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Abstract—Recommendation techniques are very 

important in the areas of E-commerce and other 

Web-based services. One of the main difficulties is to 

provide high-quality recommendation on sparse data 

dynamically. Here in this paper, we proposed a novel 

dynamic personalized recommendation algorithm, in 

which data contained in both profile and ratings  

contents are utilized by exploring latent relations 

between ratings, a set of dynamic features are 

designed to  describe user preferences in multiple 

phases, and finally a recommendation is made by 

adaptively weighting the features. Experimental 

results on public datasets show that the proposed 

algorithm is satisfying performance. 

 

Key Terms—dynamic recommendation, dynamic 

features, multiple phases of interest. 

 

1 INTRODUCTION 

In these days the internet became an indispensable part 

of our lives, and it provides a platform for enterprises 

to deliver information regarding  products and services 

conveniently. As the amount of this kind of 

information is increasing  rapidly, one great challenge 

is making sure that proper information can be 

delivered quickly to the customers. Personalized 

recommendation is a desirable way to improve 

customer satisfaction and retention [1], [2]. 

 

We have mainly three approaches to recommendation 

engines based on different data analysis methods, i.e., 

rule-based, content-based and collaborative filtering. 

In these, collaborative filtering (CF) needs only data 

about past user behavior like ratings, and its two main 

approaches are the neighborhood methods and latent 

factor models. The neighborhood methods can be user-

oriented or item-oriented. They try to find like-minded 

users or similar items based on co-ratings, and predict 

based on ratings of the nearest neighbors. Latent factor 

models try to learn latent factors from the pattern of 

ratings  using techniques like matrix factorization and 

use the factors to compute the benfits of items to users. 

CF has made great success and been proved to perform 

well in scenarios where user preferences are relatively 

static. 

 

There are two problems that prevent accurate 

prediction of ratings (in most dynamic scenarios,) – the 

sparsity and the dynamic nature. Because a user can 

only rate a very small proportion of all items, the U ×I 

rating matrix is quite sparse and the amount of 

information to estimate a candidate rating is less 

enough. While latent factor models involve most 

ratings to know the general taste of users, they still 

have difficulties in catching up with the drifting signal 

in dynamic recommendation because of sparsity, and it 

is hard to physically explain the reason of the 

involving. The dynamic nature decides that users’ 

preferences may drift over time in dynamic 

recommendation, resulting in different taste to the 

items in different phases of interest. In our 

experiences, the interest cycle of  differs from user to 

user, and the pattern how user preferences changes 

cannot be described by several simple functions. 

Moreover, CF approaches usually accounter the cold-

start problem that is amplified in the dynamic scenario 

since the rate of new users and new items would be 

high.  

 

Other researchers attempted to solve the above 

problems. Hybrid approaches which combine 

contentbased and collaborative filtering in different 
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ways were proposed to alleviate the sparsity problem, 

where more information were mined than just in each 

of them. Prassas et al, classified items into so many 

categories by using content information and did choose 

recent categories for performing Item-Based 

Collaborative Filtering (IBCF). Kim and Li  proposed 

group similarity by clustering and used it to modify 

original item-item similarity matrix. The principle of 

utilization of rating data in these algorithms is shown 

in Fig. 1.(a). Some approaches emphasize utilization of 

time information for dealing with the dynamic nature. 

 

Here in this paper, we propose a novel hybrid dynamic 

recommendation approach. Firstly, for utilizing more 

information while keeping data consistency, we take 

item content and user profile to extend the co-rate 

relation between ratings through each attribute, as 

shown in Fig. 1.(b). The involved ratings can reflect 

similar users’ preferences and provide useful 

information. And to enable the algorithm to catch up 

with the changing of signals quickly and to be updated 

conveniently, a set of dynamic features are proposed 

based on time series analysis (TSA) technique, and 

relevant ratings in each phase of interest are added up 

by applying TSA to describe users’ preferences and 

items’ reputations. Then we propose a personalized 

recommendation algorithm by adaptively weighting 

the features according to the amount of utilized rating 

data. The experimental results show that the proposed 

algorithm is effective with dynamic data and 

significantly outperforms previous algorithms. 

