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Abstract—With cloud data services, it is 

commonplace for data to be not only stored in the 

cloud, but also shared across multiple users. 

Unfortunately, the integrity of cloud data is subject to 

skepticism due to the existence of hardware/software 

failures and human errors. Several mechanisms have 

been designed to allow both data owners and public 

verifiers to efficiently audit cloud data integrity 

without retrieving the entire data from the cloud 

server. However, public auditing on the integrity of 

shared data with these existing mechanisms will 

inevitably reveal confidential information — identity 

privacy — to public verifiers. In this paper, we 

propose a novel privacy-preserving mechanism that 

supports public auditing on shared data stored in the 

cloud. In particular, we exploit ring signatures to 

compute verification metadata needed to audit the 

correctness of shared data. With our mechanism, the 

identity of the signer on each block in shared data is 

kept private from public verifiers, who are able to 

efficiently verify shared data integrity without 

retrieving the entire file. In addition, our mechanism 

is able to perform multiple auditing tasks 

simultaneously instead of verifying them one by one. 

Our experimental results demonstrate the 

effectiveness and efficiency of our mechanism when 

auditing shared data integrity. 

Index Terms—Public auditing, privacy-preserving, 

shared data, cloud computing 

1 INTRODUCTION  

CLOUD service providers manage an enterprise-class 

infrastructure that offers a scalable, secure and reliable 

environment for users, at a much lower marginalcost 

due to the sharing nature of resources. It is routine for 

users to use cloud storage services to share data with 

others in a team, as data sharing becomes a standard 

feature in most cloud storage offerings, including 

Dropbox and Google Docs. The integrity of data in 

cloud storage, however, is subject to skepticism and 

scrutiny, as data stored in an untrusted cloud can easily 

be lost or corrupted, due to hardware failures and 

human errors [1]. To protect the integrity of cloud 

data, it is best to perform public auditing by 

introducing a third party auditor (TPA), who offers its 

auditing service with more powerful computation and 

communication abilities than regular users. The first 

provable data possession (PDP) mechanism [2] to 

perform public auditing is designed to check the 

correctness of data stored in an untrusted server, 

without retrieving the entire data. Moving a step 

forward, Wang et al. [3] (referred to as WWRL in this 

paper) is designed to construct a public auditing 

mechanism for cloud data, so that during public 

auditing, the content of private data belonging to a 

personal user is not disclosed to the third party auditor.  

We believe that sharing data among multiple users is 

perhaps one of the most engaging features that 

motivates cloud storage. A unique problem introduced 

during the process of public auditing for shared data in 

the cloud is how to preserve identity privacy from the 

TPA, because the identities of signers on shared data 

may indicate that a particular user in the group or a 

special block in shared data is a higher valuable target 

than others. For example, Alice and Bob work together 

as a group and share a file in the cloud. The shared file 

is divided into a number of small blocks, which are 

independently signed by users. Once a block in this 

shared file is modified by a user, this user needs to 
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sign the new block using her public/private key pair. 

The TPA needs to know the identity of the signer on 

each block in this shared file, so that it is able to audit 

the integrity of the whole file based on requests from 

Alice or Bob. 

 

As shown in Fig. 1, after performing several auditing 

tasks, some private and sensitive information may 

reveal to the TPA. On one hand, most of the blocks in 

shared file are signed by Alice, which may indicate 

that Alice is a important role in this group, such as a 

group leader. On the other hand, the 8-th block is 

frequently modified by different users. It means this 

block may contain highvalue data, such as a final bid 

in an auction, that Alice and Bob need to discuss and 

change it several times. As described in the example 

above, the identities of signers on shared data may 

indicate which user in the group or block in shared 

data is a higher valuable target than others. Such 

information is confidential to the group and should not 

be revealed to any third party. However, no existing 

mechanism in the literature is able to perform public 

auditing on shared data in the cloud while still 

preserving identity privacy. In this paper, we propose 

Oruta1, a new privacy preserving public auditing 

mechanism for shared data in an untrusted cloud.  

