

ISSN No: 2348-4845 International Journal & Magazine of Engineering, Technology, Management and Research

A Peer Reviewed Open Access International Journal

Hellman Key Exchange to Share Data in the Cloud-Based Active Multi Key Shared Data

Shahana Farheen

M.Tech Scholar, Christu Jyoti Institute of Technology And Science Colombonagar, Yeshwanthapur, Jangaon, Telangana

ABSTRACT: In this paper, we propose a secure multi owner data sharing scheme for dynamic groups in the cloud using Diffie-Helman key exchange. Sharing group resource among cloud users is a major problem, so cloud computing provides an economical and efficient solution. Due to frequent change of membership, sharing data in a multi-owner manner to an untrusted cloud is still a challenging issue. In this paper, we propose a secure multi-owner data sharing scheme, for dynamic group in the cloud. By providing group signature and dynamic broadcast encryption techniques, any cloud user can securely share data with others. By leveraging group signature and dynamic broadcast encryption techniques, any cloud user can anonymously share data with others. Meanwhile, the storage overhead and encryption computation cost of our scheme are independent with the number of revoked users. In addition, we analyze the security of our scheme with rigorous proofs, and demonstrate the efficiency of our scheme in experiments.

I. INTRODUCTION

This new paradigm of data hosting and data access services introduces a great challenge to dataaccess control. Because the cloud server cannot be fully trusted by data owners, they can no longer rely on servers to do Ciphertext-Policy access control. Attribute-based Encryption (CP-ABE) is regarded as one of the most suitabletechnologies for data access control in cloud storage systems, because it gives the data owner more direct control on access policies. In CP-ABE scheme, there is an authority that is responsible for attribute management and key distribution. Chase's multiauthority CP-ABE protocol allows the central authority to decrypt allthe ciphertexts, since it holds the master key of

G.Rama Rao

Associate Professor Christu Jyoti Institute of Technology And Science Colombonagar, Yeshwanthapur, Jangaon, Telangana

the system. Chase's protocol does not support sattribute revocation. In this paper, we first propose a revocable multiauthority CP-ABE scheme, where an efficient and secure revocation method is proposed to solve the attribute revocation problem in the system. Our attribute revocation method is efficient in the sense that it incurs less communication cost and computation cost, and is secure in the sense that it can achieve both backward security (The revoked user cannot decrypt any new ciphertext that requires the revoked attribute to decrypt)and forward security (The newly joined user can also decrypt the previously published ciphertexts1, if it has sufficient.attributes). Our scheme does not require the server to be fully trusted, because the key update is enforced by each attribute authority not the server. Even if the server is not semitrusted in some scenarios, our scheme can still guarantee the backward security. Then, we apply our proposed revocable multi-authority CP-ABE scheme as the underlying techniques to construct the expressive and secure data access control scheme for multi-authority cloud storage systems. We modify the framework of the scheme and make it more practical to cloud storage systems, in which data owners are not involved in the key generation. We greatly improve the efficiency of the attribute revocation method. We also highly improve the expressiveness of our access control scheme, where we remove the limitation that each attribute can only appear at most once in a ciphertext.

II. RELATED WORK

In an identity based encryption scheme, each user is identified by a unique identity string. An attribute based encryption scheme (ABE), in contrast, is a scheme in which each user is identified by a set of attributes, and some function of those attributes is used to determine

Volume No: 2 (2015), Issue No: 7 (July) www.ijmetmr.com

July 2015

AND THE PARTY OF T

ISSN No: 2348-4845 International Journal & Magazine of Engineering, Technology, Management and Research

