co-rate relation,

and now that we have found much more related ratings

via the relation instead of co-rate, we take only one

step neighboring nodes, (U pRu
p) U(U qRi

q) in this

newly defined graph to keep consistency of utilized

data.

To avoid overwhelming computation in finding RU
p (p

=1, 2, ...) and RI
q (q = 1, 2, ...) for all user ratings and

to solve the difficulty in quantification of some

contents, classification and clustering are done as the

content of each attribute in profiles of users and items,

and R is then separated into rating subsets RU,c
 p (c = 1,

2, ...) or RI,c
q (c = 1, 2, ...) accordingly in actual

implementation and c is the class number. For

example, “Age” is the p-th attribute in user

description, then R is divided into six subsets for this

attribute. With the help of clustering techniques like K-

Means on content of “Age”, we divide user age into

different ranges on the basis of relevant users’ ages of

all ratings in R. Then for user rating Rj,k, we can

conveniently find its neighboring ratings in our

algorithm by reaching relevant subsets, which is done

by matching each attribute content of uj and ik to the

nearest subsets. We limit the size of each separated

subset in online calculation, and the when new ratings

are added in, then earliest ratings will be removed

from the rating subset. Through these techniques, we

introduced a general relation between ratings and an

extended way of information mining in personalized

recommendation.

 Page 2053

2.2 Dynamic feature extraction

Three kinds of methods were proposed in concept drift

to deal with the drifting problem as instanceselection,

time-window (usually time decay function)

andensemble learning. Koren [4] also proposed an

algorithm to isolate transient noise in data using

temporal dynamics to help recommendation. These

methods are useful to make progressin precision of

dynamic recommendation, but some of the weaknesses

of these methods are : decay functions cannot precisely

describethe evolution of user preferences and only

isolating transientnoise cannot catch up with the

change in data.

Here we propose a set of dynamic features to describe

users’ multi-phase preferences in consideration of

computation, flexibility and accuracy. It is impossible

to learn weights of all ratings for every user, but it is

possible to learn the general weights of ratings in the

user’s different phases of interest if the phases include

ranges of time that are long enough. For convenience

of notation, we relabel all subsets RU,c
p and RI,c

 q

acquired through the extended information mining as

Rs (s = 1, 2, ...).

To enable the features to describe users’ preferences,

we divide each rating subset Rs into several secondary

subsets Rd
 s (d = 1, 2, ...) with the help of the time

distances between each rating in Rs and the candidate

rating Rj,k, where each secondary subset is manually

assigned with a range of time-distance, and then we

use some basic algorithms loke time series analysis

(TSA) calculate the features on each secondary

subsets.

The earlier ratings in the theory of time series analysis,

should impact the predictive features less, and thus

they should have lower weights. So if we perform TSA

algorithm on a secondary subset of R (i.e. Rd
 s) to get a

feature feas,d, there is a formulation as:

where #Rd

 s = o, Rd
 s,l (l = 1, 2, ..., o) are the rating

values which are from the subset Rd s and listed in

reversed time order. And positive weight parameters

wl, (l = 1, 2, ..., o) and normalization factor w should

satisfy

Since the subsets are updated frequently, index

smoothing, which is a classic TSA algorithms, is

chosen as the basic TSA algorithm:

Here Rd
 s (d = 1, 2, ...) are the secondary subsets, Td (d

= 1, 2, ...) are a sequence of time differences manually

set, Rd
 s,l (l = 1, 2, ..., o) are the rating values listed in

reversed order in the subset, μ is the forgetting factor

for index smoothing. We have tested different values

for mu in the experiments and set μ = 0.95 empirically.

All f eas,d (d = 1, 2, ...) and the sizes of Rd s (d = 1, 2,

...) are recorded as dynamic features. With the dynamic

features, we have to optimize their weights to get the

best estimation of the user rating, and in this way we

transformed the training of a recommendation model

into weight learning across different secondary rating

subsets. Now that the features are related to phases of

interest and latent relations between ratings, we would see

how the preferences differ with each other in impacting

the candidate rating by analyzing optimal weights of the

features. We can also see in Eq(3) that the feature

extraction need not heavy computation. Finding all Rd

needs only comparison in time s one by one, and the

computation of f eas,d is very efficient, The proposed

algorithm is termed as Multiple Phase Division (MPD). In

this way we have proposed a flexible way of feature

extraction.

2.3 Adaptive weighting algorithm

As features like f eas,d (s = 1, 2, ..., d = 1, 2, ...)

gained by applying Multiple Phase Division are all

 Page 2054

normalized rating values, in other words, as content of user

and item profiles have been quantified in the feature

extraction, it is convenient for us to organize them for

accurate rating estimation by adaptive weighting. Sizes

of the relevant subsets are also recorded in MPD and

can reflect data density.

