
 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

 Volume No: 3 (2016), Issue No: 7 (July) July 2016
 www.ijmetmr.com Page 462

Abstract :
Software Cost Assessment is the most significant and de-
manding activity in Software evolution effort indication.
Software effort assessment is unpredictable in nature as it
hugely depends upon some variables that are not known at
the initial state of evolution. Fuzzy analysis plays a main
role to analyse and predict the Software cost assessment.
Fuzzification is the one of the key attribute which includes
the size of the project, incorporates expert’s knowledge in
a well-defined manner, allows total transparency in the
indication system by indication of results through rules or
other means, adaptability towards continually changing
evolution technologies and environments. Properly ad-
dressing all these issues would position fuzzy logic com-
puting based indication techniques as models of choice
for effort indication, considering the promising features
already present in them are made. Cost Effective Soft-
ware Evolution Exertion Appreciation is one of the most
challenging tasks in software sector. Our most intension
in this paper is to present the Fuzzy Analysis for the Cost
Effective Software Evolution Exertion Appreciation.

Key words:
Fuzzy Analysis, Fuzzification, Cost Effective, Software
Evolution, Exertion.

A.INTRODUCTION:
Software reliability is a key part in software quality along
with functionality, usability, performance, serviceability,
maintainability and documentation. The standard defi-
nition of reliability for software is the probability that
a system will continue to function without failure for a
specified period in a specified environment. The study of
software reliability can be categorized into three parts:
modelling, measurement and improvement. Software re-
liability modelling has matured to the point that meaning-
ful results can be obtained by applying suitable models to
the problem. There are many models exist, but no single
model can capture a necessary amount of the software
characteristics.

Mr. Lakshmana Rao Padala
Research Scholar JJTU,

Assistant.Manager CSI-ED,
Chennai, Tamil Nadu.

Dr. E.Mohan
Principal P.T.Lee.

Chengalvaraya Naicker College of Engineering and
Technology, Kanchipuram, Tamil Nadu, India.

Assumptions and abstractions must be made to simplify
the problem. There is no single model that is universal
to all the situations. Software reliability measurement is
fresh [1]. Measurement is far from commonplace in soft-
ware, as in other engineering field. “How good is the soft-
ware, quantitatively?” As simple as the question is, there
is still no good answer. Software reliability cannot be di-
rectly measured, so other related factors are measured to
estimate software reliability and compare it among prod-
ucts. Evolution process, faults and failures found are all
factors related to software reliability. Software reliability
improvement is hard. The difficulty of the problem stems
from insufficient understanding of software reliability and
in general, the characteristics of software [2]. Until now
there is no good way to conquer the complexity problem
of software. Complete testing of a moderately complex
software module is infeasible. Defect-free software prod-
uct cannot be assured.

Realistic constraints of time and budget severely limit
the effort put into software reliability improvement. If
the time and budget is not considered carefully, software
reliability can be the reliability bottleneck of the whole
system. Securing software reliability is no easy task. As
hard as the problem is, promising progresses are still be-
ing made toward more reliable software. More standard
components and better process are introduced in software
engineering field. In the last few years many research
studies has been carried out in this area of software reli-
ability modeling and forecasting. They included the ap-
plication of fuzzy logic models neural networks, Fuzzy
logics (FL) based neural networks, Recurrent neural net-
works, Bayesian neural networks, and support vector ma-
chine (SVM) based techniques, to name a few. Software
Reliability issues are focused on Fuzzy logic computing
techniques for developing and maintaining software sys-
tems whose reliability can be quantitatively evaluated. In
order to estimate as well as to predict the reliability of
software systems, failure data need to be properly mea-
sured by various means during software evolution and
operational states.

Fuzzy Analysis for the Cost Effective Software Evolution
Exertion Appreciation

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

 Volume No: 3 (2016), Issue No: 7 (July) July 2016
 www.ijmetmr.com Page 463

The DACS Services at the Department of Defense (DoD)
Software Information clearinghouse provides an authori-
tative source for the state of the art software information,
supplying technical support for the software community.
John Musa of Bell Telephone Laboratories compiled a
software reliability database.. The dataset consists of soft-
ware failure data on 16 projects. Careful controls were
employed during data collection to ensure that the data
would be of high quality. The data was collected through-
out the mid 1970s. It represents projects from a variety
of applications including real time command and control,
word processing, commercial, and military applications.
Cai et al. [9] advocated the evolution of fuzzy software re-
liability models in place of probabilistic software reliabil-
ity models (PSRMs). Their argument was based on the
proof that software reliability is fuzzy in nature. A demon-
stration of how to develop a fuzzy model to characterize
software reliability was also presented. Karunanithi et al.
[9] carried out a detailed study to explain the use of con-
nectionist models in software reliability growth indica-
tion. It was shown through empirical results that the con-
nectionist models adapt well across different datasets and
exhibit better predictive accuracy than the well-known
analytical software reliability growth models.