A Peer Reviewed Open Access International Journal

decryption ability for each ciphertext. Sahai and Waters introduced a single authority attribute encryption scheme and left open the question of whether a scheme could be constructed in which multiple authorities were allowed to distribute attributes [SW05]. We answer this question in the affirmative. Our scheme allows any polynomial number of independent authorities to monitor attributes and distribute secret keys. An encryptor can choose, for each authority, a number dk and a set of attributes; he can then encrypt a message such that a user can only decrypt if he has at least dk of the given attributes from each authority k. Our scheme can tolerate an arbitrary number of corrupt authorities. We also show how to apply our techniques to achieve a multiauthority version of the large universe fine grained access control ABE presented by Gopal et al. Attribute based encryption (ABE) [13] determines decryption ability based on a user's attributes. In a multi-authority ABE scheme, multiple attributeauthorities monitor different sets of attributes and issue corresponding decryption keys to users and encryptors can require that a user obtain keys for appropriate attributes from each authority before decrypting a message. Chase [5] gave a multi-authority ABE scheme using the concepts of a trusted central authority (CA) and global identifiers (GID). However, the CA in that construction has the power to decrypt every ciphertext, which seems somehow contradictory to the original goal of distributing control over many potentially untrusted authorities. Moreover, in that construction, the use of a consistent GID allowed the authorities to combine their information to build a full profile with all of a user's attributes, which unnecessarily compromises the privacy of the user. In this paper, we propose a solution which removes the trusted central authority, and protects the users' privacy by preventing the authorities from pooling their information on particular users, thus making ABE more usable in practice. We propose a Multi-Authority Attribute-Based Encryption (ABE) system. In our system, any party can become an authority and there is no requirement for any global coordination other than the creation of an initial set of common reference parameters. A party can simply act as an ABE authority by creating a public key and issuing private keys to different users that reflect their attributes. A user can encrypt data in terms of

any Boolean formula over attributes issued from any chosen set of authorities. Finally, our system does not require any central authority. In constructing our system, our largest technical hurdle is to make it collusion resistant. Prior Attribute-Based Encryption systems achieved collusion resistance when the ABE system authority "tied" together different components (representing different attributes) of a user's private key by randomizing the key. However, in our system each component will come from a potentially different authority, where we assume no coordination between such authorities. We create new techniques to tie key components together and prevent collusion attacks between users with different global identifiers.We prove our system secure using the recent dual system encryption methodology where the security proof works by first converting the challenge ciphertext and private keys to a semi-functional form and then arguing security. We follow a recent variant of the dual system proof technique due to Lewko and Waters and build our system using bilinear groups of Composite order. We prove security under similar static assumptions to the LW paper in the random oracle model.

III. SYSTEM PREMELIRIES:

A. CERTIFICATE AUTHORITY:

The CA is a global trusted certificate authority in the system. It sets up the system and accepts the registration of all the users and AAs in the system. For each legal user in the system, the CA assigns a global unique user identity to it and also generates a global public key for this user. However, the CA is not involved in any attribute management and the creation of secret keys that are associated with attributes. For example, the CA can be the Social Security Administration, an independent agency of the United States government. Each user will be issued a Social Security Number (SSN) as its global identity.

B. ATTRIBUTE AUTHORITIES:

Every AA is an independent attribute authority that is responsible for entitling and revoking user's attributes according to their role or identity in its domain. In our scheme, every attribute is associated with a single AA,

Volume No: 2 (2015), Issue No: 7 (July) www.ijmetmr.com International Journal & Magazine of Engineering, Technology, Management and Research

A Peer Reviewed Open Access International Journal

but each AA can manage an arbitrary number of attributes. Every AA has full control over the structure and semantics of its attributes. Each AA is responsible for generating a public attribute key for each attribute it manages and a secret key for each user reflecting his/her attributes.

C. DATA CONSUMERS:

Each user has a global identity in the system. A user may be entitled a set of attributes which may come from multiple attribute authorities. The user will receive a secret key associated with its attributes entitled by the corresponding attribute authorities.

D. DATA OWNERS:

Each owner first divides the data into several components according to the logic granularities and encrypts each data component with different content keys by using symmetric encryption techniques. Then, the owner defines the access policies over attributes from multiple attribute authorities and encrypts the content keys under the policies.

E. CLOUD SERVER:

Then, the owner sends the encrypted data to the cloud server together with the ciphertexts. They do not rely on the server to do data access control. But, the access control happens inside the cryptography. That is only when the user's attributes satisfy the access policy defined in the cipher text; the user is able to decrypt the ciphertext. Thus, users with different attributes can decrypt different number of content keys and thus obtain different granularities of information from the same data.

