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Abstract: In any application image denoising is a 

challenging task because noise removal will increase 

the digital quality of an image and will improve the 

perceptual visual quality. In spite of the great success 

of many denoising algorithms, they tend to smooth 

the fine scale image textures when removing noise, 

degrading the image visual quality. To address this 

problem, in this paper we propose a texture enhanced 

image denoising method by enforcing the gradient 

histogram of the denoised image to be close to a 

reference gradient histogram of the original image. 

Given the reference gradient histogram, a novel 

gradient histogram preservation (GHP) algorithm is 

developed to enhance the texture structures while 

removing noise. Simulation results show that the 

proposed method has given the better performance 

when compared to the existing algorithms in terms of 

peak signal to noise ratio (PSNR) and mean square 

error (MSE).  
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I. INTRODUCTION 

Images captured from both digital cameras and 

conventional film cameras will affected with the noise 

from a variety of sources. These noise elements will 

create some serious issues for further processing of 

images in practical applications such as computer 

vision, artistic work or marketing and also in many 

fields. There are many types of noises like salt and 

pepper, Gaussian, speckle and passion.  In salt and 

pepper noise (sparse light and dark 

disturbances), pixels in the captured image are very 

different in intensity from their neibouring pixels; the 

defining characteristic is that the intensity value of a 

noisy picture element bears no relation to the color of 

neibouring pixels. Generally this type of noise will 

only affect a small number of pixels in an image. 

When we viewed an image which is affected with salt 

and pepper noise, the image contains black and white 

dots, hence it terms as salt and pepper noise. 

In Gaussian noise, noisy pixel value will be a small 

change of original value of a pixel. A histogram, a 

discrete plot of the amount of the distortion of intensity 

values against the frequency with which it occurs, it 

shows a normal distribution of noise. While other 

distributions are possible, the Gaussian (normal) 

distribution is usually a good model, due to the central 

limit theorem that says that the sum of different noises 

tends to approach a Gaussian distribution. 

In selecting a noise reduction algorithm, one must 

consider several factors: 

 A digital camera must apply noise reduction in a 

fraction of a second using a tiny on board CPU, 

while a desktop computer has much  more power 

and time 

 whether sacrificing some real detail information is 

acceptable if it allows more distortion or noise to 

be removed (how aggressively to decide whether  

the random  variations in the image are noisy or 

not) 

In real-world photographs, maximum variations in 

brightness ("luminance detail") will be consisted by 

the highest spatial frequency, rather than the random 

variations in hue ("chroma detail"). Since most of 

noise reducing techniques should attempt to remove 
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noise without destroying of real detail from the 