Rj,k is used to note the estimated rating ˆ that user uj

could give to item ik at time point Tj,k, and the adaptive

linear model can be formulated as: formula (4)

where sizes of relevant subsets are used as prior information in

weighting the features to improve recommendation

accuracy, f eas,d (s = 1, 2, ..., d = 1, 2, ...) are the

features calculated in Eq.(3), Rd s (s = 1, 2, ..., d = 1, 2,

...) denote their relevant secondary rating subsets, buj

and bik are binary functions denoting the relating state of

candidate rating and relevant subset and s,d and  are

weighting parameters which should balance the weights of

features and data density, or, balance the affection of data

consistency and quantity of information. In detail, buj (s)

= 1 if Rj,k is semi-co-rate related with all ratings in

secondary subset Rs through attribute of the user uj

denoted by s, else buj (s) = 0, bik (s) = 1 if Rj,k is

semi-co-rate related with all ratings in secondary subset

Rs through attribute of the item ik also denoted by s,

else bik (s) = 0.

It is difficult to solve all parameters in Eq.(4) at once, hence

we use sequential optimization. Let

s,d = s,d + (#Rd), s (5)

in Eq.(4) and we first solve for the combined weights

δs,d (s = 1, 2, ..., d = 1, 2, ...) by minimizing the

differences between prediction results of the

recommendation algorithm and the real rating values

in the training set, where RLS algorithm [17] could be

used for optimization, i.e.,

Here RT rain is the training set or known rating set. But

we notice that a user's preferences or an item's reputations

are commonly affected by only a few principle factors,

indicating that using more features might also bring noise

into the recom- mendation. So we changed the destination of

the optimization and limited the quantity of the features by

regularization, and the training problem can be formulated

as:

 This is a normal LASSO optimization problem which

can be solved via ADMM . Provided the δs are solved,

we turn to the second step of the sequential

optimization: to solve αs and β. To deal with the

uncertainty in solving αs and β from Eq.(5), we

introduce the generalization error like in SVM [19].

Here the generalization the generalization error is

And we minimize it to gain satisfying performance as:

Now we have a practical way of solving all the

parameters. Firstly we solve δs from Eq.(7) using

Lasso algorithm, then use Eq.(8) and Eq.(9) to

compute αs and β.

3.EXPERIMENTS

3.1 Datasets

Here we collect MovieLens 100k data1 and Netflix

Competition data2 from online movie recommender

 Page 2055

service, and are two datasets in studying personalized

recommendation. These two datasets contain abundant

rating records which last in a reasonable time, and they

are different in composition and dynamic nature of

data. We use them for our case study. Time distances

between the target rating and historical ratings are

defined as time of interest, and we manually assigned

6 time intervals to classify times of interest into

multiple phases, i.e., within 1 day, 1 to 7 days, 1 to 4

weeks, 1 to 3 months, 3 to 12 months and more than a

year.

3.2 Evaluation

Accuracy indicator which is used frequently for

predictive algorithms, Root-mean-square error

(RMSE), is also used to evaluate the proposed

algorithm.The training and testing data are randomly

chosen for the experiments is not suitable for the

evaluation of dynamic recommendation. With respect

to general causality, it is a critical fact in dynamic

recommendation that we can use only historical data

but not future data for current prediction in real

applications. Unfortunately, the fact is often ignored in

previous studies. In traditional RMSE evaluations

(even for the Netflix competition), training and testing

data are randomly sampled and the train and test split

is not based on time. This would produce current

prediction based on future data. Even if it is

guaranteed that testing instances of each user/item

come later than its training instances, the

aforementioned issue still exists in algorithms like

IBCF and latent factor models due to the utilization of

other users’ future ratings.

To provide a better simulation of practical

recommendation systems’ working in evaluation, we

split training and testing data based on time in the

same way and evaluate the accuracies of dynamic

recommendation algorithms as follows:

1) Sort the entire dataset in normal time order, use a

certain training ratio to determine its splitting.

2) Use the earlier part as the training set to adjust all

parameters in the recommendation algorithm.

3) Run algorithm on testing set, generate estimated rating

for each user-item pair in testing set.

4) Compare estimated ratings and real ratings in the testing

set, and calculate RMSE.

5) Use different ratios and repeat last four steps.

3.3 Experiment setup

Comparison of proposed algorithm with some

representative and widely-used dynamic

recommendation algorithms is done here. In the

comparisons, all the competing algorithms were in

online updating forms and their parameters were set to

their empirically best. Here is the brief introduction of

them.

TimeSVD++ [4] is extended from SVD++ by

accounting for temporal dynamics. TimeIBCF is

extended from IBCF by accounting for temporal

dynamics. Factorized Personalized Markov Chain

(FPMC) [12] combines matrix factorization and

markov chain together to handle both the sparsity and

the dynamic nature of dynamic personalized

recommendation. IBCF with time decay weights the

similarities of CF by time decay functions to deal with

the dynamic problems. Hierarchy CF is a hybrid of

content-based and collaborative filtering methods

using category information in items’ content. ICHM

introduces group similarity by clustering to modify

similarities in IBCF, and K-Means is adopted for the

clustering of item content.

3.4 Comparison results

The performances of the algorithms on MovieLens 100k

and Netflix Competition are reported is shown in fig 3.