 

 

 
Fig. 1. Ratings associated in different methods, where 

star, diamond shape and × represent destination rating, 

involved rating and uninvolved rating, respectively. In 

the U × I plane, ratings along a horizontal line are 

from the same user and ratings along a vertical line are 

of the same item. “Similar” here means “identical or 

close in some attribute of the profiles”. 

 

The main aim of this paper can be summarized as 

follows: (a) More information can be used for 

recommender systems by investigating the similar 

relation among related user profile and item content. 

We utilize the similarity among content in each profile 

attribute so that more content information is used, 

especially content in those attributes which are hard to 

quantify. (b) A novel set of dynamic features is 

proposed for describing users’ preferences, that is 

more flexible and convenient to model the impacts of 

preferences in different phases of interest compared 

with dynamic methods used in previous works, since 

the features are designed according to periodic 

characteristics of users’ interest and a linear model of 

the features can catch up with changes in user 

preferences. (c) An adaptive weighting algorithm is 

designed to combine the dynamic features for 

personalized recommendation. 

 

2 THE PROPOSED METHOD 

In most cases, the drifting of users’ preferences or 

items’ reputations is not too rapid, which makes it 

possible to describe temporal state of them by using 

some features. Here we first introduce a way to make 

use of profiles to extend the co-rating relation, and 
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then we propose a set of dynamic features to reflect 

users’ preferences or items’ reputations, and then after 

we propose an adaptive algorithm for dynamic 

personalized recommendation. 

 

2.1 Relation mining of rating data 

For the sparsity of recommendation data, the main 

issue of capturing users’ dynamic preferences is the 

lack of useful information, which can be done from 

three sources – user profiles, item profiles and 

historical rating records. Classical algorithms highly 

rely on the co-rate relation, which is rare when the data 

is sparse. Required ratings are found using the co-rate 

relation, which is simple, intuitional and physically 

significant when we go one or two steps along, but it 

keeps limits to the amount of data used in each 

prediction. 

 

We try to find a different way to find useful ratings 

instead of searching neighboring nodes. We notice that 

when considering the factors which affect a rating r(u, 

i), we keep more focus on some attributes of u and i in 

their profiles, instead of the user himself or the item 

itself. For example, if the movie “Gone with the Wind” 

is given high ratings by middle-aged people and lower 

ratings by teenagers with no doubt, we first check on 

the age attribute in a user’s profile when predicting 

rating, instead of other descriptions of the user or how 

the user has rated other movies. It may not be 

necessary to stick only to the co-rate relation, and we 

introduce the semi-co-rate relation between ratings 

whose corresponding user profiles or item contents 

have similar or identical content in one or more 

attributes. 

 

 

 

Let U={uj}
m

j=1 be the entire user set with |U| = m,      

I= {ik}
n

k=1 be the entire item set with |I| = n, R be a 

m × n matrix such that its element Rj,k refers to the 

rating  user uj gave to item ik, and T be the 

corresponding time matrix such that Tj,k denotes the 

timestamp of Rj,k. We note the set whose ratings is 

semi-co-rate related with the candidate rating via the 

p-th attribute in user profile as   RU
p , and similarly we 

define RI
q , as shown in Fig. 2. If we note the set whose 

rating is co-rate related with the candidate rating via 

user as RU
0 and similarly we define RI

0 

, we have RU
0 =(∩pRu

p) and RI
0 =(∩qRi

q). Clearly the 

semi-co-rate is much looser than the co-rate relation, 

and now that we have found much more related ratings 

via the relation instead of co-rate, we take only one 

step neighboring nodes, (U pRu
p) U(U qRi

q) in this 

newly defined graph to keep consistency of utilized 

data. 

 

To avoid overwhelming computation in finding RU
p  (p 

=1, 2, ...) and RI
q (q = 1, 2, ...) for all user ratings and 

to solve the difficulty in quantification of some 

contents, classification and clustering are done as the 

content of each attribute in profiles of users and items, 

and R is then separated into rating subsets RU,c
 p  (c = 1, 

2, ...) or RI,c
q (c = 1, 2, ...) accordingly in actual 

implementation and c is the class number. For 

example, “Age” is the p-th attribute in user 

description, then R is divided into six  subsets for this 

attribute. With the help of clustering techniques like K-

Means on content of “Age”, we divide user age into 

different ranges on the basis of  relevant users’ ages of 

all ratings in R. Then for user rating Rj,k, we can 

conveniently find its neighboring ratings in our 

algorithm by reaching relevant subsets, which is done 

by matching each attribute content of uj and ik to the 

nearest subsets. We limit the size of each separated 

subset in online calculation, and the when new ratings 

are added in, then earliest ratings will be removed 

from the rating subset. Through these techniques, we 

introduced a general relation between ratings and an 

extended way of information mining in personalized 

recommendation. 
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2.2 Dynamic feature extraction 