captured photograph. In addition, most people find 

luminance noise in images less objectionable than 

chroma noise; the colored blobs are considered 

"digital-looking" and artificial, compared to the mealy 

appearance of luminance noise that some compare to 

film grain. For these two reasons, most of digital 

image noise reduction algorithms split the image 

content into chroma and luminance components. One 

solution to eliminate noise is by convolving the 

original image with a mask that represents a low-pass 

filter or smoothing operation. For example, the 

Gaussian mask incorporates the elements determined 

by a Gaussian function. This operation brings the value 

of each pixel into closer harmony with the values of its 

neighbours. In general, a smoothing filter sets each 

pixel to the mean value, or a weighted mean, of itself 

and its nearby neighbours; the Gaussian filter is just 

one possible set of weights. However, spatial filtering 

approaches like mean filtering or average filtering, 

Savitzky filtering, Median filtering, bilateral filter and 

Wiener filters had been suffered with loosing edges 

information. All the filters that have been mentioned 

above were good at denoise of images but they will 

provide only low frequency content of an image it 

doesn’t preserve the high frequency information. In 

order to overcome this issue Non Local mean approach 

has been introduced. More recently, noise reduction 

techniques based on the “NON-LOCAL MEANS 

(NLM) had developed to improve the performance of 

denoising mechanism [1][4][5][9]. It is a data-driven 

diffusion mechanism that was introduced by Buades et 

al. in [1]. It has been proved that it’s a simple and 

powerful method for digital image denoising. In this, a 

given pixel is denoised using a weighted average of 

other pixels in the (noisy) image. In particular, given a 

noisy image 𝑛𝑖 , and the denoised image 𝑑 = 𝑑𝑖  at 

pixel 𝑖 is computed by using the formula 

𝑑𝑖 =
 𝑤 𝑖𝑗 𝑛𝑗𝑗

 𝑤 𝑖𝑗𝑗
  (1) 

Where 𝑤𝑖𝑗  is some weight assigned to pixel𝑖 𝑎𝑛𝑑 𝑗 . 

The sum in (1) is ideally performed to whole image to 

denoise the noisy image. NLM at large noise levels 

will not give accurate results because the computation 

of weights of pixels will be different for some 

neibourhood pixels which looks like same.  Most of 

the standard algorithm used to denoise the noisy image 

and perform the individual filtering process. Denoise 

generally reduce the noise level but the image is either 

blurred or over smoothed due to losses like edges or 

lines.  

 

In the recent years there has been a fair amount of 

research on center pixel weight (CPW) for image 

denoising [3], because CPW provides an appropriate 

basis for separating noisy signal from the image signal. 

Optimized CPW is good at energy compaction, the 

small coefficient are more likely due to noise and large 

coefficient due to important signal feature [8]. These 

small coefficients can be thresholded without affecting 

the significant features of the image. However, all the 

above metioned techniques were not suitable for 

texture enhanced image denoising and will not 

preserve the fine details of image. In order to 

overcome the existing systems drawbacks, here in this  

we propose a texture enhanced image denoising 

algorithm from the given noisy image y, we estimate 

the gradient histogram of original image x. Taking this 

estimated histogram, denoted by h, as a reference, we 

search an estimate of x such that its gradient histogram 

is close to hr. As shown in Fig. 1, the proposed GHP 

based denoising method can well enhance the image 

texture regions, which are often over-smoothed by 

other denoising methods. The major contributions of 

this paper are summarized as follows: 

 

(1) A novel texture enhanced image denoising 

framework is proposed, which preserves the gradient 

histogram of the original image. The existing image 

priors can be easily incorporated into the proposed 

framework to improve the quality of denoised images. 

 

(2) Using histogram specification, a gradient histogram 

preservation algorithm is developed to ensure that the 

gradient histogram of denoised image is close to the 

reference histogram, resulting in a simple yet effective 

GHP based denoising algorithm. 
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(3) By incorporating the hyper-Laplacian and 

nonnegative constraints, a regularized deconvolution 

model and an iterative deconvolution algorithm. 

 

In this letter, we discuss the texture enhancement (TE) 

problem with GHP and IHS specification algorithm. 

The rest of this thesis has been organized as: Section II 

existing techniques such as Savitzky-golay, median, 

bilateral, wavelet filters, and NLM; Section III 

discusses the new solution of the TE problem; Section 

IV shows experimental comparisons for various 

techniques with the new solution; and Section V 

concludes the thesis. 

 

II. EXISITING TECHNIQUES 

In this section we discussed various spatial filters and 

their performance when a noisy input will be given to 

them. Here in this section we had explained about each 

filter in detail. Firstly, Savitzky-Golay (SG) filter: it is 

a simplified method and uses least squares technique 

for calculating differentiation and smoothing of data. 

Its computational speed will be improved when 

compared least-squares techniques. The major 

drawback of this filter is: Some of first and last data 

point cannot smoothen out by the original Savitzky-

Golay method. Assuming that, filter length or frame 

size (in S-G filter number of data sample read into the 

state vector at a time) N is odd, N=2M+1 and N= d+1, 

where d= polynomial order or polynomial degree. 