C.Software Reliability Indication Using Fuzzy
logic:

In recent years, many papers have presented in various
models for software reliability indication. In this section,
some works related to Artificial Fuzzy logic modeling for
software reliability modeling and indication is presented.
Many factors like software evolution process, and soft-
ware test or use characteristics, software complexity, and
nature of software faults and the possibility of occurrence
of failure affect the software reliability behavior. Fuzzy
logic methods normally approximate any non linear con-
tinuous function. So more attention is given to Fuzzy log-
ic based methods now-a-days. Fuzzy logicbased software
reliability model was first presented by Karunanithi et al.
[9][8] to predict cumulative number of failures. They con-
sider execution time as the input of the neural network.
In their approach they used different networks like Feed
Forward neural networks, Recurrent neural networks like
Jordan Fuzzy logicand Elman neural network. Two dif-
ferent training regimes like Indication and Generalization
are also used in their study. They compared their results
with some statistical models and found better indication
than those models. Karunanithi et al. [8] also used con-
nectionist models for software reliability indication.

Although software reliability has remained an active re-
search subject over the past forty years, challenges and
open questions still exist. The various modeling technique
for software reliability is reaching its prosperity, but be-
fore using these techniques, we must carefully select the
appropriate fuzzy logic computing tool that can best suit
the case in question. Measurement in software is still in
its infancy. No good quantitative methods seem to have
been developed to represent software reliability without
excessive limitations.

B.Software Reliability Indication:

Using Fuzzy Logic Fuzzy logic is derived from fuzzy set
theory which deals with reasoning which is approximate
rather than precisely deduced from classical predicate
logic. It can be thought of as the application side of fuzzy
set theory dealing with well thought out real world expert
values for a complex problem.[3] Fuzzy logic was initiat-
ed in 1965 [4][5] by Lotfi A.Zadeh, professor of computer
science. Fuzzy logic is proven to be capable of modeling
highly nonlinear and multidimensional models. Fuzzi-
ness refers to non statistical imprecision and vagueness
in information and data. The difference between fuzzy
logic and probabilistic logic consists in the fact that the
fuzzy logic uses truth degrees as a mathematical model
for vague facts while the probabilistic one is a mathemati-
cal model for random facts [6]. The linguistic values are
used for writing the If – Then rules. Researchers in this
area have felt that fuzzy logic is vital for Software reli-
ability indication. Yuan et. Al in [7] used fuzzy subtrac-
tive clustering integrated with module order modeling for
software quality indication.

First Fuzzy Subtractive clustering is used to predict the
number of faults then module order modeling is used to
predict whether modules are fault prone or not. Xu et al
[8] introduced the fuzzy nonlinear regression (FNR) mod-
eling technique as a method for predicting fault ranges
in software modules. A case study of full scale industrial
software system was used to illustrate the usefulness of
FNR Modeling. Jeff Tian in [9] assessed software reli-
ability by grouping data into clusters. The series of data
clusters associated with different time segments are used
directly as a piecewise linear model for reliability assess-
ment and problem identification. The model is evaluated
in the testing of two large software systems from IBM.
Adnan et al in [9] explored the potential of indication
techniques which have been used for assessing software
reliability.