In Oruta, we utilize ring signatures [4], [5] to construct 

homomorphic authenticators [2], [6], so that the third 

party auditor is able to verify the integrity of shared 

data for a group of users without  etrieving the entire 

data — while the identity of the signer on each block 

in shared data is kept private from the TPA. In 

addition, we further extend our mechanism to support 

batch auditing, which can audit multiple shared data 

simultaneously in a single auditing task. Meanwhile, 

Oruta continues to use random masking [3] to support 

data privacy during public auditing, and leverage index 

hash tables [7] to support fully dynamic operations on 

shared data. A dynamic operation indicates an insert, 

delete or update operation on a single block in shared 

data. A high-level comparison between Oruta and 

existing mechanisms in the literature is shown in Table 

1. To our best knowledge, this paper represents the 

first attempt towards designing an effective privacy 

preserving public auditing mechanism for shared data.

 

verifier. In addition, we further extend our mechanism 

to support batch auditing, which can perform multiple 

auditing tasks simultaneously and improve the 

efficiency of verification for multiple auditing tasks. 

Meanwhile, Oruta is compatible with random masking 

[5], which has been utilized in WWRL and can 

preserve data privacy from public verifiers. Moreover, 

we also leverage index hash tables from a previous 

public auditing solution [15] to support dynamic data.  

A high-level comparison among Oruta and existing 

mechanisms is presented in Table 1. The remainder of 

this paper is organized as follows. In Section 2, we 

present the system model, threat model and design 

objectives. In Section 3, we introduce cryptographic 

primitives used in Oruta. The detailed design and 

security analysis of Oruta are presented in Section 4 

and Section 5. In Section 6, we evaluate the 

performance of Oruta. Finally, we briefly discuss 

related work in Section 7, and conclude this paper in 

Section 8.  Section 8. 
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2 PROBLEM STATEMENT 

2.1 System Model 

As illustrated in Fig. 2, the system model in this paper 

involves three parties: the cloud server, a group of 

users and a public verifier. There are two types of 

users in a group: the original user and a number of 

group users. The original user initially creates shared 

data in the cloud, and shares it with group users. Both 

the original user and group users are members of the 

group. Every member of the group is allowed to access 

and modify shared data. Shared data and its 

verification metadata (i.e. signatures) are both stored in 

the cloud server. A public verifier, such as a third-

party auditor (TPA) providing expert data auditing 

services or a data user outside the group intending to 

utilize shared data, is able to publicly verify the 

integrity of shared data stored in the cloud server. 

When a public verifier wishes to check the integrity of 

shared data, it first sends an auditing challenge to the 

cloud server. After receiving the auditing challenge, 

the cloud server responds to the public verifier with an 

auditing proof of the possession of shared data. Then, 

this public verifier checks the correctness of the entire 

data by verifying the correctness of the auditing proof. 

Essentially, the process of public auditing is a 

challengeand-response protocol between a public 

verifier and the cloud server [9].  

2.2 Threat Model Integrity Threats. Two kinds of 

threats related to the integrity of shared data are 

possible. First, an adversary may try to corrupt the 

integrity of shared data. Second, 

 

the cloud service provider may inadvertently corrupt 

(or even remove) data in its storage due to hardware 

failures and human errors. Making matters worse, the 

cloud service provider is economically motivated, 

which means it may be reluctant to inform users about 

such corruption of data in order to save its reputation 

and avoid losing profits of its services. Privacy 

Threats. The identity of the signer on each block in 

shared data is private and confidential to the group. 

During the process of auditing, a public verifier, who 

is only allowed to verify the correctness of shared data 

integrity, may try to reveal the identity of the signer on 

each block in shared data based on verification 

metadata. Once the public verifier reveals the identity 

of the signer on each block, it can easily distinguish a 

highvalue target (a particular user in the group or a 

special block in shared data) from others.  

2.3 Design Objectives Our mechanism, Oruta, 

should be designed to achieve following properties: (1) 

Public Auditing: A public veri- fier is able to publicly 

verify the integrity of shared data without retrieving 

the entire data from the cloud. (2) Correctness: A 

public verifier is able to correctly verify shared data 

integrity. (3) Unforgeability: Only a user in the group 

can generate valid verification metadata (i.e., 

signatures) on shared data. (4) Identity Privacy: A 

public verifier cannot distinguish the identity of the 

signer on each block in shared data during the process 

of auditing.  

