
 ISSN No: 2348-4845

 Volume No: 2 (2015), Issue No: 7 (July) July 2015
 www.ijmetmr.com Page 524

International Journal & Magazine of Engineering,
Technology, Management and Research

A Peer Reviewed Open Access International Journal

Therefore, a synchronizer design presents a reliability
versus performance tradeoff where the mean time be-
tween failures (MTBF) of the design is traded for the
time available for synchronization (the settling time
ts). The relationship between the MTBF and ts is cap-
tured by the textbook formula

where τ is the metastability regeneration time constant,
fc is the clock frequency, fd is the data arrival rate, and
Tw is a reference time window for the exponential re-
lationship. For a given technology and operating condi-
tions, the MTBF of synchronization is adjusted by the
designer’s choice of ts .

The latency of synchronizer chains has a detrimental
impact on the performance of latency-sensitive appli-
cations and so alternative methods to reduce or elimi-
nate this latency have been proposed. These methods
can be divided into three categories as follows:

Circuit-Level Designs:

Synchronization time can be reduced by using faster
(lower τ) flip-flops. The Jamb latch was an early at-
tempt to meet the special performance requirements
of synchronization. A similar improved latch was pre-
sented in featuring additional transistors that increase
the regenerative loop gain when a metastable state is
detected. Another improved design was presented in
demonstrating lower susceptibility to supply voltage
variation

ABSTRACT:

Modern multicore systems have a large number of com-
ponents operating in different clock domains and com-
municating through asynchronous interfaces. These in-
terfaces use synchronizer circuits, which guard against
metastability failures but introduce latency in process-
ing the asynchronous input. We propose a speculative
method that hides synchronization latency by overlap-
ping it with computation cycles. We verify the correct-
ness of our approach through a Micro wind. The results
reveal that our approach achieves average savings of
area costs and power costs compared to other specu-
lative techniques.

Index Terms:

Duplication, latency, metastability, speculation, syn-
chronization.

INTRODUCTION:
The crossing of data between different clock domains
requires re-timing the data according to the receiver’s
clock and is prone to metastability failures . While it is
impossible to completely prevent these failures, their
probability can be reduced to an acceptable level by
re-sampling the input signal through a cascade of flip-
flops known as a synchronizer. This ensures that any
occurrences of metastability are given enough time to
resolve to valid logic states before being interpreted
by other circuits. However, this also introduces latency
and degrades the performance of the communication
link.

Solution for Minimizing the Latency Using
Sequenced Latching

T.Sandhya Rani
M.Tech Student,

Dept of ECE,
Abdulkalam Institute of
Technological Sciences,

Kothagudem.

B.Bashu
Assistant Professor,

Dept of ECE,
Abdulkalam Institute of
Technological Sciences,

Kothagudem.

Rajaiah Gabbeta
Professor & HOD,

Dept of ECE,
Abdulkalam Institute of
Technological Sciences,

Kothagudem.

 ISSN No: 2348-4845

 Volume No: 2 (2015), Issue No: 7 (July) July 2015
 www.ijmetmr.com Page 525

International Journal & Magazine of Engineering,
Technology, Management and Research

A Peer Reviewed Open Access International Journal

To the best of our knowledge, only that method ap-
pear in the literature.The method (Data path Unfold-
ing) is, in fact, a general-purpose hardware duplication
solution that can be used to mitigate latency in various
contexts, including synchronization.

Overview of Speculation:

Speculation is the use of either time or resource redun-
dancy to perform potentially useful work. Modern digi-
tal systems employ speculation at different abstraction
levels. For example, memory management speculative-
ly populates cache hierarchies with prefetched data to
reduce the impact of slow memory access on process-
ing speed .

Data path Unfolding:

Performing speculative computations in pipelined sys-
tems is particularly easy because restoring the state
of a pipeline in the case of misspeculation is trivial.
For example, when a pipelined processor mispredicts
a branch, invalid instructions in the fetch and decode
stages can be discarded. However, the same cannot be
said about nonpipelined systems.

Exploiting Known Timing Relationships:

Synchronization latency can be avoided in special
cases when the communicating clocks share a timing
relationship. This is because it becomes possible to de-
tect when clockdata conflicts might occur and avoid
sampling the input in the vicinity of hazardous inter-
vals. Solutions of this form exist for clocks with equal
frequency but unknown skew , closely-matched (ple-
siosynchronous) clocks, rationally related clocks, and
periodic clocks.

