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Abstract: 

OFDM symbols are used in this research as it is a 

popular transmission technology in cognitive radio 

networks and also utilized to improve the reliability of 

spectrum sensing of secondary users. However 

spectrum sensing over multipath fading channels 

remains an important and challenging issue. This paper 

proposes a new scheme i.e., optimal NP detector for  

spectrum sensing using cyclic prefix to improve 

detection performance. This approach involves 

multipath fading channels and classical NP detector. 

To detect OFDM signal of Primary Users (PU) the log 

likelihood ratio(LLR) test is formulated by using the 

correlation characteristics of the redundancy of cyclic 

prefix. In this paper according to the analytical results 

the likelihood ratio of received samples is equivalent 

to their log likelihood function (LF) plus the LR of an 

Energy detector. Since many unknown parameters 

need to be resolute, a practical generalized log 

likelihood ratio test (GLRT) and Channel Independent 

GLRT are presented to achieve good performance over 

multipath fading channels. Simulation results of 

proposed detectors compared with the state-of-the-art 

detectors.   
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I. INTRODUCTION: 

In CR, the PUs is referred to those users who have 

priority on the usage of a part of the spectrum. 

Spectrum sensing is a key element in CR 

communications, as it enables the CR to adapt to its 

environment by detecting spectrum holes.  

 

 

The majority effective way to detect the spectrum is to 

detect the PUs that are receiving data within the range 

of a CR. The task of spectrum sensing involves the 

following subtasks are Detection of spectrum holes, 

Spectral resolution of each spectrum vacancies, 

Identification of the spatial directions of incoming 

interferes and Signal classification. Today OFDM 

(Orthogonal Frequency Division Multiplexing) 

techniques are adopted by progressing wireless 

communication standards. Spectrum sensing helps to 

detect the spectrum holes (unutilized bands of the 

spectrum) providing high spectral resolution 

capability. During employing CR, Secondary Users 

(SUs) unable to interfere with other licensed users 

using the spectrum; so to guarantee an interference-

free communication between rental users, the spectrum 

sensing information between multiple cognitive radio 

devices needs to be shared to decrease the probability 

of interference with licensed users. The signal 

detection problem is solved by the decision between 

the two hypotheses 

 

  
Η0 ∶ 𝑝𝑟𝑖𝑚𝑎𝑟𝑦 𝑢𝑠𝑒𝑟 𝑛𝑜𝑡 𝑝𝑟𝑒𝑠𝑒𝑛𝑡

      Η1 ∶  𝑝𝑟𝑖𝑚𝑎𝑟𝑦 𝑢𝑠𝑒𝑟 𝑝𝑟𝑒𝑠𝑒𝑛𝑡             
  (1) 

 

The decision between the two hypothesis made by 

comparing a test statistics T with a threshold 𝛾. The 

detector performance is characterized as probability of 

detection and probability of false alarm. In order to use 

the Likelihood Ratio Test (LRT), perfect knowledge of 

the parameters, such as, the noise and source signal 

distributions as well as the channels characteristics, is 

usually required. However, in cognitive radio 

scenarios, this information is sometimes unavailable.  
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In such cases, other approaches like the Generalized 

Likelihood Ratio test (GLRT) and the Channel 

Independent Generalized Likelihood Ratio test (CI-

GLRT) are more adequate. Different spectrum sensing 

detector based on OFDM signals are introduced and 

emphasized in this paper. To enhance the detection 

probability, many signal detection techniques can be 

used in spectrum sensing. In this paper, the work 

proposes an optimal NP detector by discovering a 

relationship between the log- likelihood function (LF) 

of received signals and the log- likelihood ratio (LR) 

of the ED. 

 

II.OFDM SIGNAL MODEL AND  

CORRELATION CHARACTERISTICS 

In this paper a OFDM with N subcarriers is 

considered. The complex data are modulated onto the 

N subcarriers used in the spectrum sensing process 

through inverse discrete Fourier transform (IDFT). 

Here a Cyclic Prefix of length 𝑁𝐺 , which is a duplicate 

of the last 𝑁𝐺  samples of a symbol, is inserted at the 

beginning of each OFDM symbol to prevent inter 

symbol interference (ISI) and also preserve mutual 

orthogonality among all subcarriers. Consider h(l) 

denote the impulse response of a multipath channel 

with (L+1) uncorrelated taps. 