2.4 Possible Alternative Approaches To preserve the 

identity of the signer on each block during public 

auditing, one possible alternative approach is to ask all 

the users of the group to share a global private key 

[22], [23]. Then, every user is able to sign blocks with 

this global private key. However, once one user of the 

group is compromised or leaving the group, a new 

global private key must be generated and securely 

shared among the rest of the group, which clearly 

introduces huge overhead to users in terms of key 

management and key distribution. While in our 

solution, each user in the rest of the group can still 

utilize its own private key for computing verification 

metadata without generating or sharing any new secret 
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keys. Another possible approach to achieve identity 

privacy, is to add a trusted proxy between a group of 

users and the cloud in the system model. More 

concretely, each member’s data is collected, signed, 

and uploaded to the cloud by this trusted proxy, then a 

public verifier can only verify and learn that it is the 

proxy signs the data, but cannot learn the identities of 

group members. Yet, the security of this method is 

threatened by the single point failure of the proxy. 

Besides, sometimes, not all the group members would 

like to trust the same proxy for generating signatures 

and uploading data on their behalf. Utilizing group 

signatures [24] is also an alternative option to preserve 

identity privacy. Unfortunately, as shown in our recent 

work [25], how to design an efficient public auditing 

mechanism based on group signatures remains open2 . 

Trusted Computing offers another possible alternative 

approach to achieve the design objectives of our 

mechanism. Specifically, by utilizing Direct 

Anonymous Attestation [26], which is adopted by the 

Trusted Computing Group as the anonymous method 

for remote authentication in Trusted Platform Module, 

users are able to preserve their identity privacy on 

shared data from a public verifier. The main problem 

with this approach is that it requires all the users using 

designed hardware, and needs the cloud provider to 

move all the existing cloud services to the trusted 

computing environment, which would be costly and 

impractical.  

3 PRELIMINARIES 

In this section, we briefly introduce cryptographic 

primitives and their corresponding properties that we 

implement in Oruta. 

3.1 Bilinear Maps 

We first introduce a few concepts and properties re-

lated to bilinear maps. We follow notations from [5], 

[9]: 

1) G1, G2 and GT are three multiplicative cyclic 

groups of prime order p; 

2) g1 is a generator of G1, and g2 is a generator of 

G2; 

3) ψ is a computable isomorphism from G2 to G1, 

with ψ(g2) = g1; 

4) e is a bilinear map e: G1 × G2 → GT with the 

following properties: Computability: there 

existsan efficiently computable algorithm for 

computing the map e. Bilinearity: for all u ∈ G1, 

v ∈ G2 and a, b ∈ Zp, e(ua, vb) = e(u, v)ab. Non-

degeneracy: 

e(g1, g2) =6 1. 

These properties further imply two additional proper-

ties: (1) for any u1, u2 ∈ G1 and v ∈ G2, e(u1 · u2, v) = 

e(u1, v) · e(u2, v); (2) for any u, v ∈ G2, e(ψ(u), v) = 

e(ψ(v), u). 

3.2 Complexity Assumptions 

1:  Discrete  Logarithm  Problem.  For a ∈ Zp, given 

g, h = ga ∈ G1, output a. 

The Discrete Logarithm assumption holds in G1 if no t-

time algorithm has advantage at least ǫ in solving the 

Discrete Logarithm problem in G1, which means it is 

computational infeasible to solve the Discrete 

Logarithm problem in G1. 

3.3 Ring Signatures 

The concept of ring signatures is first proposed by 

Rivest et al. [4] in 2001. With ring signatures, a 

verifier is convinced that a signature is computed using 

one of group members’ private keys, but the verifier is 

not able to determine which one. This property can be 

used to preserve the identity of the signer from a 

verifier. The ring signature scheme introduced by 

Boneh et al. [5] (referred to as BGLS in this paper) is 

constructed on bilinear maps. We will extend this ring 

signature scheme to construct our public auditing 

mechanism. 