Using Pausible/Stretchable Clocks:

The need for synchronization can be eliminated by al-
lowing the receiver’s clock to pause for an unbound-
ed amount of time. This is typically done by adding a
mutual-exclusion element that arbitrates between the
receiver’s clock and handshake requests and pauses
the receiver’s clock until any encountered metastable
states are resolved .

Existing System:

In this section, we review the existing speculative
method of reducing synchronization latency.

Fig 1 Hiding synchrozination latency using data

 ISSN No: 2348-4845

 Volume No: 2 (2015), Issue No: 7 (July) July 2015
 www.ijmetmr.com Page 526

International Journal & Magazine of Engineering,
Technology, Management and Research

A Peer Reviewed Open Access International Journal

this latency can be hidden by using two additional data
path instances to speculatively compute the first two
data path states following a transition of REQ. An ar-
rangement which accomplishes this is shown in Fig.
1(b). Here, the receiver data path has been unfolded
into a three-stage cyclic pipeline. The third stage repre-
sents the original (safe) copy of the data path while the
first two perform speculative computations assuming
the data bus holds valid data.

At each cycle, the state stored in R2 represents what
the state in R3 would have been if REQ transitioned
two cycles earlier. When an actual REQ transition ap-
pears at the synchronizer output, the speculative state
stored in R2 is used by C3 to compute the third state
following data arrival. Subsequently, the original data
path (R3, C3) resumes computations and acknowledg-
es the sender upon completion.2 This scheme requires
an isochronic handshake protocol:

REQ must arrive after data by a sufficiently-large delay.
This ensures that the speculative state in R2 is based on
valid data every time a transition of REQ appears at the
synchronizer output. Note that invalid (or metastable)
data path states may still be latched by R1 and passed
to R2. However, isochrony ensures these states always
precede the appearance of a REQ transition at the syn-
chronizer output.

Proposed System:

In this section, we describe a novel technique to latch
data reliably during synchronization cycles. In short, we
use the synchronizer as a state machine to sequence a
series of latching operations. The synchronizer is con-
strained such that its state does not change when a
latching operation fails. Therefore, any failed latching
attempts are automatically retried in the subsequent
cycles.

We call this method sequenced latching and demon-
strate, in that it can be exploited to perform specula-
tive computations using only two datapath instances.
The following analysis uses assumptions about the be-
havior of metastable flip-flops and so this is discussed
first.

path unfolding:

a)Asynchronous receiver
b)Equivalent unfolded cyclic pipeline

speculative computations cannot be “reversed” in
a similarly straightforward manner. This is because
non pipelined systems have loop dependencies1 (i.e.,
feedback paths), such as the one represented by the
expression x x + 1. The existence of these dependen-
cies means that miss speculated operations may cause
irreversible state corruption. Nevertheless, arbitrary
designs can benefit from speculation by first being
converted into functionally-equivalent pipelines. This
can be done by unfolding these designs (e.g., convert-
ing x x + 1 into x1 x2 + 1). Unfolded pipelines produce
the same output as the original design after a number
of cycles equal to the pipeline . .depth. Unfolding is
widely used by compilers and schedulers to increase
execution throughput. The technique is also equiva-
lently-capable of resolving loop dependencies in hard-
ware implementations; it is extensively used in digital
signal processors and has been proposed for general
purpose synthesis .

c) depth.Unfolding is widely used by compilers and
schedulers to increase execution throughput. The
technique is also equivalently-capable of resolving loop
dependencies in hardware implementations; it is ex-
tensively used in digital signal processors and has been
proposed for general purpose synthesis. Consider the
asynchronous receiver shown in Fig. 1(a). The receiver
is depicted as generic Moore machine consisting of the
combinational block C and the state register R.

The transfer of asynchronous data is controlled by the
handshake signals REQ and ACK. We will assume, for
illustration purposes, that this receiver uses a four-
phase handshake protocol. Therefore, the sender
makes data available on the bus and asserts REQ. The
controller then latches the data, performs few data-de-
pendents computations, and subsequently asserts ACK
to acknowledge the completion of data consumption.
Afterwards, the sender de-asserts REQ and the receive
de-asserts ACK. To maintain reliability, two flip-flops
are used to synchronize REQ.This delays the latching
of data and the onset of subsequent computations by
two cycles. Nevertheless,

 ISSN No: 2348-4845 ISSN No: 2348-4845

 Volume No: 2 (2015), Issue No: 7 (July) July 2015
 www.ijmetmr.com Page 527

International Journal & Magazine of Engineering,
Technology, Management and Research