Second, Median filter: This is a nonlinear digital 

spatial filtering technique, often used to removal of 

noise from digital images. Median filtering has been 

widely used in most of the digital image processing 

applications. The main idea of the median filter is to 

run through the image entry by pixel, replacing each 

pixel with the median value of neighboring pixels. The 

pattern of neighbors is called the "window", which 

slides, pixel by pixel, over the entire image. Third, 

Bilateral filter: The bilateral filter is a nonlinear filter 

which does the spatial averaging without smoothing 

edges information. Because of this feature it has been 

shown that it’s an effective image denoising algorithm. 

Bilateral filter is presented by Tomasi and Manduchi 

in 1998. The concept of the bilateral filter was also 

presented in [8] as the SUSAN filter and in [3] as the 

neighborhood filter. It is mentionable that the Beltrami 

flow algorithm is considered as the theoretical origin 

of the bilateral filter [4] [5] [6], which produce a 

spectrum of image enhancing algorithms ranging from 

the linear diffusion to the non-linear flows. The 

bilateral filter takes a weighted sum of the pixels in a 

local neighborhood; the weights depend on both the 

spatial distance and the intensity length. In this way, 

edges are preserved well while noise is eliminated out. 

Next, Wavelet filtering: Signal denoising using the 

DWT consists of the three successive procedures, 

namely, signal decomposition, thresholding of the 

DWT coefficients, and signal reconstruction. Firstly, 

we carry out the wavelet analysis of a noisy signal up 

to a chosen level N. Secondly, we perform 

thresholding of the detail coefficients from level 1 to 

N. Lastly, we synthesize the signal using the altered 

detail coefficients from level 1 to N and approximation 

coefficients of level N. However, it is generally 

impossible to remove all the noise without corrupting 

the signal.  As for thresholding, we can settle either a 

level-dependent threshold vector of length N or a 

global threshold of a constant value for all levels. 

Classical Non Local Means: It is a data-driven 

diffusion mechanism that was introduced by Buades et 

al. in [1]. It has been proved that it’s a simple and 

powerful method for digital image denoising. In this, a 

given pixel is denoised using a weighted average of 

other pixels in the (noisy) image. In particular, given a 

noisy image𝑛𝑖 , and the denoised image 𝑑 = 𝑑𝑖  at pixel 

𝑖 is computed by using the formula 

𝑑𝑖 =
 𝑤 𝑖𝑗 𝑛𝑗𝑗

 𝑤 𝑖𝑗𝑗
  (1) 

Where 𝑤𝑖𝑗  is some weight assigned to pixel𝑖 𝑎𝑛𝑑 𝑗 . 

The sum in (1) is ideally performed to whole image to 

denoise the noisy image. NLM at large noise levels 

will not give accurate results because the computation 

of weights of pixels will be different for some 

neibourhood pixels which looks like same. 

𝑤𝑙,𝑗 = 𝑒𝑥𝑝   𝐺𝛽   𝑛𝑙+𝑘 − 𝑛𝑗+𝑘 
2

/2ℎ 𝑘∈𝑃            

(2) 

In this each weight is computed by similarity 

quantification between two local patches around noisy 
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pixels 𝑛𝑙 and 𝑛𝑗  as shown in eq. (2). Here, 𝐺𝛽 is a 

Gaussian weakly smooth kernel [1] and 𝑃 denotes the 

local patch, typically a square centered at the pixel and 

ℎ is a temperature parameter controlling the behavior 

of the weight function. 

 

Another popular approach to image denoising is the 

variational method, where energy functional is 

minimized to search the desired estimation of x from 

its noisy observation y. The energy functional usually 

involves two terms: a data fidelity term which depends 

on the image degeneration process and a regularization 

term which models the prior of clean natural images 

[13], [16] and [17].  