 

Following parallel-to-serial conversion, the transmitted 

OFDM data x(n), i.e., the elements of x = 

[… 𝑥𝑚−1
𝑇 𝑥𝑚

𝑇 𝑥𝑚+1
𝑇 … ]𝑇 , where n denotes the sampling 

index, (. )𝑇 denotes a transpose operation, x𝑚  = 

[𝑥𝑚 0  𝑥𝑚  1 …  𝑥𝑚 (𝑁 + 𝑁𝐺 − 1)]𝑇  is the mth 

symbol and 𝑥𝑚  𝑛  ≡  𝑥 𝑚 𝑁 + 𝑁𝐺 + 𝑛 ,n

{0,1,…., 𝑁 + 𝑁𝐺 − 1}, are finally transmitted 

through a multipath channel h(l). The channel length is 

assumed to be shorter than the CP length. Owing to the 

CP , for 𝑛1 ≠  𝑛2, the auto correlation of 𝑥𝑚  𝑛  is 

nonzero, i.e., E[𝑥𝑚   𝑛1 𝑥𝑚
∗ (𝑛2)] = 𝜍𝑥

2 , only for 

0≤ 𝑛1 ≤ 𝑁𝐺 − 1 in the CP and 𝑛2 = 𝑛1+N, where 

𝜍𝑥
2 and (. )∗ represents the signal power on the 

transmitter side and complex conjugate, respectively; 

otherwise,  E[𝑥𝑚  𝑛1 𝑥𝑚
∗ (𝑛2)] = 0.  

On the receiver side, owing to the multipath channel 

effect, the received sampled data 𝑥 𝑚 (𝑛) can be 

written as  

 

𝑥 𝑚  𝑛 = 𝑒𝑗
2𝜋𝑛𝜖

𝑁   𝑙 𝐿
𝑙=0 𝑥𝑚  𝑛 − 𝑙 − 𝜃 + 𝑤(𝑛)       

(2) 

 

Where 𝜖 is carrier frequency offset (CFO); 𝜃 

represents symbol timing delay, and w(n) is the 

AWGN with zero mean and variance 𝜍𝑤
2 .  

 

As x(.), h(.), and w(.) are mutually uncorrelated, 

assume that the channel coefficients are wide- sense 

stationary and uncorrelated scattering (WSSUS), 

considering ISI introduced from neighboring symbols, 

the correlation between 𝑥 𝑚  𝑛  and 𝑥 𝑚 𝑛 + 𝑁  can 

be expressed as 

 

E[𝑥 𝑚 𝑛 𝑥 𝑚
∗ (𝑛 + 𝑁)] =

  

𝑒−𝑗2𝜋𝜖 𝜍𝑥
2  𝜍(𝑙)

2 ,                      𝑛𝜖I1
𝑛−𝜃
𝑙=0

𝑒−𝑗2𝜋𝜖 𝜍𝑥
2  𝜍(𝑙)

2 ,                      𝑛𝜖I2
𝐿
𝑙=0

𝑒−𝑗2𝜋𝜖 𝜍𝑥
2  𝜍(𝑙)

2 ,                      𝑛𝜖I3
𝐿
𝑙=0

       (3) 

 

where[𝑥 𝑚 𝑛  ≡  𝑥  𝑚 𝑁 + 𝑁𝐺 + 𝑛   denote the 

m-th received symbol, n {𝜃, 𝜃 + 1,….,𝜃 + 𝑁 +

𝑁𝐺 − 1},  𝜍(𝑙)
2  ≡ 𝐸   𝑙  2 , 𝐼1  ≡ { 𝜃, 𝜃 +

1, … , 𝜃 +L-1},  𝐼2 ≡ { 𝜃 + 𝐿, 𝜃 + 𝐿 + 1, … , 𝜃 +

𝑁𝐺 -1} 𝐼3 ≡ { 𝜃 + 𝑁𝐺 , 𝜃 + 𝑁𝐺 + 1, … , 𝜃 + 𝑁𝐺 + 𝐿-

1},and 𝐼4 ≡ { 𝜃 + 𝑁𝐺 + 𝐿, 𝜃 + 𝑁𝐺 + 𝐿 + 1, … , 𝜃 +

𝑁 + 𝑁𝐺-1}. Moreover the correlation characteristic 

exists for all symbols. It can be seen that the 

correlation characteristics (3) under multipath channels 

are not flat, which makes the subsequent ratio test 

complicated compared to conventional empirical 

correlation coefficient –based detector considering 

only AWGN channels. Additionally,  

 

