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Abstract 

In order to continue the revolution in the computer 

hardware performance, we need to reduce the energy 

dissipated in each logic operation. Energy dissipation 

can be reduced by preventing information loss. This is 

achieved by designing the circuits using reversible 

logic gates. It has wider applications in the fields of 

quantum computing, nanotechnology, and many more. 

Reversible logic computing is a rapidly developing 

research area. Testing such circuits is obviously an 

important issue. With the emergence of physical 

realizations, also the consideration of faults and 

faulttolerance became important. It has been suggested 

that parity preserving circuits would be ideal for fault 

detection, since here the parity of the inputs is the same 

as the parity of the outputs. Hence, if there is a fault on 

any single output, the parity should be flipped which 

would make the fault easy to detect. This paper 

however shows that this is not always the case. In fact, 

we provide and discuss examples showing that it is not 

sufficient to have parity preserving circuits when 

considering established fault models for reversible 

logic. As a result of our investigations, we can 

conclude that, even if a reversible circuit is parity 

preserving, it has to be checked against a particular 

fault model.Simulation and verification of this scheme 

is presented on Xilinx ISE 14.7. 

 

INTRODUCTION 

In recent years reversible computation has established 

itself as a promising research area and emerging 

technology. This is motivated by a widely supported 

prediction that the conventional computer hardware 

technologies are going to reach their limits in the near 

future [2]. A fundamental limitation of conventional 

computing is that each time information is lost energy is 

dissipated regardless of the underlying technology. This 

is known as Landauer’s principle [5]. It was also shown 

by Bennett [1] that theoretical zero power dissipation 

can only be achieved if the circuit is logically reversible 

[1]. Reversible computing is bijective in nature, and by 

definition reversible circuits are theoretically 

information-lossless. Thus using reversible computation, 

the power dissipation which results according to 

Landauer’s principle can be decreased or even 

eliminated. Reversible computation enables several 

promising applications and, indeed, surpasses 

conventional computation paradigms in many domains 

including but not limited to quantum computation (see, 

e. g., [1]), certain aspects of low-power design (as 

experimentally observed, e. g., in [2]), the design of 

adiabatic circuits (see, e. g., [3]), encoding and decoding 

devices (see, e. g., [4]), or verification (see, e.g., [5]).  

 

Accordingly, also the consideration of the design of 

reversible circuits received significant interest. In 

comparison to conventional circuit design, new concepts 

and paradigms have to be considered here. For example, 

fanout and feedback are not directly allowed. This 

affects the design of reversible circuits and requires 

alternative solutions. To this end, several approaches 

ranging from synthesis (see, e. g., [6], [7], [8], [9], [10]), 

optimization (see, e. g., [11], [12]), verification (see, e. 

g., [13], [14], [15]), and debugging (see, e. g., [16]) have 

been introduced. An overview of that is, e. g., provided 

in [17], [18]. 

 

In parallel, how to physically build reversible and 

quantum circuits is investigated and led to first 

promising results (see, e. g., [19], [20]). With this, also 

the question of how to prevent and detect faults in the 

physical realization became relevant. In particular for 

quantum computation, this is a crucial issue: Quantum 

systems are much more fault-prone than conventional 
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circuits, since the phenomenon of quantum decoherence 

forces the qubit states to decay – resulting in a loss of 

quantum information which, eventually, causes faults.  

 

Besides the work on testing and test pattern generation 

(see, e. g., [21], [22], [23]), this also triggered the design 

of fault-detecting or fault-tolerant circuits – leading to 

the development of fault-tolerant libraries (see, e. g., 

[24], [25]) and corresponding design methods. The later 

includes the design of parity preserving reversible 

circuits which gained significant attention in the recent 

years and yielded several contributions such as [26], 

[27], [28], [29], [28], [30], [31], [32]. This development 

was motivated by the benefits of parity preservation in 

conventional circuits and aimed for adapting this to 

reversible circuits as well (this is discussed in more 

detail later in Section III). 

 

However, no real investigation or discussion has been 

performed yet tackling the question whether parity 

preserving is indeed useful for reversible/quantum 

circuits. In this work, we are conducting such an 

investigation. To this end, we are considering two faults 

models that rank amongst the mostly considered models 

for reversible and quantum circuits: the single missing 

control fault and the single missing gate fault [22]. We 

explicitly apply previously proposed design methods for 

parity preserving reversible circuits and evaluate the 

resulting netlists with respect to faults from these fault 

models. 

