

 Page 1890

Oruta: Privacy-Preserving Public Auditing for Shared Data in the

Cloud

Nalla Karthik Reddy

M.Tech Student,

Department of CSE,

AMR Institute of Technology,

Mavala, T.S, India.

Miss. Sara Anjum

Assistant Professor

Department of CSE,

AMR Institute of Technology,

Mavala, T.S, India.

Abstract—With cloud data services, it is

commonplace for data to be not only stored in the

cloud, but also shared across multiple users.

Unfortunately, the integrity of cloud data is subject to

skepticism due to the existence of hardware/software

failures and human errors. Several mechanisms have

been designed to allow both data owners and public

verifiers to efficiently audit cloud data integrity

without retrieving the entire data from the cloud

server. However, public auditing on the integrity of

shared data with these existing mechanisms will

inevitably reveal confidential information — identity

privacy — to public verifiers. In this paper, we

propose a novel privacy-preserving mechanism that

supports public auditing on shared data stored in the

cloud. In particular, we exploit ring signatures to

compute verification metadata needed to audit the

correctness of shared data. With our mechanism, the

identity of the signer on each block in shared data is

kept private from public verifiers, who are able to

efficiently verify shared data integrity without

retrieving the entire file. In addition, our mechanism

is able to perform multiple auditing tasks

simultaneously instead of verifying them one by one.

Our experimental results demonstrate the

effectiveness and efficiency of our mechanism when

auditing shared data integrity.

Index Terms—Public auditing, privacy-preserving,

shared data, cloud computing

1 INTRODUCTION

CLOUD service providers manage an enterprise-class

infrastructure that offers a scalable, secure and reliable

environment for users, at a much lower marginalcost

due to the sharing nature of resources. It is routine for

users to use cloud storage services to share data with

others in a team, as data sharing becomes a standard

feature in most cloud storage offerings, including

Dropbox and Google Docs. The integrity of data in

cloud storage, however, is subject to skepticism and

scrutiny, as data stored in an untrusted cloud can easily

be lost or corrupted, due to hardware failures and

human errors [1]. To protect the integrity of cloud

data, it is best to perform public auditing by

introducing a third party auditor (TPA), who offers its

auditing service with more powerful computation and

communication abilities than regular users. The first

provable data possession (PDP) mechanism [2] to

perform public auditing is designed to check the

correctness of data stored in an untrusted server,

without retrieving the entire data. Moving a step

forward, Wang et al. [3] (referred to as WWRL in this

paper) is designed to construct a public auditing

mechanism for cloud data, so that during public

auditing, the content of private data belonging to a

personal user is not disclosed to the third party auditor.

We believe that sharing data among multiple users is

perhaps one of the most engaging features that

motivates cloud storage. A unique problem introduced

during the process of public auditing for shared data in

the cloud is how to preserve identity privacy from the

TPA, because the identities of signers on shared data

may indicate that a particular user in the group or a

special block in shared data is a higher valuable target

than others. For example, Alice and Bob work together

as a group and share a file in the cloud. The shared file

is divided into a number of small blocks, which are

independently signed by users. Once a block in this

shared file is modified by a user, this user needs to

 Page 1891

sign the new block using her public/private key pair.

The TPA needs to know the identity of the signer on

each block in this shared file, so that it is able to audit

the integrity of the whole file based on requests from

Alice or Bob.

As shown in Fig. 1, after performing several auditing

tasks, some private and sensitive information may

reveal to the TPA. On one hand, most of the blocks in

shared file are signed by Alice, which may indicate

that Alice is a important role in this group, such as a

group leader. On the other hand, the 8-th block is

frequently modified by different users. It means this

block may contain highvalue data, such as a final bid

in an auction, that Alice and Bob need to discuss and

change it several times. As described in the example

above, the identities of signers on shared data may

indicate which user in the group or block in shared

data is a higher valuable target than others. Such

information is confidential to the group and should not

be revealed to any third party. However, no existing

mechanism in the literature is able to perform public

auditing on shared data in the cloud while still

preserving identity privacy. In this paper, we propose

Oruta1, a new privacy preserving public auditing

mechanism for shared data in an untrusted cloud.