 

The statistical modeling of natural image priors is 

crucial to the success of image denoising. Motivated 

by the fact that natural image gradients and wavelet 

transform coefficients have a heavy-tailed distribution, 

sparsity priors are widely used in image denoising 

[10]–[12]. The well-known total variation 

minimization methods actually assume Laplacian 

distribution of image gradients [13]. The sparse 

Laplacian distribution is also used to model the high 

pass filter responses and wavelet/curvelet transforms 

coefficients [14], [15].  

 

By representing image patches as a sparse linear 

combination of the atoms in an over-complete 

redundant dictionary, which can be analytically 

designed or learned from natural images, sparse coding 

has proved to be very effective in image denoising via 

l0-norm or l -norm minimization [16], [17]. Another 

popular prior is the nonlocal self-similarity (NSS) prior 

that is, in natural images there are often many similar 

patches (i.e., nonlocal neighbors) to a given patch, 

which may be spatially far from it. The connection 

between NSS and the sparsity prior is discussed in 

[18], [19]. The joint use of sparsity prior and NSS 

prior has led to state of-the-art image denoising results 

[19]–[14]. In spite of the great success of many 

denoising algorithms, however, they often fail to 

preserve the image fine scale texture structures, 

degrading much the image visual quality (please refer 

to Fig. 1 for example). With the rapid development of 

digital imaging technology, now the acquired images 

can contain tens of megapixels. On one hand, more 

fine scale texture features of the scene will be 

captured; on the other hand, the captured high 

definition image is more prone to noise because the 

smaller size of each pixel makes the exposure less 

sufficient. Unfortunately, suppressing noise and 

preserving textures are difficult to achieve 

simultaneously, and this has been one of the most 

challenging problems in natural image denoising.  

 

Unlike large scale edges, the fine scale textures are 

much more complex and are hard to characterize by 

using a sparse model. Texture regions in an image are 

homogeneous and are composed of similar local 

patterns, which can be characterized by using local 

descriptors or textons. Cognitive studies have revealed 

that the first-order statistics, e.g., histograms, are the 

most significant descriptors for texture discrimination. 

Considering these facts, histogram of local features has 

been widely used in texture analysis [24]–[26]. 

Meanwhile, image gradients are crucial to the 

perception and analysis of natural images. All these 

motivate us to use the histogram of image gradient to 

design new image denoising models. With the above 

considerations, in this paper we propose a novel 

gradient histogram preservation (GHP) method for 

texture enhanced image denoising.  

 

III. PROPOSED FRAME WORK 

The noisy observation y of an unknown clean image x 

is usually modeled as 

y = x + v   (1) 

where v is the additive white Gaussian noise (AWGN) 

with zero mean and standard deviation 𝜎. The goal of 

image de-noising is to estimate the desired image x 

from y. One popular approach to image denoising is 

the variational method, in which the denoised image is 

obtained by 

𝑥 = 𝑎𝑟𝑔min𝑥  
1

2𝜎2
 𝑦 − 𝑥 2 + 𝜆 ∙ 𝑅 𝑥   (2) 

where R(x) denotes some regularization term and 𝝀is a 

positive constant. The specific form of R(x) depends 

on the employed image priors. One common problem 
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of image denoising methods is that the image fine scale 

details such as texture structures will be over-

smoothed. An over-smoothed image will have much 

weaker gradients than the original image. Intuitively, a 

good estimation of x without smoothing too much the 

textures should have a similar gradient distribution to 

that of x. With this motivation, we propose gradient 

histogram preservation (GHP) model for texture 

enhanced image denoising, whose framework is 

illustrated in Fig. 1.  

