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Therefore, a synchronizer design presents a reliability 
versus performance tradeoff where the mean time be-
tween failures (MTBF) of the design is traded for the 
time available for synchronization (the settling time 
ts). The relationship between the MTBF and ts is cap-
tured by the textbook formula

where τ is the metastability regeneration time constant, 
fc is the clock frequency, fd is the data arrival rate, and 
Tw is a reference time window for the exponential re-
lationship. For a given technology and operating condi-
tions, the MTBF of synchronization is adjusted by the 
designer’s choice of  ts .

The latency of synchronizer chains has a detrimental 
impact on the performance of latency-sensitive appli-
cations and so alternative methods to reduce or elimi-
nate this latency have been proposed. These methods 
can be divided  into three categories as follows:

Circuit-Level Designs:

Synchronization time can be reduced by using faster 
(lower τ ) flip-flops. The Jamb latch was an early at-
tempt to meet the special performance requirements 
of synchronization. A similar improved latch was pre-
sented in featuring additional transistors that increase 
the regenerative loop gain when a metastable state is 
detected. Another improved design was presented in 
demonstrating lower susceptibility to supply voltage 
variation

ABSTRACT:

Modern multicore systems have a large number of com-
ponents operating in different clock domains and com-
municating through asynchronous interfaces. These in-
terfaces use synchronizer circuits, which guard against 
metastability failures but introduce latency in process-
ing the asynchronous input. We propose a speculative 
method that hides synchronization latency by overlap-
ping it with computation cycles. We verify the correct-
ness of our approach through a Micro wind. The results 
reveal that our approach achieves average savings of 
area costs and power costs compared to other  specu-
lative techniques.
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INTRODUCTION:
The crossing of data between different clock domains 
requires re-timing the data according to the receiver’s 
clock and is prone to metastability failures . While it is 
impossible to completely prevent these failures, their 
probability can be reduced to an acceptable level by 
re-sampling the input signal through a cascade of flip-
flops known as a synchronizer. This ensures that any 
occurrences of metastability are given enough time to 
resolve to valid logic states before being interpreted 
by other circuits. However, this also introduces latency 
and degrades the performance of the communication 
link.
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To the best of our knowledge, only that method ap-
pear in the literature.The method (Data path Unfold-
ing) is, in fact, a general-purpose hardware duplication 
solution that can be used to mitigate latency in various 
contexts, including synchronization. 

Overview of Speculation:

Speculation is the use of either time or resource redun-
dancy to perform potentially useful work. Modern digi-
tal systems employ speculation at different abstraction 
levels. For example, memory management speculative-
ly populates cache hierarchies with prefetched data to 
reduce the impact of slow memory access on process-
ing speed .

Data path Unfolding:

Performing speculative computations in pipelined sys-
tems is particularly easy because restoring the state 
of a pipeline in the case of misspeculation is trivial. 
For example, when a pipelined processor mispredicts 
a branch, invalid instructions in the fetch and decode 
stages can be discarded. However, the same cannot be 
said about nonpipelined systems.

Exploiting Known Timing Relationships:

Synchronization latency can be avoided in special 
cases when the communicating clocks share a timing 
relationship. This is because it becomes possible to de-
tect when clockdata conflicts might occur and avoid 
sampling the input in the vicinity of hazardous inter-
vals. Solutions of this form exist for clocks with equal 
frequency but unknown skew , closely-matched (ple-
siosynchronous) clocks, rationally related clocks, and 
periodic clocks.

Using Pausible/Stretchable Clocks:

The need for synchronization can be eliminated by al-
lowing the receiver’s clock to pause for an unbound-
ed amount of time. This is typically done by adding a 
mutual-exclusion element that arbitrates between the 
receiver’s clock and handshake requests and pauses 
the receiver’s clock until any encountered metastable 
states are resolved .

Existing System:
 
In this section, we review the existing speculative 
method of reducing synchronization latency. 

Fig 1 Hiding synchrozination latency using data
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this latency can be hidden by using two additional data 
path instances to speculatively compute the first two 
data path states following a transition of REQ. An ar-
rangement which accomplishes this is shown in Fig. 
1(b). Here, the receiver data path has been unfolded 
into a three-stage cyclic pipeline. The third stage repre-
sents the original (safe) copy of the data path while the 
first two perform speculative computations assuming 
the data bus holds valid data. 