Three kinds of methods were proposed in concept drift 

to deal with the drifting problem as instanceselection, 

time-window (usually time decay function) 

andensemble learning. Koren [4] also proposed an 

algorithm to isolate transient noise in data using 

temporal dynamics to help recommendation. These 

methods are useful to make progressin precision of 

dynamic recommendation, but some of the weaknesses 

of these methods are : decay functions cannot precisely 

describethe evolution of user preferences and only 

isolating transientnoise cannot catch up with the 

change in data. 

 

Here we propose a set of dynamic features to describe 

users’ multi-phase preferences in consideration of 

computation, flexibility and accuracy. It is impossible 

to learn weights of all ratings for every user, but it is 

possible to learn the general weights of ratings in the 

user’s different phases of interest if the phases include 

ranges of time that are long enough. For convenience 

of notation, we relabel all subsets RU,c
p and RI,c

 q 

acquired through the extended information mining as 

Rs (s = 1, 2, ...). 

 

To enable the features to describe users’ preferences, 

we divide each rating subset Rs into several secondary 

subsets Rd
 s (d = 1, 2, ...) with the help of the time 

distances between each rating in Rs and the candidate 

rating Rj,k, where each secondary subset is manually 

assigned with a range of time-distance, and then we 

use some basic algorithms loke time series analysis 

(TSA) calculate the features on each secondary 

subsets. 

 

The earlier ratings in the theory of time series analysis, 

should impact the predictive features less, and thus 

they should have lower weights. So if we perform TSA 

algorithm on a secondary subset of R (i.e. Rd
 s ) to get a 

feature feas,d, there is a formulation as: 

 
where #Rd

 s = o, Rd
 s,l (l = 1, 2, ..., o) are the rating 

values which are from the subset Rd s and listed in 

reversed time order. And positive weight parameters 

wl, (l = 1, 2, ..., o) and normalization factor w should 

satisfy 

 
 

Since the subsets are updated frequently, index 

smoothing, which is a classic TSA algorithms, is 

chosen as the basic TSA algorithm: 

 
 

Here  Rd
 s (d = 1, 2, ...) are the secondary subsets, Td (d 

= 1, 2, ...) are a sequence of time differences manually 

set, Rd
 s,l (l = 1, 2, ..., o) are the rating values listed in 

reversed order in the subset, μ is the forgetting factor 

for index smoothing. We have tested different values 

for mu in the experiments and set μ = 0.95 empirically. 

 

All f eas,d (d = 1, 2, ...) and the sizes of Rd s (d = 1, 2, 

...) are recorded as dynamic features. With the dynamic 

features,  we have to optimize their weights to get the 

best estimation of the user rating, and in this way we 

transformed the training of a recommendation model 

into  weight learning across different secondary rating 

subsets. Now that the features are related to phases of 

interest and latent relations between ratings, we would see 

how the preferences differ with each other in impacting 

the candidate rating by  analyzing optimal weights of the 

features. We can also see in Eq(3) that the feature 

extraction need not heavy computation. Finding all Rd 

needs only comparison in time s one by one, and the 

computation of f eas,d is very efficient, The proposed 

algorithm is termed as Multiple Phase Division (MPD). In  

this way we have proposed a flexible way of feature 

extraction. 

 

2.3 Adaptive weighting algorithm 

As features like f eas,d (s = 1, 2, ..., d = 1, 2, ...) 

gained by applying Multiple Phase Division are all 
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normalized rating values,  in other words, as content of user 

and item profiles have been quantified in the feature 

extraction, it is convenient for us to organize them for 

accurate rating estimation by adaptive weighting. Sizes 

of the relevant subsets are also recorded in MPD and 

can reflect data density. 