E[𝑥 𝑚 𝑛 𝑥 𝑚
∗ (𝑛 + 𝑁)] = 0 , for  𝑛1 ≠ 0 and N.    (4) 
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II. NEYMAN PEARSON DETECTION SCHEME 

The Neyman-Pearson (NP) detector is the familiar 

conventional detector which optimizes the detection 

probability given a fixed level of false alarm 

probability. It is based on the observed data only and 

does not require any prior information about the 

hypotheses. As a result of this it can be applied in 

almost all detection problems. The Neyman-Pearson 

criterion is stated in terms of certain probabilities 

associated with a particular hypothesis test. The 

Neyman-Pearson criterion says that we should 

construct our decision rule to have maximum 

probability of detection while not allowing the 

probability of false alarm to exceed a certain value α. 

This section presents the classical NP detector over 

multipath fading channels directly based on the 

received samples in order to improve the detection 

performance. According to the received signal model, 

the received data is determined by using the NP 

hypothesis test as 

 

   ℋ0 :  𝑥 𝑚  𝑛 = 𝑤(𝑛) 

ℋ1 : 𝑥 𝑚  𝑛 =  𝑒𝑗
2𝜋𝑛𝜖

𝑁   𝑙 𝐿
𝑙=0 𝑥𝑚 𝑛 − 𝑙 − 𝜃 +

𝑤(𝑛)     (5) 

 

Where ℋ1  and ℋ0 denote the hypothesis with and 

without the presence of PU signal, respectively. Each 

SU solves the hypothesis testing problem to make a 

decision about the presence or absence of the PU. 

When N is large, the sampled data  𝑥 (𝑛) can be 

modeled approximately as complex Gaussian by using 

the central limit theorem; in addition, the probability 

density function (pdf) of each sample of the m-th 

symbol is given by 

𝑓(𝑥 𝑚 𝑛 | ℋ1, 𝜍1
2) =  

exp (−
 𝑥 𝑚  𝑛  2

𝜍1
2 )

𝜋𝜍1
2         (6) 

 

Where  

𝜍1
2  ≡ 𝐸  𝑥 𝑚  𝑛  2  =  𝜍2 + 𝜍𝑤

2   and  𝜍2  ≡

 𝜍𝑥
2  𝜍(𝑙)

2
𝑙       (7) 

 

Where 𝜍2 denotes the received signal power. Based on 

(6) and (7), owing o CP, the received samples,  𝑥 𝑚  𝑛  

and 𝑥 𝑚 𝑛 + 𝑁 , for n 𝜖 I  𝐼1 ∪ 𝐼2 ∪ 𝐼3, are jointly 

Gaussian with pdf 

 

𝑓(𝑥 𝑚 𝑛 , 𝑥 𝑚 𝑛 + 𝑁  |ℋ1, 𝜖, 𝜌𝑛 , 𝜍1
2) =

 𝑒𝑥𝑝  
−

 𝑥 𝑚  𝑛  2−2𝜌𝑛 𝑅𝑒  𝑒2𝜋𝜖 𝑥 𝑚  𝑛 𝑥 𝑚
∗  𝑛+𝑁  +|𝑥 𝑚  𝑛+𝑁 |2

𝜍1
2(1−𝜌𝑛

2 )

𝜋𝜍1
4(1−𝜌𝑛

2 )
 

     (8) 

Where Re{.} denotes the real part, and the correlation 

coefficient 

𝜌𝑛  ≡   
E[𝑥 𝑚  𝑛 𝑥 𝑚

∗  𝑛+𝑁 ]

 E  𝑥 𝑚  2 E[𝑥 𝑚  𝑛+𝑁 |2]
                  (9) 

 

Similarly,  𝑓(𝑥 𝑚 𝑛 | ℋ0, 𝜍𝑤
2 )  can be obtained as (6) 

by replacing 𝜍2 with zero. With the pdfs in (6) and 

(8), the likelihood ratio used for the NP hypothesis test 

(5) on signal detection is analyzed. To design the 

optimal NP detector, the following theorem is proven 

first. 

 

Theorem1: 

Likelihood ratio of the received samples equals the 

product of likelihood function under ℋ1 hypothesis 

and the likelihood ratio of ED. 