 

Our evaluations unveil that, although previously 

proposed techniques indeed guarantee parity 

preservation, this property is often not helpful with 

respect to the commonly assumed faults. In fact, parity 

preserving reversible/quantum circuits are frequently not 

capable of detecting or even tolerating missing control as 

well as missing gate faults. If they are, the respective 

method to make a circuit parity preserving yields a 

significant increase in the costs of the circuit. In this 

sense, our work motivates a re-evaluation of the need 

and usefulness of parityreversing reversible and quantum 

circuits. 

The remainder of this work is structured as follows: The 

next section reviews the basics on reversible circuits and 

the fault models considered here, while, Section III 

provides an overview on recent work which has been 

published on parity preserving reversible circuits. Based 

on that, Section IV includes the evaluation and 

discussion on the resulting circuits with respect to fault 

detection and correction. Section V includes the 

synthesis and simulation on XilinxISE 14.7. The 

findings of the work are, eventually, summarized in the 

conclusions in Section VI. 

 

PRELIMINARIES 

To keep the remainder of the paper self-contained, this 

section introduces reversible circuits and provides a brief 

overview on the fault models considered in this work. A. 

Reversible Circuits A logic function f:Bn → Bm over 

inputs X = {x1, ..., xn} is reversible iff (1) its number of 

inputs is equal to its number of outputs (i.e. n = m) and 

(2) it maps each input pattern to a unique output pattern. 

That is, reversible functions represent bijections. 

Reversible circuits are realizations of reversible 

functions. A reversible circuit G is a cascade of 

reversible gates gi, i.e. G = g1g2...gd, where no fanout 

and feedback is allowed [1]. In this work, we consider 

the most widely used reversible gate, the Toffoli gate 

[33] 

Definition 1. A Toffoli gate over the set of inputs X = 

{x1, ...,xn} has the form g(C, t), where C ⊂ X is the set of 

control lines and t ∈ X \ C is the target line. In the 

following the target line has the index k, i. e., t = xk. A 

single Toffoli gate g(C, t) realizes the bijective function 

 
That is, if all control line variables xc are assigned 1, the 

target line t is inverted. Under this assignment the gate is 

called activated. All other input values x ∈ X \ {t} pass 

the gate unaltered. Note that the set of control lines may 

be empty. In this case, the gate works as a NOT gate, i. 

e., the target line is always inverted. Gates with a single 

control line are termed CNOT. When the term ―Toffoli 

gate‖ is used in this paper, it is implied that it has two 

controls, unless otherwise noted. 
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Example 1. Fig. 1(a) shows a reversible circuit including 

three circuit lines and four Toffoli gates, i. e., n = 3 and 

d = 4. Control lines are denoted by a •, while the target 

line is denoted by ⊕. The annotated values demonstrate 

the computation of the respective gates for a certain 

input pattern. In this case, gates g1 and g3 are activated. 

 

Note that reversible circuits usually provide a 

―blueprint‖ for quantum circuits. That is, in order to 

realize the logic design of a quantum circuit, the 

respective function is first synthesized as a reversible 

circuit and, afterwards, mapped to a quantum circuit 

structure (using methods such as [34], [35]). As the 

underlying fault models (covered in the next section) are 

similarly applied for both, reversible and quantum 

circuits, we omit an explicit introduction of quantum 

circuits and perform the discussion on reversible circuits 

only. 

 

B. Fault Models 

As in conventional circuits, faults may occur in 

reversible and quantum circuits (either caused by 

production or degradation). In order to abstract from the 

physical faults and, hence, allow for a logical 

consideration of the corresponding effects, usually 

discrete fault models are utilized. For reversible and 

quantum circuits, the single missing control fault and the 

single missing gate fault rank amongst the mostly 

considered models [22]. They are defined as follow: 

Definition 2. Let g(C, t) be a Toffoli gate of a circuit G. 

Then, 

1) a Single Missing Control Fault (SMCF) appears if 

instead of g’(C’, t), a gate g (C , t) is executed, whereas 

C = C \ {xi} with xi ∈ C (i. e., a control line is removed).  

2) a Single Missing Gate Fault (SMGF) appears if 

instead of g no gate is executed (i. e., g completely 

disappears). In order to detect a fault, the respective 

gates have to be activated so that the faulty behavior can 

be observed at the outputs of the circuit. Depending on 

the considered fault, this requires certain input 

assignments [22]. More precisely, 

 1) to detect an SMCF at gate g(C, t), all control lines in 

C (except the missing one) have to be assigned 1, while 

the missing control line xi ∈ C, respectively xi ∈/ C’’ , 

has to be assigned 0. The assignment of the remaining 

lines can be arbitrarily chosen. 