 

Rj,k is used to note the estimated rating ˆ that user uj 

could give to item ik at time point Tj,k, and the  adaptive 

linear model can be formulated as: formula (4) 

 

where sizes of relevant subsets are used as prior information in  

weighting the features to improve recommendation 

accuracy,  f eas,d (s = 1, 2, ..., d = 1, 2, ...) are the 

features calculated in Eq.(3), Rd s (s = 1, 2, ..., d = 1, 2, 

...) denote their relevant secondary rating subsets, buj 

and bik are binary functions denoting the relating state of 

candidate rating and relevant subset and s,d and  are 

weighting parameters which should balance the weights of 

features and data density, or, balance the affection of data 

consistency and quantity of information. In detail, buj (s) 

= 1 if Rj,k is semi-co-rate related with all ratings in 

secondary subset Rs through attribute of the user uj 

denoted by s, else buj (s) = 0, bik (s) = 1 if Rj,k is 

semi-co-rate related with all ratings in secondary subset 

Rs through  attribute of the item ik also denoted by s, 

else bik (s) = 0.   

 

 
It is difficult to solve all parameters in Eq.(4) at once, hence  

we use sequential optimization. Let  

 

s,d = s,d + (#Rd), s  (5) 

 

in Eq.(4) and we first solve for the combined weights 

δs,d (s = 1, 2, ..., d = 1, 2, ...) by minimizing the 

differences between prediction results of the 

recommendation algorithm and the real rating values 

in the training set, where RLS algorithm  [17] could be 

used for optimization, i.e.,

 
Here  RT rain is the training set or known rating set. But 

we notice that a user's preferences or an item's reputations 

are  commonly affected by only a few principle factors, 

indicating that using more features might also bring noise 

into the recom- mendation. So we changed the destination of 

the optimization and limited the quantity of the features by 

regularization, and  the training problem can be formulated 

as:  

 

 
 This is a normal LASSO optimization problem which 

can be solved via ADMM . Provided the δs are solved, 

we turn to the second step of the sequential 

optimization: to solve αs and β. To deal with the 

uncertainty in solving αs and β from Eq.(5), we 

introduce the generalization error like in SVM [19]. 

Here the generalization the generalization error is 

 

 
And we minimize it to gain satisfying performance as: 

 
 

Now we have a practical way of solving all the 

parameters. Firstly we solve δs from Eq.(7) using 

Lasso algorithm, then use Eq.(8) and Eq.(9) to 

compute αs and β. 

 

3.EXPERIMENTS 

3.1 Datasets 

Here we collect MovieLens 100k data1 and Netflix 

Competition data2 from online movie recommender 



 
 

 Page 2055 
 

service, and are two datasets in studying personalized 

recommendation. These two datasets contain abundant 

rating records which last in a reasonable time, and they 

are different in composition and dynamic nature of 

data. We use them for our case study. Time distances 

between the target rating and historical ratings are 

defined as time of interest, and we manually assigned 

6 time intervals to classify times of interest into 

multiple phases, i.e., within 1 day, 1 to 7 days, 1 to 4 

weeks, 1 to 3 months, 3 to 12 months and more than a 

year. 

 

3.2 Evaluation 

Accuracy indicator which is used frequently for 

predictive algorithms, Root-mean-square error 

(RMSE), is also used to evaluate the proposed 

algorithm.The training and testing data are randomly 

chosen for the experiments is not suitable for the 

evaluation of dynamic recommendation. With respect 

to general causality, it is a critical fact in dynamic 

recommendation that we can use only historical data 

but not future data for current prediction in real 

applications. Unfortunately, the fact is often ignored in 

previous studies. In traditional RMSE evaluations 

(even for the Netflix competition), training and testing 

data are randomly sampled and the train and test split 

is not based on time. This would produce current 

prediction based on future data. Even if it is 

guaranteed that testing instances of each user/item 

come later than its training instances, the 

aforementioned issue still exists in algorithms like 

IBCF and latent factor models due to the utilization of 

other users’ future ratings. 

 

To provide a better simulation of practical 

recommendation systems’ working in evaluation, we 

split training and testing data based on time in the 

same way and evaluate the accuracies of dynamic 

recommendation algorithms as follows: 

 

1) Sort the entire dataset in normal time order, use a 

certain training ratio to determine its splitting. 

2) Use the earlier part as the training set to adjust all 

parameters in the recommendation algorithm. 

3) Run algorithm on testing set, generate estimated rating 

for each user-item pair in testing set. 