 

Proof: For an observation window of length (2N+𝑁𝐺 ), 

the window length covers one complete interval of 

nonzero correlation (3), which is assumed to belong to 

the m-th symbol. The likelihood ratio of the received 

m-th symbol for the NP detector can be expressed as 

 

Λ𝑚
𝑁𝑃 |(θ, 𝐿, 𝜖, 𝜌𝑛 , 𝜍2, 𝜍𝑤

2 )  
𝑓(𝑥 𝑚|ℋ1)

𝑓(𝑥 𝑚|ℋ0)
 

 

= 

 𝑓( 𝑥 𝑚 𝑛 ,𝑥 𝑚 𝑛+𝑁  ℋ1 Π
𝑛𝜖𝐼∪𝐼

′𝑓(𝑥 𝑚(𝑛)|ℋ1)𝑛∈𝐼

 𝑓 𝑥 𝑚 𝑛  ℋ0 𝑛
 

 

= 

 
𝑓( 𝑥 𝑚 𝑛 ,𝑥 𝑚 𝑛+𝑁  ℋ1 

𝑓 𝑥 𝑚 𝑛  ℋ1 𝑓 𝑥 𝑚 𝑛+𝑁  ℋ1 
𝑛∈𝐼  𝑓 𝑥 𝑚 𝑛  ℋ1 𝑛

 𝑓 𝑥 𝑚 𝑛  ℋ0 𝑛
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=

 
𝑓 𝑥 𝑚 𝑛 ,𝑥 𝑚 𝑛+𝑁  ℋ1 

𝑓 𝑥 𝑚 𝑛  ℋ1 𝑓 𝑥 𝑚 𝑛+𝑁  ℋ1 𝑛∈𝐼                     
  

𝑓 𝑥 𝑚 𝑛  ℋ1 

𝑓 𝑥 𝑚 𝑛  ℋ0 𝑛           
 

   Likelihood Function          Likelihood ratio of ED 

 

=Λ𝑚
𝐿𝐹| θ, 𝐿, 𝜖, 𝜌𝑛 , 𝜍1

2  x Λ𝑚
𝐸𝐷 | 𝜍1

2, 𝜍𝑤
2                 (10) 

 

 

Where  .  | (θ, 𝐿, 𝜖, 𝜌𝑛 , 𝜍2, 𝜍𝑤
2 ) denotes the quantity 

conditioned on (θ, 𝐿, 𝜖, 𝜌𝑛 , 𝜍2, 𝜍𝑤
2 ), 𝑥 𝑚   denote the 

received samples in the observation window, I 

≡  𝐼1 ∪  𝐼2 ∪ 𝐼3 and  𝐼′   the interval  that is obtained 

by shifting  I to the right by N samples,  denotes 

multiplication, and Λ𝑚
𝐿𝐹  and Λ𝑚

𝐸𝐷  represent the 

likelihood function , which is related to unknown 

parameter estimation,  and  likelihood ratio of ED, 

respectively 

 

III.   PROPOSED NP DETECTOR: 

The previous section is the formulation of NP detector 

and its relationship with the LLF and the ED. This 

section further develops the algorithm for optimizing 

the NP detector.  To derive an ideal case for 

subsequent study, all involved parameters are assumed 

to be known. The LLF and LLR of ED are discussed 

below 

 

A. Log-Likelihood Function of Received Signals 

This approach yields optimal detector but in general it 

does not lead to closed- form expression derivation of 

the detector. After M symbols have been received, the 

LF of received signals  Λ𝐿𝐹,  can be expressed as  

 

Λ𝐿𝐹 = log  Λ𝑚
𝐿𝐹𝑀−1

𝑚    = M  Λ𝑛
𝐿𝐹

𝑛∈𝐼           (11) 

Where 

Λ𝑛
𝐿𝐹  = 

2(𝜌𝑛 Γ 𝑛 − 𝜌𝑛
2Φ 𝑛 )

𝜍1
2(1−𝜌𝑛

2)
 - log(1- 𝜌𝑛

2)                  (12) 

 

Denotes the LF at each sampling point, and  

Γ 𝑛  ≡  
1

𝑀
 𝛾𝑚 (𝑛)𝑀−1

𝑚 , Φ 𝑛 ≡   ϕ𝑚 (𝑛)𝑀−1
𝑚  , 

𝛾𝑚  𝑛 ≡  𝑅𝑒 𝑒𝑗2𝜋𝜖𝑥 𝑚 𝑛 𝑥 𝑚
∗

 𝑛 + 𝑁  , 

 

ϕ𝑚  𝑛 ≡  
1

2
( 𝑥 𝑚 𝑛  2 + |𝑥 𝑚

 𝑛 + 𝑁 |
2
      (13) 

 

It is clearly shown that, besides received samples, the 

likelihood function requires knowledge 

of θ, 𝐿, 𝜖, 𝜌𝑛 , 𝜍1
2 . Besides, owing to the non-uniform 

profile of 𝜌𝑛 , the distribution of the detector based on 

the pure likelihood function does not have a simple 

formulation. Therefore, its threshold has to be 

determined empirically, and it can be regarded as the 

benchmark for all practically CP- based detectors.   