2) to detect an SMGF of gate g(C, t), i. e., the 

disappearance of g, all control lines in C have to be 

assigned 1, i. e., g simply has to be activated. The 

assignment of the remaining lines can be arbitrarily 

chosen. 

 

Example 2. Fig. 1 illustrates an SMCF 1(b) and an 

SMGF 1(c), respectively, which can occur in the 

reversible circuit previously introduced in Fig. 1(a). The 

respective assignment needed to detect these faults are 

also given. 

 
Fig. 1. Reversible circuits and possible faults 

 

PARITY PRESERVING REVERSIBLE CIRCUITS  

Parity bits have been used in electronic data transmission 

form the early days of computers, since it is easy to 

detect a fault in a single bit. Thornton [36] has shown 

that a parity bit can be efficiently embedded in adder 

circuits. Parhami [37] coined the term parity preserving 

in 2002. None of the papers considered the fault 

coverage of such a circuit. Furthermore, both papers 

consider conventional Boolean circuits that are not 

necessarily reversible. 

 

Definition 3. A multiple-input multiple-output function 

f(X) is parity preserving if X = f(X), for all assignments 

of the input variables in X. In 2006, Parhami used the 

parity preserving property for reversible logic circuits 

[38]. He noted that any change in a single output will be 

detected. 



 
 

 Page 359 
 

Paul et al. [26] have shown that there are (2n−1!)2 

reversible parity preserving function with n variables 

while the number of all reversible circuits is (2n)!. This 

means that less than one percent of all reversible circuits 

with four or more lines are parity preserving. But any 

reversible function can be made parity preserving by 

adding one more input and setting the corresponding 

output to preserve the parity of the input (a proof is also 

given in [26].) Furthermore, in [26] it is shown how 

parity preserving functions can be generated with 

exponential complexity. It is not known how the 

complexity increase of the function will affect the cost of 

the circuit. 

 
Fig. 2. A simple way to make any function/circuit parity 

preserving 

 

Another way to embed a non parity preserving reversible 

circuit into an parity preserving reversible circuit is 

depicted in Fig. 2. By adding one line, with constant 

zero input, to the original circuit and calculating the 

parity before and after the original circuit on the added 

line, the new overall circuit will be parity preserving. 

Unfortunately, this circuit will always produce a parity 

preserving input-output relation independently of the 

original circuit C (assuming that all CNOTs gates before 

and after the original are fault-free). Hence, no fault in 

the original circuit C will be detected which does not 

motivate further studies. 

 

Besides that, the following partial list of papers present 

other contributions towards reversible circuits aiming for 

parity preserving properties: 

 In 2010, design of a full adder [29] using the 

building blocks from [28].  

 In 2013, design of an ALU [30].  

 In 2014, design a compressor [31]. 

 In 2015, design of a full adder [32].  

However, none of these papers include a study on the 

fault coverage of the presented design or a discussion of 

the additionally required costs for this purpose. Hence, it 

remains unknown whether the desired parity preserving 

characteristic of the proposed circuits is indeed helpful 

and efficient in order to detect faults. In this work, we 

will study this for the first time (to the best of our 

knowledge). To this end, a discussion about the usability 

and applicability of parity preserving design methods 

discussed above is provided next. 

 

ANALYSIS OF ESTABLISHED FAULT MODELS 

In the following, the parity preserving reversible circuits 

proposed in the past will be considered with respect to 

the two major fault models reviewed in Sect. II-B. As 

most currently presented approaches are using parity 

preserving elementary building blocks, the two fault 

models will be considered for such blocks at first in 

Sect. IV-A. As these results are not convincing, in Sect. 

IV-B realizations of the elementary building blocks 

using two straightforward methods will be investigated 

(again by applying the two fault models). Finally, Sect. 

IV-C deals with a quantum realization as presented in 

[29].  

 

Fault Detection in Parity Preserving Building Blocks  

For this subsection, we assume that a circuit has been 

realized by using parity preserving elementary building 

blocks only as depicted in Fig. 3(a). 

 
(a) Circuit with parity preserving building blocks 

 
(b) Circuit with a single missing gate fault 

Fig. 3. Parity Preserving building blocks 
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Single Missing Gate Fault: 

A missing gate fault means that the missing parity 

preserving gate/block behaves as an identity function 

and, thus, no change will be applied, see Fig. 3(b). 

Clearly, the identity function is parity preserving and 

consequently, the complete circuit will still be parity 

preserving because the composition of two parity 

preserving blocks is still parity preserving. 

In conclusion, parity preserving elementary building 

block/gates do not help in detecting a fault according to 

the the missing gate fault model. 