The proposed algorithm significantly outperforms the

other algorithms in accuracy on MovieLens 100k and has

comparable performance with timeSVD++ on Netflix

Competition. On MovieLens 100k, the RMSE of the

proposed algorithm is consistently the lowest, and the

average RMSE of the proposed method is about 10%-

15% lower than other algorithms. On Netflix

Competition, the accuracy of the proposed algorithm is

comparable with timeSVD++, due to the lack of user

profiles and lack of information in item profiles. The

 Page 2056

experimental results also show that the proposed algorithm

and timeIBCF are robust with time evolving, indicating that

the proportion of ratings by new users or of new items does

not change a lot.

Fig. 3. Accuracy comparison (a)MovieLens 100k and

(b)Netflix Competition.

Comparing Fig. 3(a) and Fig. 3(b), we can infer that (i)

the accuracies of algorithms would be enhanced when data,

especially recent data, gets dense, and

(ii) the utilization of profile content in the proposed

algorithm is effective and helps improve the quality of

recommendation. Compared to timeSVD++ and

timeIBCF, in which only rating information is utilized,

hybrid approaches make use of more information and may

achieve better recommendation accuracies if the

information mined is sufficient and the dynamic nature of

data is well handled. The experimental results also show that

users' preferences could be well described and learned by the

MPD- based features.

As the efficiency of common IBCF is high in all

recommendation algorithms [1], [3], we listed the

computational time cost of the proposed algorithm and

IBCF on the dataset of MovieLens 100k in Table 1 to

illustrate its efficiency. We can see that the proposed

approach has a comparable computational cost with IBCF.

The size of testing set and the difference of time consumed

between two algorithms are inversely proportional.

We applied the proposed algorithm on the data in each single

phase defined before, and the RMSEs are calculated separately

according to the definition of users' multiple phases of interest.

In Fig. 4, we presented the RMSEs of the proposed recom

mendation algorithms using the data in different phases

of interest at different training ratios. It is clear that the

proposed algorithm is quite robust in the phases.

Fig. 4. Accuracy of the proposed algorithm on

different phases of interest. TR means training ratio.

Comparing Fig. 4 with Fig. 3(a), we can see that the pro-

posed algorithm has better performances than other

algorithms even when it uses only the data in some single

 Page 2057

phases. We can see that the accuracies become higher when we

use all the data, which illustrated that mining and making

use of more related data can provide more useful

information.

4.CONCLUSION

In this paper, we did propose a dynamic personalized

recommendation algorithm for sparse data, in which

more rating data is utilized in one prediction by

involving more neighboring ratings through each

attribute in user and item profiles. A set of dynamic features

are designed to describe the preference information based on

TSA technique, and finally a recommendation is made by

adaptively weighting the features with the help of

information in multiple phases of interest. Experimental

results indicate that the proposed algorithm is effective,

and its computational cost is also reasonable one.

5. REFERENCE

[1] B. M. Sarwar, G. Karypis, J. A. Konstan, J. Riedl,

Item-based collaborative filtering recommendation

algorithms, in: WWW, 2001, pp. 285–295.

[2] P. Brusilovsky, A. Kobsa, W. Nejdl (Eds.), The

Adaptive Web, Methods and Strategies of Web

Personalization, Lecture Notes in Computer.

[3] G. Adomavicius, A. Tuzhilin, Toward the next

generation of recommender systems: A survey of

the state-of-the-art and possible extensions, IEEE

Trans. Knowl. Data Eng. 17 (6) (2005) 734–749.

[4] Y. Koren, Collaborative filtering with temporal

dynamics, Communications of the ACM 53 (4)

(2010) 89–97.

[5] L. Candillier, F. Meyer, M. Boull´e, Comparing

state-of-the-art collaborative filtering systems, in:

P. Perner (Ed.), MLDM, Vol. 4571 of Lecture

Notes in Computer Science, Springer, 2007, pp.

548–562.

[6] K. Yu, A. Schwaighofer, V. Tresp, X. Xu, H.

Kriegel, Probabilistic memory-based collaborative

filtering, IEEE Transactions on Knowledge and

Data Engineering 16 (1) (2004) 56–69.

[7] F. Fouss, A. Pirotte, J. Renders, M. Saerens,

Random-walk computation of similarities between

nodes of a graph with application to collaborative

recommendation, IEEE TKDE 19 (3) (2007) 355–

369.

[8] Y. Koren, R. Bell, C. Volinsky, Matrix

factorization techniques for recommender systems,

Computer 42 (8) (2009) 30–37.

[9] S. Boutemedjet, D. Ziou, Long-term relevance

feedback and feature selection for adaptive content

based image suggestion, Pattern Recognition 43

(12) (2010) 3925–3937.

[10] B. M. Kim, Q. Li, C. S. Park, S. G. Kim, J. Y.

Kim, A new approach for combining content-

based and collaborative filters, J. Intell. Inf. Syst.

27 (1) (2006) 79–91.