 

Suppose that we have an estimation of the gradient 

histogram of x, denote byℎ𝑟 . In order to make the 

gradient histogram of denoised image ˆx nearly the 

same as the reference histogramℎ𝑟 , we propose the 

following GHP based image denoising model: 

 

𝑥 = 𝑎𝑟𝑔min𝑥  
1

2𝜎2
 𝑦 − 𝑥 2 + 𝜆𝑅 𝑥 +

𝜇𝐹∇𝑥−∇𝑥2   (3) 

 

Where F denotes an odd function which is 

monotonically non-descending, ℎ𝐹  denotes the 

histogram of the transformed gradient image 𝐹 ∇𝑥  , 

∇ denotes the gradient operator, and µ is a positive 

constant. The proposed GHP algorithm adopts the 

alternating optimization strategy. Given F, we can fix 

∇𝑥0 = 𝐹 ∇𝑥 , and update x. Given x, we can update 𝐹 

by the histogram specification based shrinkage 

operator. Thus, by introducing 𝐹 , we can easily 

incorporate the gradient histogram constraint with any 

existing image regularizer R(x). 

 

Another issue in the GHP model is how to find the 

reference histogram of ℎ𝑟  unknown image x. In 

practice, we need to estimate ℎ𝑟 based on the noisy 

observation y. In Section algorithm1, we will propose 

a regularized deconvolution model and an associated 

iterative deconvolution algorithm to estimate ℎ𝑟 from 

the given noisy image. Once the reference histogram 

ℎ𝑟 is obtained, the GHP algorithm is then applied for 

texture enhanced image denoising. 

 
Fig1. Proposed framework flow chart for texture 

enhanced image denoising 

  

The proposed denoising method is a patch based 

method. Let 𝑥𝑖 =  𝑅𝑖𝑥  be a patch extracted at 

position 𝑖, 𝑖 =  1, 2, . . . , 𝑁 , where 𝑅𝑖 is the patch 

extraction operator and 𝑁 is the number of pixels in 

the image. Given a dictionary D, we sparsely encode 

the patch 𝑥𝑖  over D, resulting in a sparse coding 

vector𝛼𝑖 . Once the coding vectors of all image patches 

are obtained, the whole image x can be reconstructed 

by [16]: 

𝑥 = 𝐷 ∘  𝛼 ≜   𝑅𝑖
𝑇𝑅𝑖

𝑁
𝑖=1  

−1
 𝑅𝑖

𝑇𝐷𝛼𝑖
𝑁
𝑖=1  (4) 

where α is the concatenation of all 𝛼𝑖 . 

 

Good priors of natural images are crucial to the 

success of an image denoising algorithm. A proper 

integration of different priors could further improve the 

denoising performance. For example, the methods in 

[21]-[23] integrate image local sparsity prior with 

nonlocal NSS prior, and they have shown promising 

denoising results. In the proposed GHP model, we 

adopt the following sparse nonlocal regularization 

term proposed in the non locally centralized sparse 

representation (NCSR) model [14]: 

𝑅 𝑥 =   𝛼𝑖 − 𝛽𝑖 1 ,𝑖  s.t. 𝑥 = 𝐷 ∘ 𝛼  (5) 

where 𝛽𝑖  is defined as the weighted average of 𝛼𝑖
𝑞
: 

𝛽𝑖 =  𝑤𝑖
𝑞
𝛼𝑖
𝑞

𝑞     (6) 

and 𝛼𝑖
𝑞

 is the coding vector of the 𝑞𝑡ℎ  nearest patch 

(denoted by 𝑥𝑖
𝑞

) to 𝑥𝑖 . The weight is defined as 
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𝑤𝑖
𝑞

=
1

𝑤
𝑒𝑥𝑝  −

1

ℎ
 𝑥 𝑖 − 𝑥 𝑖

𝑞
 

2
  (and 𝑥 𝑖  and 𝑥 𝑖

𝑞
 denote 

the current estimates of 𝑥 𝑖  and 𝑥 𝑖
𝑞

, respectively), where 

h is a pre defined constant and W is the normalization 

factor. More detailed explanations on NCSR can be 

found in [14]. By incorporating the above R(x) into 

Eq. (3), the proposed GHP model can be formulated 

as: 𝑥 = 𝑎𝑟𝑔min𝑥,𝐹  
1

2𝜎2
 𝑦 − 𝑥 2 + 𝜆  𝛼𝑖 − 𝛽𝑖 1 +𝑖

𝜇 𝐹 ∇𝑥 − ∇𝑥 2  

s.t. 𝑥 = 𝐷 ∘ 𝛼, ℎ𝐹 = ℎ𝑟    (7) 