4 HOMOMORPHIC    AUTHENTICABLE    

RING SIGNATURES 

4.1 Overview 

In this section, we introduce a new ring signature 

scheme, which is suitable for public auditing. Then, we 

will show how to build the privacy-preserving public 

auditing mechanism for shared data in the cloud based 

on this new ring signature scheme in the next section. 

As we introduced in previous sections, we intend to 
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utilize ring signatures to hide the identity of the signer 

on each block, so that private and sensitive information 

of the group is not disclosed to the TPA. However, 

traditional ring signatures [4], [5] cannot be directly 

used into public auditing mechanisms, because these 

ring signature schemes do not support blockless 

verification. Without blockless verification, the TPA 

has to download the whole data file to verify the 

correctness of shared data, which consumes excessive 

bandwidth and takes long verification times. 

Therefore, we first construct a new homomorphic 

authenticable ring signature (HARS) scheme, which is 

extended from a classic ring signature scheme [5], de-

noted as BGLS. The ring signatures generated by 

HARS is able not only to preserve identity privacy but 

also to support blockless verification. 

4.2 Construction of HARS 

HARS contains three algorithms: KeyGen, RingSign 

and RingVerify. In KeyGen, each user in the group 

generates her public key and private key. In RingSign, 

a user in the group is able to sign a block with her 

private key and all the group members’ public keys. A 

verifier is allowed to check whether a given block is 

signed by a group member in RingVerify. Scheme 

Details. Let G1, G2 and GT be multiplicative cyclic 

groups of order p, g1 and g2 be generators of G1 and G2 

respectively. Let e : G1 × G2 → GT be a bilinear map, 

and ψ : G2 → G1 be a computable isomorphism with 

ψ(g2) = g1. There is a public map-to-point hash 

function H1: {0, 1}∗ → G1. The global parameters are 

(e, ψ, p, G1, G2, GT , g1, g2, H1). The total number of 

users in the group is d. Let U denote the group that 

includes all the d users. 

4.3 Security Analysis of HARS 

Now, we discuss some important properties of HARS, 

including correctness, unforgeability, blockless 

verifica-tion, non-malleability and identity privacy.  

THEOREM 1: Given any block and its ring signature, 

a verifier is able to correctly check the integrity of this 

block under HARS. Proof: To prove the correctness of 

HARS is equiva-lent of proving Equation (3) is 

correct. Based on prop-erties of bilinear maps, the 

correctness of this equation can be proved as follows: 

 

5 PRIVACY-PRESERVING PUBLIC AUDITING 

FOR SHARED DATA IN THE CLOUD 

5.1 Overview 

Using HARS and its properties we established in the 

previous section, we now construct Oruta, our privacy 

preserving public auditing mechanism for shared data 

in the cloud. With Oruta, the TPA can verify the 

integrity of shared data for a group of users without 

retrieving the entire data. Meanwhile, the identity of 

the signer on each block in shared data is kept private 

from the TPA during the auditing. 

5.2 Reduce Signature Storage 

Another important issue we should consider in the 

construction of Oruta is the size of storage used for 

ring signatures. According to the generation of ring 

signatures in HARS, a block m is an element of Zp and 

its ring signature contains d elements of G1, where G1 

is a cyclic group with order p. It means a |p|-bit block 

requires a d × |p|-bit ring signature, which forces users 

to spend a huge amount of space on storing ring 

signatures. It is very frustrating for users, because 

cloud service providers, such as Amazon, will charge 

users based on the storage space they used. To reduce 

the storage for ring signatures and still allow the TPA 

to audit shared data efficiently, we exploit an 

aggregated approach from [6]. Specifically, we 

aggregate a block mj = (mj,1, ...,mj,k) 2 Zk p in shared 

data as Qk l=1 _mj,l instead of computing gm 1 in 

Equation (1), where _1, ..., _k are random values of 

G1. With the aggregation, the length of a ring 
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signature is only d/k of the length of a block. Similar 

methods to reduce the storage space of signatures can 

also be found in [7]. Generally, to obtain a smaller size 

of a ring signature than the size of a block, we choose 

k > d. As a trade-off, the communication cost will be 

increasing with an increase of k. 