At each cycle, the state stored in R2 represents what 
the state in R3 would have been if REQ transitioned 
two cycles earlier. When an actual REQ transition ap-
pears at the synchronizer output, the speculative state 
stored in R2 is used by C3 to compute the third state 
following data arrival. Subsequently, the original data 
path (R3, C3) resumes computations and acknowledg-
es the sender upon completion.2 This scheme requires 
an isochronic handshake protocol: 

REQ must arrive after data by a sufficiently-large delay. 
This ensures that the speculative state in R2 is based on 
valid data every time a transition of REQ appears at the 
synchronizer output. Note that invalid (or metastable) 
data path states may still be latched by R1 and passed 
to R2. However, isochrony ensures these states always 
precede the appearance of a REQ transition at the syn-
chronizer output.

Proposed System:

In this section, we describe a novel technique to latch 
data reliably during synchronization cycles. In short, we 
use the synchronizer as a state machine to sequence a 
series of latching operations. The synchronizer is con-
strained such that its state does not change when a 
latching operation fails. Therefore, any failed latching 
attempts are automatically retried in the subsequent 
cycles. 

We call this method sequenced latching and demon-
strate, in  that it can be exploited to perform specula-
tive computations using only two datapath instances. 
The following analysis uses assumptions about the be-
havior of metastable flip-flops and so this is discussed 
first.

path unfolding:

a)Asynchronous receiver
b)Equivalent  unfolded cyclic pipeline 

speculative computations cannot be “reversed” in 
a similarly straightforward manner. This is because 
non pipelined systems have loop dependencies1 (i.e., 
feedback paths), such as the one represented by the 
expression x  x + 1. The existence of these dependen-
cies means that miss speculated operations may cause 
irreversible state corruption. Nevertheless, arbitrary 
designs can benefit from speculation by first being 
converted into functionally-equivalent pipelines. This 
can be done by unfolding these designs  (e.g., convert-
ing x  x + 1 into x1 x2 + 1). Unfolded pipelines produce 
the same output as the original design after a number 
of cycles equal to  the pipeline  . .depth. Unfolding is 
widely used by compilers  and schedulers to increase 
execution throughput. The technique is also equiva-
lently-capable of resolving loop dependencies in hard-
ware implementations; it is extensively used in digital 
signal processors and has been proposed for general 
purpose synthesis . 

c) depth.Unfolding is widely used by compilers  and 
schedulers to increase execution throughput. The 
technique is also equivalently-capable of resolving loop 
dependencies in hardware implementations; it is ex-
tensively used in digital signal processors and has been 
proposed for general purpose synthesis. Consider the 
asynchronous receiver shown in Fig. 1(a). The receiver 
is depicted as generic Moore machine consisting of the 
combinational block C and the state register R. 

The transfer of asynchronous data is controlled by the 
handshake signals REQ and ACK. We will assume, for 
illustration purposes, that this receiver uses a four-
phase handshake protocol. Therefore, the sender 
makes data available on the bus and asserts REQ. The 
controller then latches the data, performs few data-de-
pendents computations, and subsequently asserts ACK 
to acknowledge the completion of data consumption. 
Afterwards, the sender de-asserts REQ and the receive 
de-asserts ACK. To maintain reliability, two flip-flops 
are used to synchronize REQ.This delays the latching 
of data and the onset of subsequent computations by 
two cycles. Nevertheless, 
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IMPLEMENTATION:

We have proved that the state of a constrained syn-
chronizer can be used to sequence a series of latching 
operations correctly. This is done by making the satis-
faction of the setup conditions of all the paths from the 
synchronizer flip-flops to the data registers a necessary 
condition for a change in the synchronizer state. Satis-
fying Inequality 3 guarantees this behavior regardless 
of the combinational logic used to decode the synchro-
nizer state (two AND gates in Fig pipeline with a syn-
chronizer acting as control logic in sequenced latching 
). In this section, we demonstrate how to exploit this 
behavior to perform speculative computations using 
only two datapath instances. In short, we connect the 
two instances in a cyclic pipeline and use sequenced 
latching to enable them alternately. When one state 
register fails to latch the next state.

