

 Page 1829

Enhanced Blind Signature based Secure Cloud Transactions

V.S.N Harshitha

M.Tech Student,

Department of CSE

Vignan'sNirula Institute of Technology and Science for

Women, Pedapalakaluru, Guntur-522 005

P.Nagababu

Assistant Professor,

Department of CSE

Vignan'sNirula Institute of Technology and Science for

Women, Pedapalakaluru, Guntur-522 005

ABSTRACT:

In distributed transactional database systems

deployed over cloud servers, entities cooperate to

form proofs of authorizations that are justified

by collections of certified credentials. These

proofs and credentials may be evaluated and

collected over extended time periods under the

risk of having the underlying authorization

policies or the user credentials being in

inconsistent states. It therefore becomes possible

for policy-based authorization systems to make

unsafe decisions that might threaten sensitive

resources. In this paper, we highlight the

criticality of the problem. We then define the

notion of trusted transactions when dealing with

proofs of authorization. Accordingly, we propose

several increasingly stringent levels of policy

consistency constraints, and present different

enforcement approaches to guarantee the

trustworthiness of transactions executing on

cloud servers. We propose a Two-Phase

Validation Commit protocol as a solution, which

is a modified version of the basic Two-Phase

Validation Commit protocols. We finally analyze

the different approaches presented using both

analytical evaluation of the overheads and

simulations to guide the decision makers to

which approach to use.

Index Terms—Cloud databases, authorization

policies, consistency, distributed transactions,

atomic commit protocol

INTRODUCTION:

Cloud computing has recently emerged as a

computing paradigm in which storage and

computation can be outsourced from organizations

to next generation data centers hosted by

companies such as Amazon, Google, Yahoo, and

Microsoft. Such companies help free

organizations from requiring expensive

infrastructure and expertise in-house, and instead

make use of the cloud providers to maintain,

support, and broker access to high-end resources.

From an economic perspective, cloud consumers

can save huge IT capital investments and be

charged on the basis of a pay-only-for-what-you-

use pricing model. One of the most appealing

aspects of cloud computing is its elasticity, which

provides an illusion of infinite, on demand

resources [1] making it an attractive environment

for highly scalable, multitiered applications.

However, this can create additional challenges for

back-end, transactional database systems, which

were designed without elasticity in mind. Despite

the efforts of key-value stores like Amazon’s

SimpleDB, Dynamo, and Google’s Bigtable to

provide scalable access to huge amounts of data,

transactional guarantees remain a bottleneck

[2].To provide scalability and elasticity, cloud

services often make heavy use of replication to

ensure consistent performance and availability. As

a result, many cloud services rely on the notion of

eventual consistency when propagating data

throughout the system. This consistency model is

a variant of weak consistency that allows data to

 Page 1830

be inconsistent among some replicas during the

update process, but ensures that updates will

eventually be propagated to all replicas. This

makes it difficult to strictly maintain the ACID

guarantees, as the “C” (consistency) part of ACID

is sacrificed to provide reasonable availability

[3].In systems that host sensitive resources,

accesses are protected via authorization policies

that describe the conditions under which users

should be permitted access to resources. These

policies describe relationships between the system

principles, as well as the certified credentials that

users must provide to attest to their attributes. In a

transactional database system that is deployed in a

highly distributed and elastic system such as the

cloud, policies would typically be replicated—

very much like data— among multiple sites, often

following the same weak or eventual consistency

model. It therefore becomes possible for a policy-

based authorization system to make unsafe

decisions using stale policies. Interesting

consistency problems can arise as transactional

database systems are deployed in cloud

environments and use policy-based authorization

systems to protect sensitive resources. In addition

to handling consistency issues among database

replicas, we must also handle two types of

security inconsistency conditions. First, the

system may suffer from policy inconsistencies

during policy updates due to the relaxed

consistency model underlying most cloud

services. For example, it is possible for several

versions of the policy to be observed at multiple

sites within a single transaction, leading to

inconsistent (and likely unsafe) access decisions

during the transaction. Second, it is possible for

external factors to cause user credential

inconsistencies over the lifetime of a transaction

[4].

For instance, a user’s login credentials could be

invalidated or revoked after collection by the

authorization server, but before the completion of

the transaction. In this paper, we address this

confluence of data, policy, and credential

inconsistency problems that can emerge as

transactional database systems are deployed to the

cloud. In doing so, we make the following

contributions:

We formalize the concept of trusted transactions.

Trusted transactions are those transactions that do

not violate credential or policy inconsistencies

over the lifetime of the transaction. We then

present a more general term, safe transactions, that

identifies transactions that are both trusted and

conform to the ACID properties of distributed

database systems We define several different

levels of policy consistency constraints and

corresponding enforcement approaches that

guarantee the trustworthiness of transactions

executing on cloud server. We propose a Two-

Phase Validation Commit (2PVC) protocol that

ensures that a transaction is safe by checking

policy, credential, and data consistency during

transaction execution. We carry out an

experimental evaluation of our proposed

approaches, and present a tradeoff discussion to

guide decision makers as to which approach is

most suitable in various situations.