 ISSN No: 2348-4845 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

International Journal & Magazine of Engineering,
Technology, Management and Research

A Peer Reviewed Open Access International Journal

 Volume No: 3 (2016), Issue No: 7 (July) July 2016
 www.ijmetmr.com Page 464

 Volume No: 3 (2016), Issue No: 7 (July) July 2016
 www.ijmetmr.com Page 465

They applied the Falman’s cascade Correlation algorithm
to find out the architecture of the neural network. They
considered the minimum number of training points as
three and calculated the average error (AE) for both end
point and next-step indication. Their results concluded
that the connectionist approach is better for end point
indication. Cai et al. [7] Proposed a Fuzzy logicbased
method for software reliability indication. They used back
PROPAFLTION algorithm for training. They evaluated
the performance of the approach by varying the number
of input nodes and number of hidden nodes. They con-
cluded that the effectiveness of the approach generally
depends upon the nature of the handled data sets. Tian
and Noore [6] proposed an on-line adaptive software reli-
ability indication model using evolutionary connectionist
approach based on multiple-delayed-input single-output
architecture. The proposed approach, as shown by their
results, had a better performance with respect to next-step
predictability compared to existing Fuzzy logic model for
failure time indication. Tian and Noore [5] proposed an
evolutionary Fuzzy logicmodeling approach for software
cumulative failure time indication.

Their results were found to be better than the existing
Fuzzy logic models. It was also shown that the Fuzzy log-
ic architecture has a great impact on the performance of
the network. Viswanath [5] proposed two models such as
Fuzzy logic based exponential encoding and Fuzzy logic
based Loflrithmic encoding for indication of cumulative
number of failures in software. He encoded the input i.e.
the execution time using the above two encoding scheme.
He applied the approach on four datasets and compared
the result of the approach with some statistical models
and found better result than those models. Ho et al. [5]
performed a comprehensive study of connectionist mod-
els and their applicability to software reliability indication
and found them to be better and more flexible than the
traditional models. A comparative study was performed
between their proposed modified Elman recurrent neural
network, with the more popular feed forward neural net-
work, the Jordan recurrent model, and some traditional
software reliability growth models. Numerical results
show that the proposed network architecture performed
better than the other models in terms of indications. De-
spite of the recent advancements in the software reliabil-
ity growth models, it was observed that different models
have different predictive capabilities and also no single
model is suitable under all circumstances.

Software Reliability Indication Using Fuzzy logic Fuzzy
logics (FLs) were developed by Prof. John Holland and
his students at the University of MichiFLn during the
1960s and 1970s. Fuzzy logic can be used by represent a
solution to your problem as a genome (or chromosome)
[5]. The fuzzy logic then creates a population of solutions
and applies fuzzy operators such as mutation and cross-
over to evolve the solutions in order to find the best one.
The three most important aspects of using fuzzy logics
are: (1) definition of the objective function, (2) defini-
tion and implementation of the fuzzy representation, and
(3) definition and implementation of the fuzzy operators.
Once these three have been defined, the generic fuzzy
logic should work fairly well. Beyond that you can try
many different variations to improve performance, find
multiple optima (species - if they exist), or parallelize the
algorithms [9].Fuzzy logics are machine learning and op-
timization schemes, much like neural networks. However,
fuzzy logics do not appear to suffer from local minima
as badly as neural networks do. Fuzzy logics are based
on the model of evolution, in which a population evolves
towards overall fitness, even though individuals perish.
Evolution dictates that superior individuals have a better
chance of reproducing than inferior individuals, and thus
are more likely to pass their superior traits on to the next
fuzzification.

This “survival of the fittest” criterion was first converted
to an optimization algorithm by Holland in 1975, and is
today a major optimization technique for complex, non-
linear problems .Oliveira et al. [18, 19] proposed the using
of fuzzy programming (FP) to obtain software reliability
model for forecasting the reliability and extended this
work by boosting the GP algorithm using re-weighting.
The re-weighting algorithm calls many times the learning
algorithm with assigned weights to each example. Each
time, the weights are computed according to the error (or
loss) on each example in the learning algorithm. In this
way, the learning algorithm is manipulated to look closer
at examples with bad indication functions. Sheta [7] uses
fuzzy logics to estimate the COCOMO model parameters
for NASA Software Projects. The same idea is imple-
mented for estimating the parameters of different SRGM
models using PSO [6].

D. Issues and challenges :
In order to estimate as well as to predict the reliability of
software systems, failure data need to be properly mea-
sured by various means during software evolution and
operational states.

measures can be must collect software metrics as an in-
dication of a maturing software evolution process. Indus-
trial software engineering data, particularly those related
to system failures, are historically hard to obtain across
a range of Fuzzification. Novel methods are used to im-
prove reliability indication are actively being researched.
For example, by extracting rich information from metrics
data using a sound statistical and probability foundation,
Moreover, traditional reliability models can be enhanced
to incorporate some testing completeness or effectiveness
metrics, such as code coverage, as well as their traditional
testing-time based metrics. The key idea is that failure de-
tection is not only related to the time that the software is
under testing, but also what fraction of the code has been
executed by the testing.