4) Compare estimated ratings and real ratings in the testing 

set, and calculate RMSE. 

5) Use different ratios and repeat last four steps. 

 

3.3 Experiment setup 

Comparison of proposed algorithm with some 

representative and widely-used dynamic 

recommendation algorithms is done here. In the 

comparisons, all the competing algorithms were in 

online updating forms and their parameters were set to 

their empirically best. Here is the brief introduction of 

them. 

 

TimeSVD++ [4] is extended from SVD++  by 

accounting for temporal dynamics. TimeIBCF is 

extended from IBCF by accounting for temporal 

dynamics. Factorized Personalized Markov Chain 

(FPMC) [12] combines matrix factorization and 

markov chain together to handle both the sparsity and 

the dynamic nature of dynamic personalized 

recommendation. IBCF with time decay weights the 

similarities of CF by time decay functions to deal with 

the dynamic problems. Hierarchy CF is a hybrid of 

content-based and collaborative filtering methods 

using category information in items’ content. ICHM  

introduces group similarity by clustering to modify 

similarities in IBCF, and K-Means is adopted for the 

clustering of item content. 

 

3.4 Comparison results 

The performances of the algorithms on MovieLens 100k 

and Netflix Competition are reported is shown in fig 3. 

The proposed algorithm significantly outperforms the 

other algorithms in accuracy on MovieLens 100k and has 

comparable performance with timeSVD++ on Netflix 

Competition. On MovieLens 100k, the RMSE of the 

proposed algorithm is consistently the lowest, and the 

average RMSE of the proposed method is about 10%-

15% lower than other algorithms. On Netflix 

Competition, the accuracy of the proposed algorithm is 

comparable with timeSVD++, due to the lack of user 

profiles and lack of information in item profiles. The 
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experimental results also show that the proposed algorithm 

and timeIBCF are robust with time evolving, indicating that 

the proportion of ratings by new users or of new items does 

not change a lot. 

 

 
Fig. 3. Accuracy comparison (a)MovieLens 100k and  

(b)Netflix Competition. 

 

Comparing Fig. 3(a) and Fig. 3(b), we can infer that (i) 

the accuracies of algorithms would be enhanced when data, 

especially recent data, gets dense, and  

(ii) the utilization of profile content in the proposed 

algorithm is effective and helps improve the quality of 

recommendation. Compared to timeSVD++ and 

timeIBCF, in which only rating information is utilized, 

hybrid approaches make use of more information and may 

achieve better recommendation accuracies if the 

information mined is sufficient and the dynamic nature of 

data is well handled. The experimental results also show that 

users' preferences could be well described and learned by the 

MPD- based features. 

 

As the efficiency of common IBCF is high in all 

recommendation algorithms [1], [3], we listed the 

computational time cost of the proposed algorithm and 

IBCF on the dataset of MovieLens 100k in Table 1 to 

illustrate its efficiency. We can see that the proposed 

approach has a comparable computational cost with IBCF. 

The size of testing set and the difference of time consumed 

between two algorithms are inversely proportional.  

 

 
 

We applied the proposed algorithm on the data in each single 

phase defined before, and the RMSEs are calculated separately 

according to the definition of users' multiple phases of interest. 

In Fig. 4, we presented the RMSEs of the proposed recom 

mendation algorithms using the data in different phases 

of  interest at different training ratios. It is clear that the 

proposed algorithm is quite robust in the phases. 

 
Fig. 4. Accuracy of the proposed algorithm on 

different phases of interest. TR means training ratio. 

 

Comparing Fig. 4 with Fig. 3(a), we can see that the pro- 

posed algorithm has better performances than other 

algorithms even when it uses only the data in some single 
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phases. We can see that the accuracies become higher when we 

use all the data, which illustrated that mining and making 

use of more related data can provide more useful 

information. 

 

4.CONCLUSION 

In this paper, we did propose a dynamic personalized 

recommendation algorithm for sparse data, in which 

more rating data is utilized in one prediction by 

involving more neighboring ratings through each 

attribute in user and item profiles. A set of dynamic features 

are designed to describe the preference information based on 

TSA technique, and finally a recommendation is made by 

adaptively weighting the features with the help of  

information in multiple phases of interest. Experimental 

results indicate that the proposed algorithm is effective, 

and its computational cost is also reasonable  one. 
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