In Oruta, we utilize ring signatures [4], [5] to construct

homomorphic authenticators [2], [6], so that the third

party auditor is able to verify the integrity of shared

data for a group of users without etrieving the entire

data — while the identity of the signer on each block

in shared data is kept private from the TPA. In

addition, we further extend our mechanism to support

batch auditing, which can audit multiple shared data

simultaneously in a single auditing task. Meanwhile,

Oruta continues to use random masking [3] to support

data privacy during public auditing, and leverage index

hash tables [7] to support fully dynamic operations on

shared data. A dynamic operation indicates an insert,

delete or update operation on a single block in shared

data. A high-level comparison between Oruta and

existing mechanisms in the literature is shown in Table

1. To our best knowledge, this paper represents the

first attempt towards designing an effective privacy

preserving public auditing mechanism for shared data.

verifier. In addition, we further extend our mechanism

to support batch auditing, which can perform multiple

auditing tasks simultaneously and improve the

efficiency of verification for multiple auditing tasks.

Meanwhile, Oruta is compatible with random masking

[5], which has been utilized in WWRL and can

preserve data privacy from public verifiers. Moreover,

we also leverage index hash tables from a previous

public auditing solution [15] to support dynamic data.

A high-level comparison among Oruta and existing

mechanisms is presented in Table 1. The remainder of

this paper is organized as follows. In Section 2, we

present the system model, threat model and design

objectives. In Section 3, we introduce cryptographic

primitives used in Oruta. The detailed design and

security analysis of Oruta are presented in Section 4

and Section 5. In Section 6, we evaluate the

performance of Oruta. Finally, we briefly discuss

related work in Section 7, and conclude this paper in

Section 8. Section 8.

 Page 1892

2 PROBLEM STATEMENT

2.1 System Model

As illustrated in Fig. 2, the system model in this paper

involves three parties: the cloud server, a group of

users and a public verifier. There are two types of

users in a group: the original user and a number of

group users. The original user initially creates shared

data in the cloud, and shares it with group users. Both

the original user and group users are members of the

group. Every member of the group is allowed to access

and modify shared data. Shared data and its

verification metadata (i.e. signatures) are both stored in

the cloud server. A public verifier, such as a third-

party auditor (TPA) providing expert data auditing

services or a data user outside the group intending to

utilize shared data, is able to publicly verify the

integrity of shared data stored in the cloud server.

When a public verifier wishes to check the integrity of

shared data, it first sends an auditing challenge to the

cloud server. After receiving the auditing challenge,

the cloud server responds to the public verifier with an

auditing proof of the possession of shared data. Then,

this public verifier checks the correctness of the entire

data by verifying the correctness of the auditing proof.

Essentially, the process of public auditing is a

challengeand-response protocol between a public

verifier and the cloud server [9].

2.2 Threat Model Integrity Threats. Two kinds of

threats related to the integrity of shared data are

possible. First, an adversary may try to corrupt the

integrity of shared data. Second,

the cloud service provider may inadvertently corrupt

(or even remove) data in its storage due to hardware

failures and human errors. Making matters worse, the

cloud service provider is economically motivated,

which means it may be reluctant to inform users about

such corruption of data in order to save its reputation

and avoid losing profits of its services. Privacy

Threats. The identity of the signer on each block in

shared data is private and confidential to the group.

During the process of auditing, a public verifier, who

is only allowed to verify the correctness of shared data

integrity, may try to reveal the identity of the signer on

each block in shared data based on verification

metadata. Once the public verifier reveals the identity

of the signer on each block, it can easily distinguish a

highvalue target (a particular user in the group or a

special block in shared data) from others.

2.3 Design Objectives Our mechanism, Oruta,

should be designed to achieve following properties: (1)

Public Auditing: A public veri- fier is able to publicly

verify the integrity of shared data without retrieving

the entire data from the cloud. (2) Correctness: A

public verifier is able to correctly verify shared data

integrity. (3) Unforgeability: Only a user in the group

can generate valid verification metadata (i.e.,

signatures) on shared data. (4) Identity Privacy: A

public verifier cannot distinguish the identity of the

signer on each block in shared data during the process

of auditing.

2.4 Possible Alternative Approaches To preserve the

identity of the signer on each block during public

auditing, one possible alternative approach is to ask all

the users of the group to share a global private key

[22], [23]. Then, every user is able to sign blocks with

this global private key. However, once one user of the

group is compromised or leaving the group, a new

global private key must be generated and securely

shared among the rest of the group, which clearly

introduces huge overhead to users in terms of key

management and key distribution. While in our

solution, each user in the rest of the group can still

utilize its own private key for computing verification

metadata without generating or sharing any new secret

 Page 1893

keys. Another possible approach to achieve identity

privacy, is to add a trusted proxy between a group of

users and the cloud in the system model. More

concretely, each member’s data is collected, signed,

and uploaded to the cloud by this trusted proxy, then a

public verifier can only verify and learn that it is the

proxy signs the data, but cannot learn the identities of

group members. Yet, the security of this method is

threatened by the single point failure of the proxy.