 

B. Log-likelihood Ratio of ED 

Energy detection is most selective for detecting 

independent and identically distributed (iid) signals in 

high SNR conditions, but not optimal for detecting 

correlated signals. The idea is to measure the received 

energy on the specific portion of the spectrum. If the 

measured energy is below a threshold value, the 

channel is considered available. Its simplicity and low 

signal processing requirement make this method very 

attractive for spectrum sensing. Furthermore, the 

threshold used in energy selection depends on the 

noise variance, and small noise power estimation 

errors can result in significant performance loss.  

 

After receiving M symbols, there are 𝑁1 =   𝑀(𝑁 +

𝑁𝐺) samples in the observation window. Based on (5) 

and (9), the LR of the ED , Λ𝐸𝐷 , can be obtained as  

 

Λ𝐸𝐷  = log  Λ𝑚
𝐸𝐷𝑀−1

𝑚=0     

        =log   
𝑓 𝑥 𝑚 𝑛  ℋ1 

𝑓 𝑥 𝑚 𝑛  ℋ0 

𝑁1−1
𝑛=0   

= C  
|𝑥 𝑚 𝑛 |

2

𝜍𝑊
2

𝑁1−1
𝑛=0  + 𝐶1                (14) 

 

where the signal-to-noise ratio (SNR) ζ ≡ 𝜍2/𝜍𝑊
2  , C = 

,𝜍2

𝜍1
2 = 

𝜍2

𝜍2+𝜍𝑤
2 =

𝜁

𝜁+1
 , and C1 = N1log(

1

𝜁+1
) are constants.   

 

It is clearly shown that, besides received samples, the 

ED only requires knowledge of (𝜍𝑤
2 , 𝜍2).  
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If 𝜍𝑤
2  and 𝜍2 are known and regarded as constants, 

they can be removed from (14), and the decision 

metric of the conventional energy detection (CED) can 

be obtained as 

. Λ𝐶𝐸𝐷 =   |𝑥 𝑚 𝑛 |
2

 ≷  𝜂𝐶𝐸𝐷𝑁1−1
𝑛=0    (15) 

Where 𝜂𝐶𝐸𝐷  denotes the decision threshold of the 

CED. 

 

C. Proposed Optimal Neyman-Pearson Detector 

According to theorem 1, the LR of the proposed 

optimal NP detector is the summation of (11) and (14) 

i.e., 

  

Λ𝑁𝑃 =log  Λ𝑚
𝑁𝑃𝑀−1

𝑚=0  = Λ𝐿𝐹 + Λ𝐸𝐷
        (16) 

 

Unfortunately, obtaining the exact distribution of Λ
𝑁𝑃

 

is quite complex. We will determine its decision 

threshold empirically. 

 

IV. PROPOSED GLRT 

Here both the hypotheses contain unknown 

parameters, finding the neyman Pearson solution 

becomes very tedious and often the involved integrals 

do not yield closed-form solution. On account of the 

above limitation, this paper presents the use of an 

alternative hypothesis testing approach referred as 

generalized likelihood ratio test (GLRT). In this 

approach, the unknown parameters are first estimated 

from the observed data from both the hypothesis.  In 

the GLRT method, the utmost likelihood estimation 

(ML) is used to estimate the value of the unknown 

parameters which are, in turn, used in a normal LRT 

test. In the GLRT, the unknown parameters are 

replaced by their maximum likelihood estimate (MLE) 

in the likelihood ratio. There is no optimality 

associated with the GLRT, in practice, it work quite 

well.  

 

A. All parameters are unknown 

First, the estimation of 𝜍𝑊
2  under ℋ0 hypothesis is 

determined. The ML estimate of 𝜍𝑊
2  

𝜍 𝑤
2 |ℋ0 = 

1

𝑁1
 |𝑥 𝑚 𝑛 |

2
 𝑁1−1

𝑛=0             (17) 

 

Where (.)|ℋ0 denotes the quantity conditioned on ℋ0. 