5.3 Support Dynamic Operations 

To enable each user in the group to easily modify data 

in the cloud and share the latest version of data with 

the rest of the group, Oruta should also support 

dynamic operations on shared data. An dynamic 

operation includes an insert, delete or update operation 

on a single block. However, since the computation of a 

ring signature includes an identifier of a block (as 

presented in HARS), traditional methods, which only 

use the index of a block as its identifier, are not 

suitable for supporting dynamic operations on shared 

data. The reason is that,when a user modifies a single 

block in shared data by performing an insert or delete 

operation, the indices of blocks that after the modified 

block are all changed (as shown in Figure 3 and 4), 

and the changes of these indices require users to re-

compute the signatures of these blocks, even though 

the content of these blocks are not modified. 

6 PERFORMANCE 

In this section, we first analysis the computation and 

communication costs of Oruta, and then evaluate the 

performance of Oruta in experiments. 

6.1 Computation Cost 

The main cryptographic operations used in Oruta in-

clude multiplications, exponentiations, pairing and 

hash-ing operations. For simplicity, we omit additions 

in the following discussion, because they are much 

easier to be computed than the four types of operations 

mentioned above. During auditing, the TPA first 

generates some random values to construct the 

auditing message, which only in-troduces a small cost 

in computation. Then, after receiv-ing the auditing 

message, the cloud server needs to com-pute a proof 

{λ,µ,φ, {idj }j∈J }. The computation cost of calculating 

a proof is about (k + dc)ExpG1 + dcMulG1 + ckMulZp + 

kHashZp , where ExpG1 denotes the cost of computing 

one exponentiation in G1, MulG1 denotes the cost of 

computing one multiplication in G1, MulZp and HashZp 

respectively denote the cost of computing one 

multiplcation and one hashing operation in Zp. To 

check the correctness of the proof {λ,µ,φ, {idj }j∈J }, 

the TPA verifies it based on Equation (6). The total 

cost of verifying the proof is (2k + c)ExpG1 + (2k + 

c)MulG1 + dMulGT + cHashG1 + (d + 2)PairG1,G2 . We 

use PairG1 ,G2 to denote the cost of computing one 

pairing operation in G1 and G2. 

6.2 Communication Cost 

The communication cost of Oruta is mainly intro-

duced by two factors: the auditing message and the 

auditing proof.  

 

 

For each auditing message {j, yj }j∈J , the 

communication cost is c(|q| + |n|) bits, where |q| is the 

length of an element of Zq and |n| is the length of an 

index. Each auditing = {_,μ,_, {idj}j2J } contains 

(k+d) elements of G1, k elements of Zp and c. 
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6.3 Experimental Results 

We now evaluate the efficiency of Oruta in 

experiments.To implement these complex 

cryptographic operations that we mentioned before, we 

utilize the GNU Multiple Precision Arithmetic 

(GMP)2 library and Pairing Based Cryptography 

(PBC)3 library. All the following experiments are 

based on C and tested on a 2.26 GHz Linux system 

over 1, 000 times. Because Oruta needs more 

exponentiations than pairing operations during the 

process of auditing, the elliptic curve we choose in our 

experiments is an MNT curve with a base field size of 

159 bits, which has a better performance than other 

curves on computing exponentiations. We choose |p| = 

160 bits and |q| = 80 bits. We assume the total number 

of blocks in shared data is n = 1, 000, 000 and |n| = 20 

bits. The size of shared data is 2 GB. To keep the 

detection probability greater than 99%, we set the 

number of selected blocks in an auditing task as c = 

460 [2]. If only 300 blocks are selected, the detection 

probability is greater than 95%. We also assume the 

size of the group d 2 [2, 20] in the following 

experiments. Certainly, if a larger group size is used, 

the total computation cost will increase due to the 

increasing number of exponentiations and pairing. 