FIG 1: RECOVERABLE DATA

IV. CONCLUSION

In this paper, we proposed a revocable multi-authority CPABE scheme that can support efficient attribute revocation. Then, we constructed an effective data access control scheme for multi-authority cloud storage systems. We also proved that our scheme was provable secure in the random oracle model. The revocable multi-authority CPABE is a promising technique, which can be applied in any remote storage systems and online social networks etc.

ISSN No: 2348-4845

REFERENCES

[1] P. Mell and T. Grance, "The NIST Definition of Cloud Computing," National Institute of Standards and Technology, Gaithersburg, MD, USA, Tech. Rep., 2009.

[2] J. Bethencourt, A. Sahai, and B. Waters, "Ciphertext-Policy Attribute-Based Encryption," in Proc. IEEE Symp. Security and privacy (S&P'07), 2007, pp. 321-334.

[3] B. Waters, "Ciphertext-Policy Attribute-Based Encryption: An Expressive, Efficient, and Provably Secure Realization," in Proc. 4th Int'l Conf. Practice and Theory in Public Key Cryptography (PKC'11), 2011, pp. 53-70.

[4] V. Goyal, A. Jain, O. Pandey, and A. Sahai, "Bounded Ciphertext Policy Attribute Based Encryption," in Proc. 35th Int'l Colloquium on Automata, Languages, and Programming (ICALP'08), 2008, pp. 579-591.

[5] A.B. Lewko, T. Okamoto, A. Sahai, K. Takashima, and B.Waters, "Fully Secure Functional Encryption: Attribute-Based Encryption and (Hierarchical) Inner Product Encryption," in Proc. Advances in Cryptology-EUROCRYPT'10, 2010, pp. 62-91.

[6] M. Chase, "Multi-Authority Attribute Based Encryption," in Proc. 4th Theory of Cryptography Conf. Theory of Cryptography (TCC'07), 2007, pp. 515-534.

[7] M. Chase and S.S.M. Chow, "Improving Privacy and Security in Multi-Authority Attribute-Based Encryption," in Proc. 16th ACM Conf. Computer and Comm. Security (CCS'09), 2009, pp. 121-130.

July 2015

[8] A.B. Lewko and B. Waters, "Decentralizing Attribute-Based Encryption," in Proc. Advances in Cryptology-EUROCRYPT'11, 2011, pp. 568-588.

[9] S. Yu, C. Wang, K. Ren, and W. Lou, "Attribute Based Data Sharing with Attribute Revocation," in Proc. 5th ACM Symp. Information, Computer and Comm. Security (ASIACCS'10), 2010, pp. 261-270.

[10] M. Li, S. Yu, Y. Zheng, K. Ren, andW. Lou, "Scalable and Secure Sharing of Personal Health Records in Cloud Computing Using Attribute-Based Encryption," IEEE Trans. Parallel Distributed Systems, vol. 24, no. 1, pp. 131-143, Jan. 2013.

[11] J. Hur and D.K. Noh, "Attribute-Based Access Control with Efficient Revocation in Data Outsourcing Systems," IEEE Trans. Parallel Distributed Systems, vol. 22, no. 7, pp. 1214-1221, July 2011.

[12] S. Jahid, P. Mittal, and N. Borisov, "Easier: Encryption-Based Access Control in Social Networks with Efficient Revocation," in Proc. 6th ACM Symp. Information, Computer and Comm. Security (ASIACCS'11), 2011, pp. 411-415.

[13] S. Ruj, A. Nayak, and I. Stojmenovic, "DACC: Distributed Access Control in Clouds," in Proc. 10th IEEE Int'l Conf. TrustCom, 2011, pp. 91-98.

[14] K. Yang and X. Jia, "Attribute-Based Access Control for Multi-Authority Systems in Cloud Storage," in Proc. 32th IEEE Int'l Conf. Distributed Computing Systems (ICDCS'12), 2012, pp. 1-10.

[15] D. Boneh and M.K. Franklin, "Identity-Based Encryption from the Weil Pairing," in Proc. 21st Ann. Int'l Cryptology Conf.: Advances in Cryptology - CRYPTO'01, 2001, pp. 213-229.

July 2015