Next, the estimation of 𝜌𝑛  and 𝜍1
2 is jointly 

considered. It can be observed that  

 

Γ 𝑛 =  
1

𝑀
 𝛾

𝑚
(𝑛)

𝑀−1

𝑚=0

= 𝑅𝑒{𝑒𝑗2𝜋𝜖 Ψ 𝑛 } 

=  Ψ 𝑛  cos{2𝜋𝜖 +  ∠Ψ))          (18) 

 

where 𝜓(n) ≡ 
1

𝑀
 𝑥 𝑚 𝑛 𝑥 𝑚

∗ (𝑛 + 𝑁)𝑀−1
𝑚=0 . Obviously, 

the estimation ∠Ψ(n) is an estimate of CFO, −2π𝜖 . 

Hence,  as M → ∞,  cos(2π𝜖  + ∠Ψ(n)) ≈ 1, i.e.,  (n) ≈ 

| (n)|. The ML estimate of 𝜌𝑛  can be reduced to  

 

                𝜌𝑛 =  
 |Ψ(𝑛)|

Φ(𝑛)
             (19) 

 

Notably, (n) is related to unknown 𝜖. In contrast, 

(n) is independent of 𝜖. Doing so can get rid of the 

estimation of 𝜖,  which is important, because 

estimation accuracy is limited at low SNRs. The LF  

only related to 𝜍1
2 is found to be 

 

𝜍 1
2 | ℋ1 =  

1

𝑁1
 |𝑥 𝑚  𝑛 |2𝑁1−1

𝑛=0                   (20) 

 

The GLRT can thus be given by 

Λ
𝐺𝐿𝑅𝑇 ≡ 𝑙𝑜𝑔  

max
(θ,𝐿,𝜖 ,𝜌𝑛 ,𝜍1

2)
𝑓(𝑥 𝑚 |ℋ1, 𝜃, 𝐿, 𝜌𝑛 , 𝜍1

2)

max
(𝜍𝑤

2 )
 𝑓(𝑥 𝑚 |ℋ0, 𝜍𝑤

2 )
  

= max(θ,𝐿)( Λ
𝐿𝐹 + Λ𝐸𝐷)  ≈  max

(θ,𝐿)
  𝑀  𝜌 𝑛

2
𝑛∈𝐼      

(21) 

 

Where Λ
𝐿𝐹

 is given in (10) with those known 

parameters replaced by their estimates Λ
𝐸𝐷

 = 0, i.e., 

the GLRT is irrespective of the robust ED because the 

GLRT for the likelihood ratio of the ED is a constant 

of 1. 
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B. Channel – Independent GLRT (CI-GLRT)  

The GLRT depends on the 𝜌𝑛 , which depends highly 

on the power delay profile(PDP) of multipath channels 

and SNR conditions. In contrast, this section intends to 

derive a modified GLRT independent of multipath 

channel profiles. Moreover, CI-GLRT can reduce the 

computational complexity and get rid of estimating too 

many unknown parameters The correlation (3), i.e. 

E[𝑥 𝑚 (n)𝑥 𝑚
∗ (n + N)] ≈ 

1

𝑀
 𝑥 𝑚 𝑛 𝑥 𝑚

∗  𝑛 + 𝑁 =𝑀−1
𝑚=0

 Ψ(𝑛), has a complementary property for the 

correlations in I1 and I2, which are complementary to 

separated-by-NG correlations in I3 and I4, 

respectively. Namely, for n ∈ I1 and n ∈ I2, 

| Ψ 𝑛 +  Ψ 𝑛 + 𝑁𝐺 |  ≈  𝜍2               (22) 

 

Notably, when n 𝜖 𝐼1 and n 𝜖 Ι2, n + 𝑁𝐺𝜖 Ι3 and 

n+𝑁𝐺𝜖 Ι4 respectively. Additionally, 𝜍2 ≈ |Ψ 𝑛 | 

for n 𝜖 Ι2. Based on the complement property, given 

(θ, L), one can determine the aliased version of (n) 

for n ∈ I1, i.e. , |Ψ𝑎𝑙𝑖𝑎𝑠
 (n)|≡ | (n) +  (n + NG)| ≈ 

σ2, which equals | Ψ (n)| for n ∈ I2. As such, 

|Ψ𝑎𝑙𝑖𝑎𝑠
(n)|  for n ∈ I1 and | Ψ (n)| for n ∈ I2 form a flat 

correlation characteristic for n ∈ I1 ∪ I2, which is the 

same as that of the flat fading or AWGN channels. 