Conclusions:

This paper presented the usages of the fuzzy logic com-
puting techniques for software reliability. Employing
effective software reliability engineering techniques to
improve product and process reliability would be the
industry’s best interests as well as major challenges. As
the majority of faults are found in a few of its modules
so there is a need of fuzzy logic to module the affected
severely as compared to other modules and proper main-
tenance need to be done in time especially for the critical
applications. Preliminary results are quite interesting and
more insights will provide a special fuzzy logic comput-
ing assisted architecture for enabling the specialist in soft-
ware reliability engineering.

References:
[1] G. Pour, “Component-Based Software Development
Approach: New Opportunities and Challenges,” Proceed-
ings Technology of Object-Oriented Languages, 1998.
TOOLS 26, pp. 375-383.
[2] Tyagi, K., Sharma, A., 2014, “An adaptive neuro fuzzy
model for estimating the reliability of component-based
software system”, applied Computing and informatics 10,
38–51.
[3] Cheung, R.C., 1980. A user oriented software reliabil-
ity model. IEEE Trans. Softw. Eng. 6 (2), 118– 125.
[4] J.D Musa (1987), Software Reliability measurement,
prediction, application McGRAW-HILL International
Edition. ISBN 0-07-100208- 1
[5] Michael R. Lyu (May 2005) Handbook of Software
Reliability Engineering: Introduction. IEEE Computer
Society Press and McGraw-Hill Book Company

Although software reliability has remained an active re-
search subject over the past 35 years, challenges and open
questions still exist. The various modeling technique for
Software Reliability is reaching its prosperity, but before
using these technique, we must carefully select the appro-
priate model that can best suit our case. Measurement in
software is still in its infancy. No good quantitative meth-
ods have been developed to represent Software Reliabil-
ity without excessive limitations.

E.Future Directions:
Software Reliability Engineering relates to whole soft-
ware life cycle. We discuss possible future directions with
respect to four areas: software architecture, testing and
metrics [1].

A.Reliability for software architectures:
Due to the ever-increasing complexity of software sys-
tems, modern software is seldom built from scratch.
Revolutionary and evolutionary object-oriented design
and programming paradigms have vigorously pushed
software reuse. In the light of this shift, reliability engi-
neering for software evolution is focusing on two major
aspects: software architecture, and component-based soft-
ware engineering. The software architecture of a system
consists of software components, their external proper-
ties, and their relationships with one another. As software
architecture is the foundation of the final software prod-
uct, the design and management of software architecture
is becoming the dominant factor in software reliability
engineering research. In this popular software evolution
technique, many research issues are identified, such as re-
liability, software reusability, clean interface design, fault
tolerance etc.

B.Testing for reliability assessment:
Software testing and software reliability have traditionally
belonged to two separate communities. Software testers
test software without referring to how software will oper-
ate in the field, as often the environment cannot be fully
represented in the laboratory. Software reliability measur-
ers insist that software should be tested according to its
operational profile in order to allow accurate reliability
assessment and indication. One approach is to measure
the test compression factor, which is defined as the ratio
between the mean time between failures during operation
and during testing. Another approach is to ascertain how
other testing related factors can be incorporated into soft-
ware reliability modeling, so that accurate

 ISSN No: 2348-4845 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

International Journal & Magazine of Engineering,
Technology, Management and Research

A Peer Reviewed Open Access International Journal

 Volume No: 3 (2016), Issue No: 7 (July) July 2016
 www.ijmetmr.com Page 464

 Volume No: 3 (2016), Issue No: 7 (July) July 2016
 www.ijmetmr.com Page 465

They applied the Falman’s cascade Correlation algorithm
to find out the architecture of the neural network. They
considered the minimum number of training points as
three and calculated the average error (AE) for both end
point and next-step indication. Their results concluded
that the connectionist approach is better for end point
indication. Cai et al. [7] Proposed a Fuzzy logicbased
method for software reliability indication. They used back
PROPAFLTION algorithm for training. They evaluated
the performance of the approach by varying the number
of input nodes and number of hidden nodes. They con-
cluded that the effectiveness of the approach generally
depends upon the nature of the handled data sets. Tian
and Noore [6] proposed an on-line adaptive software reli-
ability indication model using evolutionary connectionist
approach based on multiple-delayed-input single-output
architecture. The proposed approach, as shown by their
results, had a better performance with respect to next-step
predictability compared to existing Fuzzy logic model for
failure time indication. Tian and Noore [5] proposed an
evolutionary Fuzzy logicmodeling approach for software
cumulative failure time indication.