Besides, sometimes, not all the group members would

like to trust the same proxy for generating signatures

and uploading data on their behalf. Utilizing group

signatures [24] is also an alternative option to preserve

identity privacy. Unfortunately, as shown in our recent

work [25], how to design an efficient public auditing

mechanism based on group signatures remains open2 .

Trusted Computing offers another possible alternative

approach to achieve the design objectives of our

mechanism. Specifically, by utilizing Direct

Anonymous Attestation [26], which is adopted by the

Trusted Computing Group as the anonymous method

for remote authentication in Trusted Platform Module,

users are able to preserve their identity privacy on

shared data from a public verifier. The main problem

with this approach is that it requires all the users using

designed hardware, and needs the cloud provider to

move all the existing cloud services to the trusted

computing environment, which would be costly and

impractical.

3 PRELIMINARIES

In this section, we briefly introduce cryptographic

primitives and their corresponding properties that we

implement in Oruta.

3.1 Bilinear Maps

We first introduce a few concepts and properties re-

lated to bilinear maps. We follow notations from [5],

[9]:

1) G1, G2 and GT are three multiplicative cyclic

groups of prime order p;

2) g1 is a generator of G1, and g2 is a generator of

G2;

3) ψ is a computable isomorphism from G2 to G1,

with ψ(g2) = g1;

4) e is a bilinear map e: G1 × G2 → GT with the

following properties: Computability: there

existsan efficiently computable algorithm for

computing the map e. Bilinearity: for all u ∈ G1,

v ∈ G2 and a, b ∈ Zp, e(ua, vb) = e(u, v)ab. Non-

degeneracy:

e(g1, g2) =6 1.

These properties further imply two additional proper-

ties: (1) for any u1, u2 ∈ G1 and v ∈ G2, e(u1 · u2, v) =

e(u1, v) · e(u2, v); (2) for any u, v ∈ G2, e(ψ(u), v) =

e(ψ(v), u).

3.2 Complexity Assumptions

1: Discrete Logarithm Problem. For a ∈ Zp, given

g, h = ga ∈ G1, output a.

The Discrete Logarithm assumption holds in G1 if no t-

time algorithm has advantage at least ǫ in solving the

Discrete Logarithm problem in G1, which means it is

computational infeasible to solve the Discrete

Logarithm problem in G1.

3.3 Ring Signatures

The concept of ring signatures is first proposed by

Rivest et al. [4] in 2001. With ring signatures, a

verifier is convinced that a signature is computed using

one of group members’ private keys, but the verifier is

not able to determine which one. This property can be

used to preserve the identity of the signer from a

verifier. The ring signature scheme introduced by

Boneh et al. [5] (referred to as BGLS in this paper) is

constructed on bilinear maps. We will extend this ring

signature scheme to construct our public auditing

mechanism.

4 HOMOMORPHIC AUTHENTICABLE

RING SIGNATURES

4.1 Overview

In this section, we introduce a new ring signature

scheme, which is suitable for public auditing. Then, we

will show how to build the privacy-preserving public

auditing mechanism for shared data in the cloud based

on this new ring signature scheme in the next section.

As we introduced in previous sections, we intend to

 Page 1894

utilize ring signatures to hide the identity of the signer

on each block, so that private and sensitive information

of the group is not disclosed to the TPA. However,

traditional ring signatures [4], [5] cannot be directly

used into public auditing mechanisms, because these

ring signature schemes do not support blockless

verification. Without blockless verification, the TPA

has to download the whole data file to verify the

correctness of shared data, which consumes excessive

bandwidth and takes long verification times.

Therefore, we first construct a new homomorphic

authenticable ring signature (HARS) scheme, which is

extended from a classic ring signature scheme [5], de-

noted as BGLS. The ring signatures generated by

HARS is able not only to preserve identity privacy but

also to support blockless verification.