Therefore, the proposed CI-GLRT entails estimating 

only one ρ as 

 

𝜌 =  

1
𝑁𝐺

(|  Ψ𝑎𝑙𝑖𝑎𝑠   𝑛 +   Ψ  𝑛 |)𝑛𝜖 𝐼2𝑛𝜖 𝐼1

 
1

𝑀(𝑁 + 𝑁𝐺)
  |𝑥 𝑚 𝑛 |2𝑁+𝑁𝐺−1

𝑛=0
𝑀−1
𝑚=0

 

 

= 
𝑀(𝑁+𝑁𝐺)

𝑁𝐺

 |  Ψ  𝑛 |)𝑛𝜖𝐼

  |𝑥 𝑚  𝑛 |2𝑁+𝑁𝐺−1
𝑛=0

𝑀−1
𝑚 =0

       (23) 

 

Since there are more samples to estimate one ρ than to 

estimate each ρn for ∀n ∈ I , the estimation accuracy 

for ρ is much higher than that for ρn. Another 

advantage is that the proposed CI-GLRT is 

independent of multipath channel PDPs.  

Hence, according to the original GLRT, the decision 

metric of the CI-GLRT becomes 

 

Λ𝐶𝐼−𝐺𝐿𝑅𝑇 ≈  max
 θ ,𝐿 

 𝑀𝑁𝐺𝜌 2 ≷  𝜂𝐶𝐼−𝐺𝐿𝑅𝑇    (24) 

 

Where 𝜂𝐶𝐼−𝐺𝐿𝑅𝑇  is the decision threshold of the CI-

GLRT. Under ℋ0 hypothesis, the distribution of the 

decision metric can be obtained using distribution 

fitting as weibull distribution. 𝜂𝐶𝐼−𝐺𝐿𝑅𝑇  Can be 

determined using the CDF of weibull distribution for 

given probability of false alarm𝑃𝑓𝑎 . 

 

VI. COMPARISION WITH STATE OF ART  

DETECTORS 

AC Detector: 

The detector directly employs the second-order 

statistic, ρn, for the decision metric. By averaging Re{

(n)} over all samples, the detector can blindly make 

a decision independent of θ. The decision metric was 

designed as 

 
1

𝑁+𝑁𝐺
 𝑅𝑒{Ψ   𝑛 }𝑛𝜖𝐼 ∪𝐼4

1

𝑁1
 |𝑥  𝑛 |2𝑁1−1

𝑛=0

 ≷  𝜂𝐴𝐶 ,             (25) 

 

Where 𝜂𝐴𝐶  =
1

 2𝑁1
𝑄−1(𝑃𝑓𝑎 ) has a CF expression. The 

AC detector does not require information on 𝜍𝑊
2  and 

the SNR. Another detector, namely an AC detector 

featuring perfect synchronization (syncAC), over 

AWGN channels was expressed as 

 
1

𝑁𝐺
 𝑅𝑒{Ψ   𝑛 }𝑛𝜖 𝐼1∪𝐼2

1

𝑁1
 |𝑥  𝑛 |2𝑁1−1

𝑛 =0

 ≷  𝜂𝑠𝑦𝑛𝑐𝐴𝐶           (26) 

Where 𝜂𝑠𝑦𝑛𝑐𝐴𝐶 =  
1

 2𝑀𝑁𝐺
𝑄−1(𝑃𝑓𝑎 ) 

 

Sliding Window: 

The sliding-window (SW) detector over AWGN 

channels is expressed as 

max𝜃   Ψ  𝑛 𝑛𝜖 𝐼1∪𝐼2
  ≷  𝜂𝑆𝑊        (27) 
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The distribution of the decision metric has no CF 

expression; therefore, the threshold must be 

determined empirically 

 

VII.PERFORMANCE EVALUATION 

In this section some simulation results of the proposed 

schemes and the conventional detectors are given for 

sensing the OFDM signals over multipath fading 

channels. During the simulation process we fix the 

probability of false alarm 𝑃𝑓𝑎 = 0.05 to get the 

thresholds f the detectors proposed. The performance 

of these presented detectors with estimated parameters 

and simulation results are shown in this paper. Monte 

Carlo simulations were conducted to contact the 

performance of the proposed detector. An OFDM 

system with total subcarriers N= 64 and 𝑁𝐺  = 16 was 

considered. The OFDM symbol duration including the 

CP was 16𝜇𝑠. In addition, the simulation results were 

assessing in the presence of CFO of 30% subcarrier 

spacing. The channel taps were randomly generated 

using independent zero- mean unit- variance complex 

Gaussian random variables. During each trial, unless 

otherwise stated, M= 20 OFDM symbols were tested 

and 𝑃𝑓𝑎  = 0.05.    