Their results were found to be better than the existing
Fuzzy logic models. It was also shown that the Fuzzy log-
ic architecture has a great impact on the performance of
the network. Viswanath [5] proposed two models such as
Fuzzy logic based exponential encoding and Fuzzy logic
based Loflrithmic encoding for indication of cumulative
number of failures in software. He encoded the input i.e.
the execution time using the above two encoding scheme.
He applied the approach on four datasets and compared
the result of the approach with some statistical models
and found better result than those models. Ho et al. [5]
performed a comprehensive study of connectionist mod-
els and their applicability to software reliability indication
and found them to be better and more flexible than the
traditional models. A comparative study was performed
between their proposed modified Elman recurrent neural
network, with the more popular feed forward neural net-
work, the Jordan recurrent model, and some traditional
software reliability growth models. Numerical results
show that the proposed network architecture performed
better than the other models in terms of indications. De-
spite of the recent advancements in the software reliabil-
ity growth models, it was observed that different models
have different predictive capabilities and also no single
model is suitable under all circumstances.

Software Reliability Indication Using Fuzzy logic Fuzzy
logics (FLs) were developed by Prof. John Holland and
his students at the University of MichiFLn during the
1960s and 1970s. Fuzzy logic can be used by represent a
solution to your problem as a genome (or chromosome)
[5]. The fuzzy logic then creates a population of solutions
and applies fuzzy operators such as mutation and cross-
over to evolve the solutions in order to find the best one.
The three most important aspects of using fuzzy logics
are: (1) definition of the objective function, (2) defini-
tion and implementation of the fuzzy representation, and
(3) definition and implementation of the fuzzy operators.
Once these three have been defined, the generic fuzzy
logic should work fairly well. Beyond that you can try
many different variations to improve performance, find
multiple optima (species - if they exist), or parallelize the
algorithms [9].Fuzzy logics are machine learning and op-
timization schemes, much like neural networks. However,
fuzzy logics do not appear to suffer from local minima
as badly as neural networks do. Fuzzy logics are based
on the model of evolution, in which a population evolves
towards overall fitness, even though individuals perish.
Evolution dictates that superior individuals have a better
chance of reproducing than inferior individuals, and thus
are more likely to pass their superior traits on to the next
fuzzification.

This “survival of the fittest” criterion was first converted
to an optimization algorithm by Holland in 1975, and is
today a major optimization technique for complex, non-
linear problems .Oliveira et al. [18, 19] proposed the using
of fuzzy programming (FP) to obtain software reliability
model for forecasting the reliability and extended this
work by boosting the GP algorithm using re-weighting.
The re-weighting algorithm calls many times the learning
algorithm with assigned weights to each example. Each
time, the weights are computed according to the error (or
loss) on each example in the learning algorithm. In this
way, the learning algorithm is manipulated to look closer
at examples with bad indication functions. Sheta [7] uses
fuzzy logics to estimate the COCOMO model parameters
for NASA Software Projects. The same idea is imple-
mented for estimating the parameters of different SRGM
models using PSO [6].

D. Issues and challenges :
In order to estimate as well as to predict the reliability of
software systems, failure data need to be properly mea-
sured by various means during software evolution and
operational states.

measures can be must collect software metrics as an in-
dication of a maturing software evolution process. Indus-
trial software engineering data, particularly those related
to system failures, are historically hard to obtain across
a range of Fuzzification. Novel methods are used to im-
prove reliability indication are actively being researched.
For example, by extracting rich information from metrics
data using a sound statistical and probability foundation,
Moreover, traditional reliability models can be enhanced
to incorporate some testing completeness or effectiveness
metrics, such as code coverage, as well as their traditional
testing-time based metrics. The key idea is that failure de-
tection is not only related to the time that the software is
under testing, but also what fraction of the code has been
executed by the testing.