4.2 Construction of HARS

HARS contains three algorithms: KeyGen, RingSign

and RingVerify. In KeyGen, each user in the group

generates her public key and private key. In RingSign,

a user in the group is able to sign a block with her

private key and all the group members’ public keys. A

verifier is allowed to check whether a given block is

signed by a group member in RingVerify. Scheme

Details. Let G1, G2 and GT be multiplicative cyclic

groups of order p, g1 and g2 be generators of G1 and G2

respectively. Let e : G1 × G2 → GT be a bilinear map,

and ψ : G2 → G1 be a computable isomorphism with

ψ(g2) = g1. There is a public map-to-point hash

function H1: {0, 1}∗ → G1. The global parameters are

(e, ψ, p, G1, G2, GT , g1, g2, H1). The total number of

users in the group is d. Let U denote the group that

includes all the d users.

4.3 Security Analysis of HARS

Now, we discuss some important properties of HARS,

including correctness, unforgeability, blockless

verifica-tion, non-malleability and identity privacy.

THEOREM 1: Given any block and its ring signature,

a verifier is able to correctly check the integrity of this

block under HARS. Proof: To prove the correctness of

HARS is equiva-lent of proving Equation (3) is

correct. Based on prop-erties of bilinear maps, the

correctness of this equation can be proved as follows:

5 PRIVACY-PRESERVING PUBLIC AUDITING

FOR SHARED DATA IN THE CLOUD

5.1 Overview

Using HARS and its properties we established in the

previous section, we now construct Oruta, our privacy

preserving public auditing mechanism for shared data

in the cloud. With Oruta, the TPA can verify the

integrity of shared data for a group of users without

retrieving the entire data. Meanwhile, the identity of

the signer on each block in shared data is kept private

from the TPA during the auditing.

5.2 Reduce Signature Storage

Another important issue we should consider in the

construction of Oruta is the size of storage used for

ring signatures. According to the generation of ring

signatures in HARS, a block m is an element of Zp and

its ring signature contains d elements of G1, where G1

is a cyclic group with order p. It means a |p|-bit block

requires a d × |p|-bit ring signature, which forces users

to spend a huge amount of space on storing ring

signatures. It is very frustrating for users, because

cloud service providers, such as Amazon, will charge

users based on the storage space they used. To reduce

the storage for ring signatures and still allow the TPA

to audit shared data efficiently, we exploit an

aggregated approach from [6]. Specifically, we

aggregate a block mj = (mj,1, ...,mj,k) 2 Zk p in shared

data as Qk l=1 _mj,l instead of computing gm 1 in

Equation (1), where _1, ..., _k are random values of

G1. With the aggregation, the length of a ring

 Page 1895

signature is only d/k of the length of a block. Similar

methods to reduce the storage space of signatures can

also be found in [7]. Generally, to obtain a smaller size

of a ring signature than the size of a block, we choose

k > d. As a trade-off, the communication cost will be

increasing with an increase of k.

5.3 Support Dynamic Operations

To enable each user in the group to easily modify data

in the cloud and share the latest version of data with

the rest of the group, Oruta should also support

dynamic operations on shared data. An dynamic

operation includes an insert, delete or update operation

on a single block. However, since the computation of a

ring signature includes an identifier of a block (as

presented in HARS), traditional methods, which only

use the index of a block as its identifier, are not

suitable for supporting dynamic operations on shared

data. The reason is that,when a user modifies a single

block in shared data by performing an insert or delete

operation, the indices of blocks that after the modified

block are all changed (as shown in Figure 3 and 4),

and the changes of these indices require users to re-

compute the signatures of these blocks, even though

the content of these blocks are not modified.

6 PERFORMANCE

In this section, we first analysis the computation and

communication costs of Oruta, and then evaluate the

performance of Oruta in experiments.

6.1 Computation Cost

The main cryptographic operations used in Oruta in-

clude multiplications, exponentiations, pairing and

hash-ing operations. For simplicity, we omit additions

in the following discussion, because they are much

easier to be computed than the four types of operations

mentioned above. During auditing, the TPA first

generates some random values to construct the

auditing message, which only in-troduces a small cost

in computation. Then, after receiv-ing the auditing

message, the cloud server needs to com-pute a proof

{λ,µ,φ, {idj }j∈J }. The computation cost of calculating

a proof is about (k + dc)ExpG1 + dcMulG1 + ckMulZp +

kHashZp , where ExpG1 denotes the cost of computing

one exponentiation in G1, MulG1 denotes the cost of

computing one multiplication in G1, MulZp and HashZp

respectively denote the cost of computing one

multiplcation and one hashing operation in Zp. To

check the correctness of the proof {λ,µ,φ, {idj }j∈J },

the TPA verifies it based on Equation (6). The total

cost of verifying the proof is (2k + c)ExpG1 + (2k +

c)MulG1 + dMulGT + cHashG1 + (d + 2)PairG1,G2 . We

use PairG1 ,G2 to denote the cost of computing one

pairing operation in G1 and G2.