 

From the GHP model with sparse nonlocal 

regularization in Eq. (7), one can see that if the 

histogram regularization parameter µ is high, the 

function F(∇x)will be close to ∇x. Since the histogram 

ℎ𝐹  is required to be the same as ℎ𝑟 , the histogram of 

∇x will be similar to ℎ𝑟 , leading to the desired gradient 

histogram preserved image denoising. In the next 

subsection, we will see that there is an efficient 

iterative histogram specification algorithm to solve the 

model in above Eq. (7). 

 

 Iterative Histogram Specification Algorithm 

The proposed GHP model in Eq. (7) can be solved by 

using the variable splitting (VS) method, which has 

been widely adopted in image restoration [40]–[42]. 

By introducing a variable g = F(∇x), we adopt an 

alternating minimization strategy to update x and g 

alternatively. Given g = F(∇x), we update x (i.e., α) by 

solving the following sub-problem: min𝑥  
1

2𝜎2
 𝑦 −

𝑥2+𝜆𝑖𝛼𝑖−𝛽𝑖1+𝜇𝐹∇𝑥−∇𝑥2 s.t. 𝑥=𝐷∘𝛼    (8) 

 

We use the method in [23] to construct the dictionary 

D adaptively. Based on the current estimation of image 

x, we cluster its patches into K clusters, and for each 

cluster, a PCA dictionary is learned. Then for each 

given patch, we first check which cluster it belongs to, 

and then use the PCA dictionary of the cluster as D. 

Although in Eq. (8) the 𝑙1 −norm regularization is 

imposed on  𝛼𝑖 − 𝛽𝑖 1  rather than  𝛼𝑖 1 , by 

introducing a new variable 𝜗𝑖 = 𝛼𝑖 − 𝛽𝑖 , we can use 

the iterative shrinkage/thresholding method [33] to 

update 𝜗𝑖  and then update 𝛼𝑖 = 𝜗𝑖 − 𝛽𝑖 . This strategy 

is also used in [23] to solve the problem with this 

regularization term, and thus here we omit the detailed 

deduction process. 

To get the solution to the sub-problem in Eq. (8), we 

first use a gradient descent method to update 

x: 𝑥(𝑘+1 2 ) = 𝑥 𝑘 + 𝛿  
1

2𝜎2  𝑦 − 𝑥 𝑘  +

𝜇∇𝑇 𝑔 − ∇𝑥 𝑘    

Where 𝛿 is a pre-specified constant. Then, the coding 

coefficients 𝛼𝑖are updated by 

𝛼𝑖
 𝑘+1 2  = 𝐷𝑇𝑅𝑖𝑥

(𝑘+1 2 ) 

 

By using Eq. (6) to obtain 𝛽𝑖 , we further update  𝛼𝑖  by 

𝛼𝑖
 𝑘+1 = 𝑆𝑦 𝑑  𝛼𝑖

 𝑘+1 2  − 𝛽𝑖 + 𝛽𝑖  

Where 𝑆𝑦 𝑑 is the soft-thresholding operator, and d is a 

constant to guarantee the convexity of the surrogate 

function [33]. Finally, we update 𝑥(𝑘+1) by 

𝑥 𝑘+1 = 𝐷 ∘ 𝛼 𝑘+1 

≜   𝑅𝑖
𝑇𝑅𝑖

𝑁

𝑖=1

 

−1

  𝑅𝑖
𝑇𝐷𝛼𝑖

 𝑘+1 

𝑁

𝑖=1

  

 

Once the estimate of image x is given, we can update 

F by solving the following sub-problem: 

min𝑔,𝐹 𝑔 − ∇𝑥 2 s.t. ℎ𝐹 = ℎ𝑟 , 𝑔 = 𝐹 ∇𝑥 . 