Existing system

To protect user access patterns from a cloud data

store, Williams et al. introduce a mechanism by

which cloud storage users can issue encrypted

reads, writes, and inserts. Further, Williams et al.

propose a mechanism that enables un trusted

service providers to support transaction

serialization, backup, and recovery with full data

confidentiality and correctness.

 Page 1831

 A dynamic consistency rationing mechanism

that automatically adapts the level of

consistency at runtime. Both of these works

focus on data consistency, while our work

focuses on attaining both data and policy

consistency.

 Proofs of data possession have been proposed

as a means for clients to ensure that service

providers actually maintain copies of the data

that they are contracted to host. In other

works, data replications have been combined

with proofs of retrieve ability to provide users

with integrity and consistency guarantees

when using cloud storage.

 CloudTPS is primarily concerned with

providing consistency and isolation upon data

without regard to considerations of

authorization policies.

 This work proactively ensures that data stored

at a particular site conforms to the policy

stored at that site. If the policy is updated, the

server will scan the data items and throw out

any that would be denied based on the revised

policy.

 The consistency of distributed proofs of

authorization has previously been studied,

though not in a dynamic cloud environment.

This work highlights the inconsistency issues

that can arise in the case where authorization

policies are static, but the credentials used to

satisfy these policies may be revoked or

altered.

 The authors develop protocols that enable

various consistency guarantees to be enforced

during the proof construction process to

minimize these types of security issues.

.

Proposed System:

 In this paper highlight the criticality of the

problem. It defines the notion of trusted

transactions when dealing with proofs of

authorization. Accordingly, it propose several

increasingly stringent levels of policy

consistency constraints, and present different

enforcement approaches to guarantee the

trustworthiness of transactions executing on

cloud servers.

 It proposed a Two-Phase Validation Commit

protocol as a solution, which is a modified

version of the basic Two-Phase Validation

Commit protocols.

 It finally analyze the different approaches

presented using both analytical evaluation of

the overheads and simulations to guide the

decision makers to which approach to use.

 In this paper address this confluence of data,

policy, and credential inconsistency problems

that can emerge as transactional database

systems are deployed to the cloud.

 This paper formalized the concept of trusted

transactions. Trusted transactions are those

transactions that do not violate credential or

policy inconsistencies over the lifetime of the

transaction.

 Page 1832

 It present a more general term, safe

transactions, that identifies transactions that

are both trusted and conforms to the ACID

properties of distributed database systems.

 It defines several different levels of policy

consistency constraints and corresponding

enforcement approaches that guarantee the

trustworthiness of transactions executing on

cloud servers.

It proposed a Two-Phase Validation Commit

(2PVC) protocol that ensures that a transaction is

safe by checking policy, credential, and data

consistency during transaction execution.

IMPLEMENTING SAFE TRANSACTIONS

Two-Phase Validation (2PV) Algorithm

A common characteristic of most of our proposed

approaches to achieve trusted transactions is the

need for policy consistency validation at the end

of a transaction.That is, in order for a trusted

transaction to commit, its TM has to enforce either

view or global consistency among the servers

participating in the transaction. Toward this, we

propose a new algorithm called Two-Phase

Validation.

Two-Phase Validate Commit Algorithm

The 2PV protocol enforces trusted transactions,

but does not enforce safe transactions because it

does not validate any integrity constraints. Since

the Two-Phase Commit atomic protocol

commonly used to enforce integrity constraints

has similar structure as 2PV, we propose

integrating these protocols into a Two-Phase

Validation Commit protocol. 2PVC can be used to

ensure the data and policy consistency

requirements of safe transactions.

Using 2PV and 2PVC in Safe Transactions

A variant of the basic 2PV protocol is used during

the transaction execution. For view consistency,

the TM needs to check the version number it

receives from each server with that of the very

first participating server. If they are different, the

transaction aborts due to a consistency violation.

At commit time, all the proofs will have been

generated with consistent policies and only 2PC is

invoked. In the global consistency case, the TM

 Page 1833

needs to validate the policy versions used against

the latest policy version known by the master

policies server to decide whether to abort or not.

Environment and Setup

We used Java to implement each proof approach

described in Section 3 with support for both view

and global consistency. Although the approaches

were implemented in their entirety, the underlying

database and policy enforcement systems were

simulated with parameters chosen according to

Table 1. To understand the performance

implications of the different approaches, we

varied the

1. protocol used,

2. level of consistency desired,

3. frequency of master policy updates,

4. transaction length, and

5. number of servers available.

Our experimentation framework consists of three

main components: a randomized transaction

generator, a master policy server that controls the

propagation of policy updates, and an array of

transaction processing servers. Our experiments

were run within a research lab consisting of 38

Apple Mac Mini computers.

RELATED WORK

Relaxed Consistency Models for the Cloud. Many

database solutions have been written for use

within the cloud environment. For instance,

Amazon’s Dynamo database[14]; Google’s

BigTable storage system [15]; Facebook’s

Cassandra [16]; and Yahoo!’s PNUTS [17]. The

common thread between each of these custom

data models is therelaxed notion of consistency

provided to support massively parallel

environments.