6.2 Communication Cost

The communication cost of Oruta is mainly intro-

duced by two factors: the auditing message and the

auditing proof.

For each auditing message {j, yj }j∈J , the

communication cost is c(|q| + |n|) bits, where |q| is the

length of an element of Zq and |n| is the length of an

index. Each auditing = {_,μ,_, {idj}j2J } contains

(k+d) elements of G1, k elements of Zp and c.

 Page 1896

6.3 Experimental Results

We now evaluate the efficiency of Oruta in

experiments.To implement these complex

cryptographic operations that we mentioned before, we

utilize the GNU Multiple Precision Arithmetic

(GMP)2 library and Pairing Based Cryptography

(PBC)3 library. All the following experiments are

based on C and tested on a 2.26 GHz Linux system

over 1, 000 times. Because Oruta needs more

exponentiations than pairing operations during the

process of auditing, the elliptic curve we choose in our

experiments is an MNT curve with a base field size of

159 bits, which has a better performance than other

curves on computing exponentiations. We choose |p| =

160 bits and |q| = 80 bits. We assume the total number

of blocks in shared data is n = 1, 000, 000 and |n| = 20

bits. The size of shared data is 2 GB. To keep the

detection probability greater than 99%, we set the

number of selected blocks in an auditing task as c =

460 [2]. If only 300 blocks are selected, the detection

probability is greater than 95%. We also assume the

size of the group d 2 [2, 20] in the following

experiments. Certainly, if a larger group size is used,

the total computation cost will increase due to the

increasing number of exponentiations and pairing.

7 RELATED WORK

Provable data possession (PDP), first proposed by

Ateniese et al. [2], allows a verifier to check the

correct-ness of a client’s data stored at an untrusted

server. By utilizing RSA-based homomorphic

authenticators and sampling strategies, the verifier is

able to publicly audit the integrity of data without

retrieving the entire data, which is referred to as public

verifiability or public auditing. Unfortunately, their

mechanism is only suitable for auditing the integrity of

static data. Juels and Kaliski [13] defined another

similar model called proofs of re-trievability (POR),

which is also able to check the correct-ness of data on

an untrusted server. The original file is added with a

set of randomly-valued check blocks called sentinels.

The verifier challenges the untrusted server by

specifying the positions of a collection of sentinels and

asking the untrusted server to return the associated

sentinel values. Shacham and Waters [6] designed two

improved POR schemes. The first scheme is built from

BLS signatures, and the second one is based on

pseudo-random functions. To support dynamic

operations on data, Ateniese et al. [14] presented an

efficient PDP mechanism based on symmetric keys.

This mechanism can support update and delete

operations on data, however, insert opera-tions are not

available in this mechanism. Because it exploits

symmetric keys to verify the integrity of data, it is not

public verifiable and only provides a user with a

limited number of verification requests. Wang et al.

uti-lized Merkle Hash Tree and BLS signatures [9] to

support fully dynamic operations in a public auditing

mecha-nism. Erway et al. [15] introduced dynamic

provable data possession (DPDP) by using

authenticated dictionaries,which are based on rank

information. Zhu et al. exploited the fragment structure

to reduce the storage of signa-tures in their public

auditing mechanism. In addition, they also used index

hash tables to provide dynamic operations for users.

The public mechanism proposed by Wang et al. [3] is

able to preserve users’ confidential data from the TPA

by using random maskings. In addition, to operate

multiple auditing tasks from different users efficiently,

they extended their mechanism to enable batch

auditing by leveraging aggregate signatures [5]. Wang

et al. [16] leveraged homomorphic tokens to ensure the

correctness of erasure codes-based data dis-tributed on

multiple servers. This mechanism is able not only to

support dynamic operations on data, but also to

identify misbehaved servers.