 

Considering the equality constraint𝑔 = 𝐹 ∇𝑥 , we can 

substitute g in  𝑔 − ∇𝑥 2 with 𝐹 ∇𝑥 , and the sub-

problem becomesmin𝑔 𝐹∇𝑥 − ∇𝑥 2  s.t. ℎ𝐹 = ℎ𝑟 . To 

solve this sub-problem, by introducing𝑑0 =  ∇𝑥 , the 

standard histogram specification operator [34] can be 

used to obtain the only feasible monotonic non-

parametric transform T which makes the histogram of 

𝑇 𝑑0  the same as ℎ𝑟 . Note that  𝑥 − 𝑦 2 ≤

  −𝑥 − 𝑦 
2
if the signs of x and y are the same. Since 

𝐹∇𝑥=𝑇  ∇𝑥  , to minimizing the squared error 𝐹∇𝑥 −

∇𝑥2, we should require that sign of 𝐹∇𝑥is the same as 

that of  ∇𝑥. Thus, we define 𝐹  ∇𝑥  as  

𝐹  ∇𝑥 = 𝑠𝑔𝑛  ∇𝑥 𝑇   ∇𝑥   

Given𝐹  ∇𝑥 , we then let 𝑔 = 𝐹  ∇𝑥 . 
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The proposed iterative histogram specification (IHS) 

based GHP algorithm is summarized in Algorithm 1. 

It should be noted that, for any gradient based image 

denoising model, we can easily adapt the proposed 

GHP to it by simply modifying the gradient term and 

adding an extra histogram specification operation. 

 

Algorithm 1: Iterative Histogram Specification 

(IHS) for GHP 

1. Initialize 𝑘 = 0, 𝑥 𝑘 = 𝑦 

2. Iterate on 𝑘 = 0,1, … . , 𝐽’ 

3. Update g as 𝑔 = 𝐹 ∇𝑥  

4. Update x: 

𝑥(𝑘+1 2 ) = 𝑥 𝑘 + 𝛿  
1

2𝜎2  𝑦 − 𝑥 𝑘  

+ 𝜇∇𝑇 𝑔 − ∇𝑥 𝑘    

5. Update the coding coefficients of each patch:   

𝛼𝑖
 𝑘+1 2  = 𝐷𝑇𝑅𝑖𝑥

(𝑘+1 2 ) 

6. Update the non local mean of coding vector𝛼𝑖  

𝛽𝑖 =  𝑤𝑖
𝑞
𝛼𝑖
𝑞

𝑞  

7. Update α: 

𝛼𝑖
 𝑘+1 = 𝑆𝑦 𝑑  𝛼𝑖

 𝑘+1 2  − 𝛽𝑖 + 𝛽𝑖  

8. Update x: 

𝑥 𝑘+1 = 𝐷 ∘ 𝛼 𝑘+1  

9. 𝐹 ∇𝑥 = 𝑠𝑔𝑛  ∇𝑥 𝑇   ∇𝑥   

10. 𝑘 ← 𝑘 + 1 

11. 𝑥 = 𝑥(𝑘) + 𝛿  𝜇∇𝑇 𝑔 − ∇𝑥(𝑘)   

 

IV. SIMULATION RESULTS 

Experimental results have been done in MATLAB 

2014a version with 4GB RAM and i3 processor. To 

verify the performance of the proposed GHP based 

image denoising method, we apply it to natural images 

with various texture structures and also applied to 

satellite images. All the test images are gray-scale 

images with gray level ranging from 0 to 255. We first 

discuss the parameter setting in our GHP algorithm, 

and then compare the performance of global based 

GHP and its region based variants. Finally, 

experiments are conducted to validate its performance 

in comparison with the state-of-the-art denoising 

algorithms. There are 4 parameters in our GHP 

algorithm and 4 parameters in the reference histogram 

estimation algorithm. All these parameters are fixed in 

our experiments. 