 

The detection algorithm involves two probabilities: 

probability of detection Pd and probability of false 

alarm Pfa. Pd is the probability of detecting a signal on 

the measured frequency when it is really present. 

Therefore a large detection probability is desired. The 

threshold value (λ) for the detector is firmed either 

from the fixed probability of detection Pd or from the 

fixed probability of false alarm Pfa. Fig. 1. plots the 

probability of detection versus the SNR for the 

proposed NP detector, the LLF and the ED over 

multipath fading channels. It compares the 

performance of the proposed NP detector with the LLF 

and ED detectors.  According to the paper the NP 

detector is a combination of LLF and the ED, when 

compared to ED detector and LLF detector, the NP 

detector exhibits the best performance.   It is apparent 

that the NP detector achieves significant performance 

that it outperforms the other existed detectors. 

Fig.2. plots the probability of detection versus the SNR 

for the NP detector , the LLF detector , ED, GLRT 

detector, and CI-GLRT detector. Based on Fig. 2 we 

can make the conclusion that although the proposed 

detectors do not have a better performance compared 

with the existed ones. The GLRT detector performance 

is worse when compared to the other detectors, as the 

estimation of unknown parameters is not sufficiently 

accuracy . the estimation of all the parameters will not 

improve the system performance.  In other words it 

degrades the performance of the detector. Fig 3. 

Compares all CP- based detectors. Fig 4.  Plots are 

probability of false alarm versus probability of 

detection. Actually the fig displays the receiver 

operating characteristics at SNR = -9dB in the scenario 

considered in fig 3. 

 
Fig: 1. Probability of detection plotted as a function of 

SNR for the NP detector , the LLF detector, and the 

ED. 

 
Fig. 2. Probability of detection plotted as a function 

of SNR for the NP detector, LLF detector, ED, 

GLRT detector, and CI-GLRT detector 
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Fig.3. Comparison of all CP- based detectors. 

 

 
Fig. 4. Comparison of all CP-based detectors using 

the ROC. SNR= -9dB 

 

Noise uncertainty is an important factor which would 

affect the performance of the detector. In this paper we 

assume that the accurate noise power 𝜍𝑛
2 is obtained, 

while it is hard to be achieved in the practical 

applications. Therefore it is necessary to examine the 

influence of noise uncertainty for our proposed 

detectors. Fig.5. Shows the performance of all the 

detectors considered in this paper with the noise 

uncertainty is equal to 0.5dB. We can see that at a low 

uncertainty the performance of the ED based detectors, 

including ED and NP detector, degrade 

correspondingly. Noise uncertainty can cause some 

performance degradations. Here the performance of 

the proposed NP detector is also presented, which 

exhibits performance degradation in response to noise 

uncertainty.  

 

Therefore based on Fig. 5 we can make the conclusion 

that even though the proposed detectors do not have 

very strong ability to resist noise uncertainty, the 

detectors can get the novel performance when the 

accurate or relatively accurate noise power might be 

obtained. 

 
Fig. 5. Comparison between all CP-based GLRT 

detectors and the ED, The influence of unknown 

parameters,𝝈𝒘
𝟐 , with 0.5dB uncertainty is 

demonstrated. 

 

 
Fig. 6. ROC is proposed CI-GLRT detector under 

the effects of M with noise uncertainty of 0.5dB. 

SNR= -12dB 

 

Fig. 6 shows the ROC cure for CI-GLRT at SNR = -12 

dB under the effects of M (the number symbols) with 

noise uncertainty 0.5dB. it is apparent that the noise 

uncertainty might impact the probability of detection 

of all detectors. 
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VIII. CONCLUSION 

In this paper two new spectrum sensing algorithms for 

OFDM signals are investigated under low SNR 

environment with the presence of a timing delay and 

also GLRT and CI-GLRT detection algorithm based 

on the differential characteristics for the sensing the 

OFDM signals are proposed. The simulation results 

show that the proposed NP detector can achieve the 

best performance among all the detectors considered in 

this paper. In addition it proposes a new way to 

estimate the parameters of the NP detector. In this 

paper we just analyze two algorithms, while there are 

many detectors of sensing the OFDM signals that can 

employ the differential operation to improve the 

detection performance. This is a topic for the future 

research.  
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