A Peer Reviewed Open Access International Journal

IMPLEMENTATION:

We have proved that the state of a constrained syn-
chronizer can be used to sequence a series of latching
operations correctly. This is done by making the satis-
faction of the setup conditions of all the paths from the
synchronizer flip-flops to the data registers a necessary
condition for a change in the synchronizer state. Satis-
fying Inequality 3 guarantees this behavior regardless
of the combinational logic used to decode the synchro-
nizer state (two AND gates in Fig pipeline with a syn-
chronizer acting as control logic in sequenced latching
). In this section, we demonstrate how to exploit this
behavior to perform speculative computations using
only two datapath instances. In short, we connect the
two instances in a cyclic pipeline and use sequenced
latching to enable them alternately. When one state
register fails to latch the next state.

Fig 3.Sequenced latching: Datapathpath

a)Synchronizer state decoder b)Cyclic pipeline of data
path instances.c) State diagram
operating Principle
The basic application of sequenced latching to a non-
pipelined datapath is demonstrated in above figure.
Two datapath instances are connected in a cyclic pipe-
line [Fig. cyclic pipeline of datapath instances] and en-
abled alternately using two signals, ODD and EVEN,
which are combinationally derived from the synchro-
nizer nodes and asserted during the odd and even cy-
cles of synchronization, respectively, Fig. Synchronizer
state decoder. For a positive-edge four-phase protocol
(assuming n is even)

Fig 2. Sequenced latching: pipeline

a) pipeline with a synchronizer act as control logic
b) synchronizer state diagram

Assumptions About Metastable Behavior

In our analysis, we will assume, in accordance with, that
a metastable state can cause an increase in the clock-
to-q delay of a flip-flop but does not change the mono-
tonic nature or the rise/fall time of its output. We have
simulated several flip-flop designs from a commercial
90-nm standard cell library and found their behavior
consistent with that reported in .

Isochronicity

Similar to the case of data path unfolding, our tech-
nique is based on isochronic handshakes. This means
that the data and request signals travel separately and
that data availability is indicated to the receiver by a
transition of the request signal that is guaranteed to
arrive a sufficient time later.

Technique Overview

We illustrate our technique by referring to Fig. pipe-
line with a synchronizer acting as control logic in se-
quenced latching. In the depicted design, two flip-flops
(S2 and S3) synchronize an asynchronous handshake
request (REQ) and simultaneously act as a state ma-
chine to control the propagation of the asynchronous
data item through a pipeline.

 Volume No: 2 (2015), Issue No: 7 (July) July 2015
 www.ijmetmr.com Page 528

International Journal & Magazine of Engineering,
Technology, Management and Research

A Peer Reviewed Open Access International Journal

Fig. 5. Signal waveforms illustrating the behavior of
the system when a synchronizer flip-flop becomes

metastable (four-phase handshake protocol).
Example of Behavior

In this section, we will explain in detail how the imple-
mentation in Fig. 4 behaves when one of the synchro-
nizer flip-flops becomes metastable. We will refer to
Fig. 5 which shows the signal waveforms for two hand-
shakes; a typical case metastability-free handshake
and another where a metastable state is encountered.
In the first handshake, ODD and EVEN begin toggling
as soon as REQ is high and COMPLETE goes high four
cycles later to signal the handshake controller to pull
ACK high and end the handshake. This is the typical-
case behavior of the sequencing logic in Fig. 2(b) when
the synchronizer flip-flops’ outputs (s0, s1, and s2) tran-
sition with nominal clock-to-q delays. In this example,
the data path asserts COMPLETE after four computa-
tion cycles. In the second handshake, REQ transitions
to logic high and RO latches a data path state simulta-
neously. However, the arrival of REQ causes the first
synchronizer flip-flop (FF1) to become metastable.

Results
Asynchronous receiver:

Proposed Implementation

Fig. Asynchronous receiver shows the block diagram
of the proposed implementation. Here, the handshake
controller sits outside the datapath and communicates
with it using the signals VALID and COMPLETE. VALID
is asserted by the controller at the end of synchroni-
zation while COMPLETE is asserted by the datapath to
mark the end of computations.

During synchronization cycles, the sequencing logic
block undertakes the generation of ODD and EVEN to
complete a number of datapath state transitions equal
to the number of synchronization cycles. Delay ele-
ments are added between the synchronizer flip-flops
to satisfy criteria gi (Inequality 3).