Conclusions:

This paper presented the usages of the fuzzy logic com-
puting techniques for software reliability. Employing
effective software reliability engineering techniques to
improve product and process reliability would be the
industry’s best interests as well as major challenges. As
the majority of faults are found in a few of its modules
so there is a need of fuzzy logic to module the affected
severely as compared to other modules and proper main-
tenance need to be done in time especially for the critical
applications. Preliminary results are quite interesting and
more insights will provide a special fuzzy logic comput-
ing assisted architecture for enabling the specialist in soft-
ware reliability engineering.

References:
[1] G. Pour, “Component-Based Software Development
Approach: New Opportunities and Challenges,” Proceed-
ings Technology of Object-Oriented Languages, 1998.
TOOLS 26, pp. 375-383.
[2] Tyagi, K., Sharma, A., 2014, “An adaptive neuro fuzzy
model for estimating the reliability of component-based
software system”, applied Computing and informatics 10,
38–51.
[3] Cheung, R.C., 1980. A user oriented software reliabil-
ity model. IEEE Trans. Softw. Eng. 6 (2), 118– 125.
[4] J.D Musa (1987), Software Reliability measurement,
prediction, application McGRAW-HILL International
Edition. ISBN 0-07-100208- 1
[5] Michael R. Lyu (May 2005) Handbook of Software
Reliability Engineering: Introduction. IEEE Computer
Society Press and McGraw-Hill Book Company

Although software reliability has remained an active re-
search subject over the past 35 years, challenges and open
questions still exist. The various modeling technique for
Software Reliability is reaching its prosperity, but before
using these technique, we must carefully select the appro-
priate model that can best suit our case. Measurement in
software is still in its infancy. No good quantitative meth-
ods have been developed to represent Software Reliabil-
ity without excessive limitations.

E.Future Directions:
Software Reliability Engineering relates to whole soft-
ware life cycle. We discuss possible future directions with
respect to four areas: software architecture, testing and
metrics [1].

A.Reliability for software architectures:
Due to the ever-increasing complexity of software sys-
tems, modern software is seldom built from scratch.
Revolutionary and evolutionary object-oriented design
and programming paradigms have vigorously pushed
software reuse. In the light of this shift, reliability engi-
neering for software evolution is focusing on two major
aspects: software architecture, and component-based soft-
ware engineering. The software architecture of a system
consists of software components, their external proper-
ties, and their relationships with one another. As software
architecture is the foundation of the final software prod-
uct, the design and management of software architecture
is becoming the dominant factor in software reliability
engineering research. In this popular software evolution
technique, many research issues are identified, such as re-
liability, software reusability, clean interface design, fault
tolerance etc.

B.Testing for reliability assessment:
Software testing and software reliability have traditionally
belonged to two separate communities. Software testers
test software without referring to how software will oper-
ate in the field, as often the environment cannot be fully
represented in the laboratory. Software reliability measur-
ers insist that software should be tested according to its
operational profile in order to allow accurate reliability
assessment and indication. One approach is to measure
the test compression factor, which is defined as the ratio
between the mean time between failures during operation
and during testing. Another approach is to ascertain how
other testing related factors can be incorporated into soft-
ware reliability modeling, so that accurate

 ISSN No: 2348-4845 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

International Journal & Magazine of Engineering,
Technology, Management and Research

A Peer Reviewed Open Access International Journal

 Volume No: 3 (2016), Issue No: 7 (July) July 2016
 www.ijmetmr.com Page 466

 Volume No: 3 (2016), Issue No: 7 (July) July 2016
 www.ijmetmr.com Page 1

[6] Swapna S. Gokhale. Kishor S. Trivedi (2002), Reli-
ability Prediction and Sensitivity Analysis Based on Soft-
ware Architecture, IEEE, Software reliability, pp 64-75,
ISBN: 0-7695-1763-3.
[7] Musa, John. Software Reliability Engineering, New
York, NY, McGraw-Hill, 1998.

[8] Mamdani, E.H. and S. Assilian, “An experiment in
linguistic synthesis with a fuzzy logic controller,” Inter-
national Journal of Man-Machine Studies, Vol. 7, No. 1,
pp. 1-13, 1975.
[9] Huang, N., Wang, D., Jia, X., 2008. FAST ABSTRACT:
an algebra-based reliability prediction approach for com-
posite web services, 19th International Symposium on
Software Reliability Engineering, pp. 285–286.