Such a relaxed consistency model adds a new

dimension to the complexity of the design of large

scale applications and introduces a new set of

consistency problems [18]. The authors of [19]

presented a model that allows queriers to express

consistency and concurrency constraints on their

queries that can be enforced by the DBMS at

runtime. On the other hand, [20] introduces a

dynamic consistency rationing mechanism that

automatically adapts the level of consistency at

runtime. Both of these works focus on data

consistency, while our work focuses on attaining

both data and policy consistency.

Reliable Outsourcing. Security is considered one

of the major obstacles to a wider adoption of

cloud computing. Particular attention has been

given to client security as it relates to the proper

handling of outsourced data. For example, proofs

of data possession have been proposed as a means

for clients to ensure that service providers actually

maintain copies of the data that they are

contracted to host [21]. In other works, data

replication have been combined with proofs of

retrievability to provide users with integrity and

consistency guarantees when using cloud storage

[22], [23].To protect user access patterns from a

cloud data store, Williams et al. [24] introduce a

mechanism by which cloud storage users can issue

encrypted reads, writes, and inserts. Further,

Williams et al. [25] propose a mechanism that

enables untrusted service providers to support

transaction serialization, backup, and recovery

with full data confidentiality and correctness. This

work is orthogonal to the problem that we focus

on in this paper, namely consistency problems in

policy-based database transactions.

Distributed Transactions. CloudTPS provides full

ACID properties with a scalable transaction

 Page 1834

manager designed for a NoSQL environment [26].

However, CloudTPS is primarily concerned with

providing consistency and isolation upon data

without regard to considerations of authorization

policies.

Conclusions

 Despite the popularity of cloud services and their

wide adoption by enterprises and governments,

cloud providers still lack services that guarantee

both data and access control policy consistency

across multiple data centers. In this paper, we

identified several consistency problems that can

arise during cloud-hosted transaction processing

using weak consistency models, particularly if

policy-based authorization systems are used to

enforce access controls. To this end, we developed

a variety of lightweight proof enforcement and

consistency models—i.e., Deferred, Punctual,

Incremental, and Continuous proofs, with view or

global consistency—that can enforce increasingly

strong protections with minimal runtime

overheads. We used simulated workloads to

experimentally evaluate implementations of our

proposed consistency models relative to three core

metrics: transaction processing performance,

accuracy (i.e., global versus view consistency and

recency of policies used), and precision (level of

agreement among transaction participants). We

found that high performance comes at a cost:

Deferred and Punctual proofs had minimal

overheads, but failed to detect certain types of

consistency problems. On the other hand, high-

accuracy models (i.e., Incremental and

Continuous) required higher code complexity to

implement correctly, and had only moderate

performance when compared to the lower

accuracy schemes. To better explore the

differences between these approaches, we also

carried out a tradeoff analysis of our schemes to

illustrate how application-centric requirements

influence the applicability of the eight protocol

variants explored in this paper.

REFERENCES:

[1] M. Armbrust et al., “Above the Clouds: A

Berkeley View of Cloud Computing,” technical

report, Univ. of California, Feb. 2009.

[2] S. Das, D. Agrawal, and A.E. Abbadi,

“Elastras: An Elastic Transactional Data Store in

the Cloud,” Proc. Conf. Hot Topics in Cloud

Computing (USENIX HotCloud ’09), 2009.

[3] D.J. Abadi, “Data Management in the Cloud:

Limitations and Opportunities,” IEEE Data Eng.

Bull., vol. 32, no. 1, pp. 3-12, Mar. 2009.

[4] A.J. Lee and M. Winslett, “Safety and

Consistency in Policy-Based Authorization

Systems,” Proc. 13th ACM Conf. Computer and

Comm. Security (CCS ’06), 2006.

[5] M. Myers, R. Ankney, A. Malpani, S.

Galperin, and C. Adams, “X.509 Internet Public

Key Infrastructure Online Certificate Status

Protocol - Ocsp,” RFC 2560,

http://tools.ietf.org/html/rfc5280, June 1999.

[6] E. Rissanen, “Extensible Access Control

Markup Language (Xacml) Version 3.0,”

http://docs.oasis-open.org/xacml/3.0/ xacml-3.0-

core-spec-os-en.html, Jan. 2013.

[7] D. Cooper et al., “Internet x.509 Public Key

Infrastructure Certificate and Certificate

Revocation List (CRL) Profile,” RFC 5280,

http://tools.ietf.org/html/rfc5280, May 2008.

[8] J. Li, N. Li, and W.H. Winsborough,

“Automated Trust Negotiation Using

Cryptographic Credentials,” Proc. 12th ACM

Conf. Computer and Comm. Security (CCS ’05),

Nov. 2005.

[9] L. Bauer et al., “Distributed Proving in

Access-Control Systems

http://tools.ietf.org/html/rfc5280
http://docs.oasis-open.org/xacml/3.0/