If the datapath computation cycles (m) are more than
synchronization cycles (n) then the alternating behav-
ior of ODD and EVEN needs to be maintained after syn-
chronization. This can be achieved by adding a toggle
flipflop to the sequencing logic as shown in fig 3(b).

Fig 4. Asynchronous controller which uses sequenced

latching to perform speculative computations

a)Asynchronous receiver schematics.
b)Sequencing logic

 ISSN No: 2348-4845 ISSN No: 2348-4845

 Volume No: 2 (2015), Issue No: 7 (July) July 2015
 www.ijmetmr.com Page 527

International Journal & Magazine of Engineering,
Technology, Management and Research

A Peer Reviewed Open Access International Journal

IMPLEMENTATION:

We have proved that the state of a constrained syn-
chronizer can be used to sequence a series of latching
operations correctly. This is done by making the satis-
faction of the setup conditions of all the paths from the
synchronizer flip-flops to the data registers a necessary
condition for a change in the synchronizer state. Satis-
fying Inequality 3 guarantees this behavior regardless
of the combinational logic used to decode the synchro-
nizer state (two AND gates in Fig pipeline with a syn-
chronizer acting as control logic in sequenced latching
). In this section, we demonstrate how to exploit this
behavior to perform speculative computations using
only two datapath instances. In short, we connect the
two instances in a cyclic pipeline and use sequenced
latching to enable them alternately. When one state
register fails to latch the next state.

Fig 3.Sequenced latching: Datapathpath

a)Synchronizer state decoder b)Cyclic pipeline of data
path instances.c) State diagram
operating Principle
The basic application of sequenced latching to a non-
pipelined datapath is demonstrated in above figure.
Two datapath instances are connected in a cyclic pipe-
line [Fig. cyclic pipeline of datapath instances] and en-
abled alternately using two signals, ODD and EVEN,
which are combinationally derived from the synchro-
nizer nodes and asserted during the odd and even cy-
cles of synchronization, respectively, Fig. Synchronizer
state decoder. For a positive-edge four-phase protocol
(assuming n is even)

Fig 2. Sequenced latching: pipeline

a) pipeline with a synchronizer act as control logic
b) synchronizer state diagram

Assumptions About Metastable Behavior

In our analysis, we will assume, in accordance with, that
a metastable state can cause an increase in the clock-
to-q delay of a flip-flop but does not change the mono-
tonic nature or the rise/fall time of its output. We have
simulated several flip-flop designs from a commercial
90-nm standard cell library and found their behavior
consistent with that reported in .

Isochronicity

Similar to the case of data path unfolding, our tech-
nique is based on isochronic handshakes. This means
that the data and request signals travel separately and
that data availability is indicated to the receiver by a
transition of the request signal that is guaranteed to
arrive a sufficient time later.

Technique Overview

We illustrate our technique by referring to Fig. pipe-
line with a synchronizer acting as control logic in se-
quenced latching. In the depicted design, two flip-flops
(S2 and S3) synchronize an asynchronous handshake
request (REQ) and simultaneously act as a state ma-
chine to control the propagation of the asynchronous
data item through a pipeline.

 Volume No: 2 (2015), Issue No: 7 (July) July 2015
 www.ijmetmr.com Page 528

International Journal & Magazine of Engineering,
Technology, Management and Research

A Peer Reviewed Open Access International Journal

Fig. 5. Signal waveforms illustrating the behavior of
the system when a synchronizer flip-flop becomes

metastable (four-phase handshake protocol).
Example of Behavior

In this section, we will explain in detail how the imple-
mentation in Fig. 4 behaves when one of the synchro-
nizer flip-flops becomes metastable. We will refer to
Fig. 5 which shows the signal waveforms for two hand-
shakes; a typical case metastability-free handshake
and another where a metastable state is encountered.
In the first handshake, ODD and EVEN begin toggling
as soon as REQ is high and COMPLETE goes high four
cycles later to signal the handshake controller to pull
ACK high and end the handshake. This is the typical-
case behavior of the sequencing logic in Fig. 2(b) when
the synchronizer flip-flops’ outputs (s0, s1, and s2) tran-
sition with nominal clock-to-q delays. In this example,
the data path asserts COMPLETE after four computa-
tion cycles. In the second handshake, REQ transitions
to logic high and RO latches a data path state simulta-
neously. However, the arrival of REQ causes the first
synchronizer flip-flop (FF1) to become metastable.