 
Fig 3.Sequenced latching: Datapathpath 

a)Synchronizer state decoder b)Cyclic pipeline of data 
path instances.c) State diagram
operating Principle 
The basic application of sequenced latching to a non-
pipelined datapath is demonstrated in above figure. 
Two datapath instances are connected in a cyclic pipe-
line [Fig. cyclic pipeline of datapath instances] and en-
abled alternately using two signals, ODD and EVEN, 
which are combinationally derived from the synchro-
nizer nodes and asserted during the odd and even cy-
cles of synchronization, respectively, Fig. Synchronizer 
state decoder. For a positive-edge four-phase protocol 
(assuming n is even)

Fig 2.  Sequenced latching: pipeline

a) pipeline with a synchronizer act as control logic  
b) synchronizer state diagram

Assumptions About Metastable Behavior 

In our analysis, we will assume, in accordance with, that 
a metastable state can cause an increase in the clock-
to-q delay of a flip-flop but does not change the mono-
tonic nature or the rise/fall time of its output. We have 
simulated several flip-flop designs from a commercial 
90-nm standard cell library and found their behavior 
consistent with that reported in .

Isochronicity

Similar to the case of data path unfolding, our tech-
nique is based on isochronic handshakes. This means 
that the data and request signals travel separately and 
that data availability is indicated to the receiver by a 
transition of the request signal that is guaranteed to 
arrive a sufficient time later. 

Technique Overview

We illustrate our technique by referring to Fig. pipe-
line with a synchronizer acting as control logic in se-
quenced latching. In the depicted design, two flip-flops 
(S2 and S3) synchronize an asynchronous handshake 
request (REQ) and simultaneously act as a state ma-
chine to control the propagation of the asynchronous 
data item through a pipeline.
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Fig. 5. Signal waveforms illustrating the behavior of 
the system when a synchronizer flip-flop becomes 

metastable (four-phase handshake protocol).
Example of Behavior

In this section, we will explain in detail how the imple-
mentation in Fig. 4 behaves when one of the synchro-
nizer flip-flops becomes metastable. We will refer to 
Fig. 5 which shows the signal waveforms for two hand-
shakes; a typical case metastability-free handshake 
and another where a metastable state is encountered. 
In the first handshake, ODD and EVEN begin toggling 
as soon as REQ is high and COMPLETE goes high four 
cycles later to signal the handshake controller to pull 
ACK high and end the handshake. This is the typical-
case behavior of the sequencing logic in Fig. 2(b) when 
the synchronizer flip-flops’ outputs (s0, s1, and s2) tran-
sition with nominal clock-to-q delays. In this example, 
the data path asserts COMPLETE after four computa-
tion cycles. In the second handshake, REQ transitions 
to logic high and RO latches a data path state simulta-
neously. However, the arrival of REQ causes the first 
synchronizer flip-flop (FF1) to become metastable.

Results
Asynchronous receiver:

Proposed Implementation

Fig. Asynchronous receiver shows the block diagram 
of the proposed implementation. Here, the handshake 
controller sits outside the datapath and communicates 
with it using the signals VALID and COMPLETE. VALID 
is asserted by the controller at the end of synchroni-
zation while COMPLETE is asserted by the datapath to 
mark the end of computations. 

During synchronization cycles, the sequencing logic 
block undertakes the generation of ODD and EVEN to 
complete a number of datapath state transitions equal 
to the number of synchronization cycles. Delay ele-
ments are added between the synchronizer flip-flops 
to satisfy criteria gi (Inequality 3). 

If the datapath computation cycles (m) are more than 
synchronization cycles (n) then the alternating behav-
ior of ODD and EVEN needs to be maintained after syn-
chronization. This can be achieved by adding a  toggle 
flipflop to the sequencing logic as shown in fig 3(b).

 
Fig 4. Asynchronous controller which uses sequenced 

latching to perform speculative computations

a)Asynchronous  receiver schematics.
b)Sequencing logic
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IMPLEMENTATION:

We have proved that the state of a constrained syn-
chronizer can be used to sequence a series of latching 
operations correctly. This is done by making the satis-
faction of the setup conditions of all the paths from the 
synchronizer flip-flops to the data registers a necessary 
condition for a change in the synchronizer state. Satis-
fying Inequality 3 guarantees this behavior regardless 
of the combinational logic used to decode the synchro-
nizer state (two AND gates in Fig pipeline with a syn-
chronizer acting as control logic in sequenced latching 
). In this section, we demonstrate how to exploit this 
behavior to perform speculative computations using 
only two datapath instances. In short, we connect the 
two instances in a cyclic pipeline and use sequenced 
latching to enable them alternately. When one state 
register fails to latch the next state.