7 RELATED WORK 

Provable data possession (PDP), first proposed by 

Ateniese et al. [2], allows a verifier to check the 

correct-ness of a client’s data stored at an untrusted 

server. By utilizing RSA-based homomorphic 

authenticators and sampling strategies, the verifier is 

able to publicly audit the integrity of data without 

retrieving the entire data, which is referred to as public 

verifiability or public auditing. Unfortunately, their 

mechanism is only suitable for auditing the integrity of 

static data. Juels and Kaliski [13] defined another 

similar model called proofs of re-trievability (POR), 

which is also able to check the correct-ness of data on 

an untrusted server. The original file is added with a 

set of randomly-valued check blocks called sentinels. 

The verifier challenges the untrusted server by 

specifying the positions of a collection of sentinels and 

asking the untrusted server to return the associated 

sentinel values. Shacham and Waters [6] designed two 

improved POR schemes. The first scheme is built from 

BLS signatures, and the second one is based on 

pseudo-random functions. To support dynamic 

operations on data, Ateniese et al. [14] presented an 

efficient PDP mechanism based on symmetric keys.  

This mechanism can support update and delete 

operations on data, however, insert opera-tions are not 

available in this mechanism. Because it exploits 

symmetric keys to verify the integrity of data, it is not 

public verifiable and only provides a user with a 

limited number of verification requests. Wang et al. 

uti-lized Merkle Hash Tree and BLS signatures [9] to 

support fully dynamic operations in a public auditing 

mecha-nism. Erway et al. [15] introduced dynamic 

provable data possession (DPDP) by using 

authenticated dictionaries,which are based on rank 

information. Zhu et al. exploited the fragment structure 

to reduce the storage of signa-tures in their public 

auditing mechanism. In addition, they also used index 

hash tables to provide dynamic operations for users.  

The public mechanism proposed by Wang et al. [3] is 

able to preserve users’ confidential data from the TPA 

by using random maskings. In addition, to operate 

multiple auditing tasks from different users efficiently, 

they extended their mechanism to enable batch 

auditing by leveraging aggregate signatures [5]. Wang 

et al. [16] leveraged homomorphic tokens to ensure the 

correctness of erasure codes-based data dis-tributed on 

multiple servers. This mechanism is able not only to 

support dynamic operations on data, but also to 

identify misbehaved servers.  

To minimize com-munication overhead in the phase of 

data repair, Chen et al. [17] also introduced a 

mechanism for auditing the correctness of data with 

the multi-server scenario, where these data are 

encoded by network coding instead of using erasure 

codes. More recently, Cao et al. [18] constructed an 

LT codes-based secure and reliable cloud storage 

mechanism. Compare to previous work [16], [17], this 

mechanism can avoid high decoding computation cost 

for data users and save computation resource for 
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online data owners during data repair. To prevent 

special attacks exist in remote data storage system with 

deduplication, Halevi et al. [19] introduced the 

notation of proofs-of-ownership (POWs), which al-

lows a client to prove to a server that she actually 

holds a data file, rather than just some hash values of 

the data file. Zheng et al. [20] further discussed that 

POW and PDP can co-exist under the same 

framework. Recently, Franz et al. [21] proposed an 

oblivious out-sourced storage scheme based on 

Oblivious RAM tech-niques, which is able to hide 

users’ access patterns on outsourced data from an 

untrusted cloud. Vimercati et al. [22] utilize shuffle 

index structure to protect users’ access patterns on 

outsourced data. 

8 CONCLUSION 

In this paper, we propose Oruta, the first privacy-

preserving public auditing mechanism for shared data 

in the cloud. We utilize ring signatures to construct 

homomorphic authenticators, so the TPA is able to 

audit the integrity of shared data, yet cannot 

distinguish who is the signer on each block, which can 

achieve identity privacy. To improve the efficiency of 

verification for mul-tiple auditing tasks, we further 

extend our mechanism to support batch auditing. An 

interesting problem in our future work is how to 

efficiently audit the integrity of shared data with 

dynamic groups while still preserving the identity of 

the signer on each block from the third party auditor. 
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