To minimize com-munication overhead in the phase of

data repair, Chen et al. [17] also introduced a

mechanism for auditing the correctness of data with

the multi-server scenario, where these data are

encoded by network coding instead of using erasure

codes. More recently, Cao et al. [18] constructed an

LT codes-based secure and reliable cloud storage

mechanism. Compare to previous work [16], [17], this

mechanism can avoid high decoding computation cost

for data users and save computation resource for

 Page 1897

online data owners during data repair. To prevent

special attacks exist in remote data storage system with

deduplication, Halevi et al. [19] introduced the

notation of proofs-of-ownership (POWs), which al-

lows a client to prove to a server that she actually

holds a data file, rather than just some hash values of

the data file. Zheng et al. [20] further discussed that

POW and PDP can co-exist under the same

framework. Recently, Franz et al. [21] proposed an

oblivious out-sourced storage scheme based on

Oblivious RAM tech-niques, which is able to hide

users’ access patterns on outsourced data from an

untrusted cloud. Vimercati et al. [22] utilize shuffle

index structure to protect users’ access patterns on

outsourced data.

8 CONCLUSION

In this paper, we propose Oruta, the first privacy-

preserving public auditing mechanism for shared data

in the cloud. We utilize ring signatures to construct

homomorphic authenticators, so the TPA is able to

audit the integrity of shared data, yet cannot

distinguish who is the signer on each block, which can

achieve identity privacy. To improve the efficiency of

verification for mul-tiple auditing tasks, we further

extend our mechanism to support batch auditing. An

interesting problem in our future work is how to

efficiently audit the integrity of shared data with

dynamic groups while still preserving the identity of

the signer on each block from the third party auditor.

9.ACKNOWLEDGEMENTS

I am NALLA KARTHIK REDDY and would like to

thank the publishers, researchers for making their

resources material available. I am greatly thankful to

Assistant Prof: Miss. SARA ANJUM for their

guidance. We also thank the college authorities, PG

coordinator and Principal for providing the required

infrastructure and support. Finally, we would like to

extend a heartfelt gratitude to friends and family

members.

10.REFERENCES

[1] M. Armbrust, A. Fox, R. Griffith, A. D.Joseph, R.

H.Katz, A. Konwinski, G. Lee, D. A. Patterson, A.

Rabkin, I. Stoica, and M. Zaharia, “A View of Cloud

Computing,” Communications of the ACM, vol. 53, no.

4, pp. 50–58, Apirl 2010.

[2] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L.

Kissner, Z. Peterson, and D. Song, “Provable Data

Possession at Untrusted Stores,” in Proc. ACM

Conference on Computer and Communications

Security (CCS), 2007, pp. 598–610.

[3] C. Wang, Q. Wang, K. Ren, and W. Lou, “Privacy-

Preserving Public Auditing for Data Storage Security

in Cloud Computing,” in Proc. IEEE International

Conference on Computer Communications

(INFOCOM), 2010, pp. 525–533.

[4] R. L. Rivest, A. Shamir, and Y. Tauman, “How to

Leak a Secret,” in Proc. International Conference on

the Theory and Application of Cryptology and

Information Security (ASIACRYPT). Springer- Verlag,

2001, pp. 552–565.

[5] D. Boneh, C. Gentry, B. Lynn, and H. Shacham,

“Aggregate and Verifiably Encrypted Signatures from

Bilinear Maps,” in Proc. In- ternational Conference on

the Theory and Applications of Cryptographic

Techniques (EUROCRYPT). Springer-Verlag, 2003,

pp. 416–432.

[6] H. Shacham and B. Waters, “Compact Proofs of

Retrievability,” in Proc. International Conference on

the Theory and Application of Cryptology and

Information Security (ASIACRYPT). Springer- Verlag,

2008, pp. 90–107.

[7] Y. Zhu, H.Wang, Z. Hu, G.-J. Ahn, H. Hu, and S.

S.Yau, “Dynamic Audit Services for Integrity

Verification of Outsourced Storage in Clouds,” in

Proc. ACM Symposium on Applied Computing (SAC),

2011, pp. 1550–1557.

[8] S. Yu, C. Wang, K. Ren, and W. Lou, “Achieving

Secure, Scalable, and Fine-grained Data Access

Control in Cloud Computing,” in Proc. IEEE

International Conference on Computer

Communications (INFOCOM), 2010, pp. 534–542.

 Page 1898

Mr. NALLA KARTHIK REDDY. MTech student,

inM.Tech Student, Dept of CSE in Amr Institute of

Technology, mavala, T.S, India

Miss. SARA ANJUM working as a Assistant

Professor at Amr Institute of Technology, mavala,

T.S, India, Graduate from JNTUH Hyderabad. She has

2 years of UG/PG Teaching Experience