 
Fig 3.Sequenced latching: Datapathpath 

a)Synchronizer state decoder b)Cyclic pipeline of data 
path instances.c) State diagram
operating Principle 
The basic application of sequenced latching to a non-
pipelined datapath is demonstrated in above figure. 
Two datapath instances are connected in a cyclic pipe-
line [Fig. cyclic pipeline of datapath instances] and en-
abled alternately using two signals, ODD and EVEN, 
which are combinationally derived from the synchro-
nizer nodes and asserted during the odd and even cy-
cles of synchronization, respectively, Fig. Synchronizer 
state decoder. For a positive-edge four-phase protocol 
(assuming n is even)

Fig 2.  Sequenced latching: pipeline

a) pipeline with a synchronizer act as control logic  
b) synchronizer state diagram

Assumptions About Metastable Behavior 

In our analysis, we will assume, in accordance with, that 
a metastable state can cause an increase in the clock-
to-q delay of a flip-flop but does not change the mono-
tonic nature or the rise/fall time of its output. We have 
simulated several flip-flop designs from a commercial 
90-nm standard cell library and found their behavior 
consistent with that reported in .

Isochronicity

Similar to the case of data path unfolding, our tech-
nique is based on isochronic handshakes. This means 
that the data and request signals travel separately and 
that data availability is indicated to the receiver by a 
transition of the request signal that is guaranteed to 
arrive a sufficient time later. 

Technique Overview

We illustrate our technique by referring to Fig. pipe-
line with a synchronizer acting as control logic in se-
quenced latching. In the depicted design, two flip-flops 
(S2 and S3) synchronize an asynchronous handshake 
request (REQ) and simultaneously act as a state ma-
chine to control the propagation of the asynchronous 
data item through a pipeline.
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Fig. 5. Signal waveforms illustrating the behavior of 
the system when a synchronizer flip-flop becomes 

metastable (four-phase handshake protocol).
Example of Behavior

In this section, we will explain in detail how the imple-
mentation in Fig. 4 behaves when one of the synchro-
nizer flip-flops becomes metastable. We will refer to 
Fig. 5 which shows the signal waveforms for two hand-
shakes; a typical case metastability-free handshake 
and another where a metastable state is encountered. 
In the first handshake, ODD and EVEN begin toggling 
as soon as REQ is high and COMPLETE goes high four 
cycles later to signal the handshake controller to pull 
ACK high and end the handshake. This is the typical-
case behavior of the sequencing logic in Fig. 2(b) when 
the synchronizer flip-flops’ outputs (s0, s1, and s2) tran-
sition with nominal clock-to-q delays. In this example, 
the data path asserts COMPLETE after four computa-
tion cycles. In the second handshake, REQ transitions 
to logic high and RO latches a data path state simulta-
neously. However, the arrival of REQ causes the first 
synchronizer flip-flop (FF1) to become metastable.

Results
Asynchronous receiver:

Proposed Implementation

Fig. Asynchronous receiver shows the block diagram 
of the proposed implementation. Here, the handshake 
controller sits outside the datapath and communicates 
with it using the signals VALID and COMPLETE. VALID 
is asserted by the controller at the end of synchroni-
zation while COMPLETE is asserted by the datapath to 
mark the end of computations. 

During synchronization cycles, the sequencing logic 
block undertakes the generation of ODD and EVEN to 
complete a number of datapath state transitions equal 
to the number of synchronization cycles. Delay ele-
ments are added between the synchronizer flip-flops 
to satisfy criteria gi (Inequality 3). 

If the datapath computation cycles (m) are more than 
synchronization cycles (n) then the alternating behav-
ior of ODD and EVEN needs to be maintained after syn-
chronization. This can be achieved by adding a  toggle 
flipflop to the sequencing logic as shown in fig 3(b).

 
Fig 4. Asynchronous controller which uses sequenced 

latching to perform speculative computations

a)Asynchronous  receiver schematics.
b)Sequencing logic
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Unfolded pipeline:

 

Sequenced latching:

CONCLUSION:

We presented a method of performing speculative 
computations during synchronization cycles and hence 
prevented synchronization time from incurring latency. 
Our method relies on using the synchronizer state to 
sequence the latching of data during synchronization 
cycles and automatically re-latch any corrupt data. We 
verified that our approach works in practice by imple-
menting it on an Microwind. Our method outperforms 
existing speculative methods in several aspects; it pro-
vides zero latency, its area overhead is smaller (and 
does not increase with the number of synchronization 
cycles) and its power overhead is negligible. 
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