  

1) Parameters in the GHP algorithm: The proposed 

GHP algorithm has two model parameters: 𝜆  and µ. 

We use the same strategy as in the original NCSR 

model [23] to determine the value of𝜆. The parameter 

µ is introduced to balance the non-locally centralized 

sparse representation term and the histogram 

preservation term. If µ is set very large, GHP can 

ensure that the gradient histogram of the denoising 

result is the same as the reference histogram. 

Considering that in practice the reference histogram is 

estimated from the noisy image and there is certain 

estimation errors, µ cannot be set too big. We 

empirically set µ to 5 based on our experimental 

experience. The GHP algorithm involves two more 

algorithm parameters: 𝛿  and d. following [23], when 

the noise standard deviation is less than 30, we set 𝛿 to 

0.23; when else we set 𝛿  to 0.26. Based on [23] to 

guarantee the convexity of the surrogate function, d 

should be larger than the spectral norm of dictionary 

D. Since in our algorithm D is an adaptively selected 

orthogonal PCA dictionary, any d >= 1 will be fine. 

According to [23] we choose a little higher d (d = 3) 

for numerical stability of the algorithm. 

 

2) Parameters in reference histogram estimation: Our 

reference histogram estimation method involves two 

model parameters, i.e., c and𝜂 . Image gradients are 

generally assumed to follow hyper-Laplacian 

distributions [11], [12]. We choose a relatively large c 

value, i.e., c = 10, to ensure that the estimated 

histogram should be close to a hyper-Laplacian 

distribution. The parameter 𝜂  is introduced to ensure 

the nonnegative property of the estimated histogram, 

and a large 𝜂 value should be set to guarantee that the 

estimated histogram is non-negative. Thus we also 

choose a large 𝜂  value, i.e., 𝜂  = 10, in the 

implementation. There are also two algorithm 

parameters, 𝜏  and 𝜌 , in our reference histogram 

estimation method. 𝜏 and𝜌 denote the step sizes in the 

gradient descent algorithm to update 𝜅  and 𝜆 , 
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respectively. If the step size is sufficiently small, the 

gradient descent algorithm would converge to a local 

optimum. Thus we set two smaller values to 𝜏 and𝜌, 

i.e., 𝜏 = 0.01 and 𝜌 = 0.01. 

 
(a) 

 
(b) 

 
(c) 

Fig2. (a) Original image, (b) Noisy image and (c) 

Proposed GHP algorithm 

 
Fig3. Variation of PSNR with sigma value 

 
Fig4. Histogram of original image 
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(b) 

Fig5. Histograms of (a) noisy and (b) denoised images 

 

 
Fig.4 PSNR performance analysis with respect 

to number of iterations 

V. CONCLUSIONS 

In this paper, we presented a novel gradient histogram 

preservation (GHP) model for texture enhanced image 

denoising. A simple but theoretically solid model and 

the associated algorithm were presented to estimate the 

reference gradient histogram from the noisy image, 

and an efficient iterative histogram specification 

algorithm was developed to implement the GHP 

model. By pushing the gradient histogram of the 

denoised image toward the reference histogram, GHP 

achieves promising results in enhancing the texture 

structure while removing random noise. The 

experimental results demonstrated the effectiveness of 

GHP in texture enhanced image denoising. Most of the 

state-of-the-art denoising algorithms are based on the 

local sparsity and nonlocal self similarity priors of 

natural images. Unlike them, the gradient histogram 

used in our GHP method is a kind of global prior, 

which is adaptively estimated from the given noisy 

image. 
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