Results
Asynchronous receiver:

Proposed Implementation

Fig. Asynchronous receiver shows the block diagram
of the proposed implementation. Here, the handshake
controller sits outside the datapath and communicates
with it using the signals VALID and COMPLETE. VALID
is asserted by the controller at the end of synchroni-
zation while COMPLETE is asserted by the datapath to
mark the end of computations.

During synchronization cycles, the sequencing logic
block undertakes the generation of ODD and EVEN to
complete a number of datapath state transitions equal
to the number of synchronization cycles. Delay ele-
ments are added between the synchronizer flip-flops
to satisfy criteria gi (Inequality 3).

If the datapath computation cycles (m) are more than
synchronization cycles (n) then the alternating behav-
ior of ODD and EVEN needs to be maintained after syn-
chronization. This can be achieved by adding a toggle
flipflop to the sequencing logic as shown in fig 3(b).

Fig 4. Asynchronous controller which uses sequenced

latching to perform speculative computations

a)Asynchronous receiver schematics.
b)Sequencing logic

 ISSN No: 2348-4845 ISSN No: 2348-4845

 Volume No: 2 (2015), Issue No: 7 (July) July 2015
 www.ijmetmr.com Page 529

International Journal & Magazine of Engineering,
Technology, Management and Research

A Peer Reviewed Open Access International Journal

[3] R. Ginosar, “Metastability and synchronizers: A tu-
torial,” IEEE Design Test Comput., vol. 28, no. 5, pp.
23–35, Sep.–Oct. 2011.

[4] D. Kinniment, A. Bystrov, and A. Yakovlev, “Syn-
chronization circuit performance,” IEEE J. Solid-State
Circuits, vol. 37, no. 2, pp. 202–209, Feb. 2002.

 [5] J. Zhou, D. Kinniment, G. Russell, and A. Yakovlev,
“A robust synchronizer,” in Proc. IEEE Comput. Soc.
Annu. Symp. Emerg. VLSI Technol. Archit., Mar. 2006,
pp. 442–443.

[6] S. Yang, I. Jones, and M. Greenstreet, “Synchronizer
performance in deep sub-micron technology,” in Proc.
17th IEEE Int. Symp. Asynchron. Circuits Syst., Apr. 2011,
pp. 33–42.

AUTHORS:

T.Sandhya Rani has received B.Tech Degree in
E.C.E froms Abdul Kalam Institute of Technological
Sciences(JNTUH) in 2013.Presently Studying M.Tech in
Embedded Systems and VLSI System Design at AKITS.

B.Bashu has received his B.tech Degree in Electronics
and Communication Engineering from aizza Engineer-
ing College (JNTUH) in 2006 and M.Tech in communica-
tionsystems from aurora Engineering College (JNTUH)
in 2010.Presently working as an Assistant Proffesor in
Abdul Kalam Institute of Technological Sciences

G.Rajaiaha has received his B.tech Degree in Elec-
tronics and Instrumentation Engineering from Kakati-
ya Universit in 1997 and M.Tech in Instrumentation and
Control System Design from JNTU Kakinad in 2005.
Presently working as a Proffesor and HOD in Abdul Ka-
lam Institute of Technological Sciences. He has contrib-
uted more than 20 reviewed publications in Journals.

Unfolded pipeline:

Sequenced latching:

CONCLUSION:

We presented a method of performing speculative
computations during synchronization cycles and hence
prevented synchronization time from incurring latency.
Our method relies on using the synchronizer state to
sequence the latching of data during synchronization
cycles and automatically re-latch any corrupt data. We
verified that our approach works in practice by imple-
menting it on an Microwind. Our method outperforms
existing speculative methods in several aspects; it pro-
vides zero latency, its area overhead is smaller (and
does not increase with the number of synchronization
cycles) and its power overhead is negligible.

REFERENCES:

[1] T. J. Chaney and C. E. Molnar, “Anomalous behavior
of synchronizer and arbiter circuits,” IEEE Trans. Com-
put., vol. 22, no. 4, pp. 421–422, Apr. 1973.

[2] I. W. Jones, S. Yang, and M. Greenstreet, “Synchro-
nizer behavior and analysis,” in Proc. 15th IEEE Symp.
Asynchron. Circuits Syst., May 2009, pp. 117–126.

 Volume No: 2 (2015), Issue No: 7 (July) July 2015
 www.ijmetmr.com Page 530

International Journal & Magazine of Engineering,
Technology, Management and Research

A Peer Reviewed Open Access International Journal