 

Single Missing Control Fault: 

Let us now consider the missing control fault model. As 

the elementary building blocks/gates in other papers are 

presented as black boxes, we can not really apply a 

missing control fault anywhere. Hence, it remains 

unknown how to model a missing control fault within a 

building block. In fact, the realization of the block must 

be known before the missing control faults can be 

analyzed. One exception holds for [29], where the 

authors do not only describe the elementary parity 

preserving building blocks, but also present a quantum 

realization of an embedded Toffoli gate. A detailed 

analysis of this block will later be conducted in Sect. IV-

C. 

 

Parity Preserving Building Blocks 

As shown in the last subsection, faults of the considered 

models will not be detected in circuits with parity 

preserving elementary building blocks. Thus, we have to 

analyze the quantum realizations of such building 

blocks. Unfortunately, of the standard gates, only the 

Fredkin gate is parity preserving. The NOT, CNOT and 

Toffoli gate are not parity preserving. However, an 

additional line is needed to embed any of the last-named 

gates into a parity preserving block. In nearly all of the 

papers presented in the last section, exactly one line with 

a constant zero input is added to implement these gates. 

 

Two straightforward methods to make a Toffoli gate 

(independently from the number of control lines) parity 

preserving are shown in Fig. 4. Here, either  

 a double gate as shown in Fig. 4(a) or  

 two additional CNOT gates as shown in Fig. 

4(b) are applied 

 
Fig. 4. Parity preserving Toffoli gate blocks 

 

Note that for either method only one additional line is 

needed, because the value of the bottom line in the figure 

of both realizations is only used to preserve the parity.  

 

Concerning the circuits cost, it should be mentioned that 

if the first method is used, twice as many gates are 

needed and the quantum cost doubles. While the second 

method will add twice as many CNOT gates as the 

number of used Toffoli gates. This also means, that the 

quantum costs will increase by two times the number of 

Toffoli gates, since a CNOT gates has quantum cost 1. 

 

Furthermore, note that we will ignore faults that will 

cause a non-Boolean values at any control or output. 

 

Double gate method: 

Let us now assume that the double gate (see Fig. 4(a)) 

method has been used. If exactly one of the two Toffoli 

gates is missing, the building block will not be parity 

preserving. Thus, the whole circuit will also be not 

parity preserving and it is theoretically possible to detect 

this fault provided that we know a corresponding 

input/output pattern. Besides a missing gate, it is also 

possible that exactly one control is missing. Fortunately, 

in this case, we can also find an input/output pattern that 

breaks the parity preserving feature/property. For 

example, if the first control (on line a) of the first Toffoli 

gate is missing, the input (1,1,0,0) will be mapped to the 

output (1,1,0,1). For all 4 missing control cases, such a 

pattern can be found. Hence, this design detects all faults 

of the two considered fault models, but as stated above 

at the expense of signifi- cantly increased costs. 
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Add 2 CNOTs method: 

Assuming that all buildings blocks are made of 2 

CNOTs around the original Toffoli gate (see Fig. 4(b)), 

three different gates can be missing: one of the two 

CNOTs or the original gate. In the first case, i. e., one of 

the CNOTs is missing, the whole block will lose its 

parity preserving feature. In the latter case, i. e., the 

original gate is missing, the two remaining CNOTs 

together are realizing the identify function and, thus, the 

whole block will be still parity preserving. So, in 2 of 3 

cases a missing gate would be detected. If the missing 

control fault model is applied, there are exactly two good 

cases: One of the CNOT controls is missing. Then the 

whole block will lose its parity preserving feature. On 

the other side, if one control of the main Toffoli gate is 

missing, the whole block will still be parity preserving, 

even if the overall circuit will not realize the desired 

function. If multiple-controlled Toffoli gates are 

considered, then this design provides very poor fault 

coverage. To summarize this, method 2 will obtain only 

2 of |C| + 2 SMCF instances. It can be concluded, that 

the additional cost is low, but the fault coverage is not 

satisfactory. 

 

Quantum Realization for a Parity Preserving Toffoli 

Gate 

Instead of only using parity preserving building blocks, 

the authors of [29] have also proposed a quantum 

realization of the parity preserving Toffoli gate. We now 

investigate whether such a quantum realization can be 

used to detect faults. To this end, consider the quantum 

realization of a Toffoli gate as proposed in [29] and 

shown in Fig. 51. Both of the introduced fault models 

can be applied to the realization. First, the SMCF model 

is considered, afterwards the SMGF model. 

 
Fig. 5. Parity preserving Toffili gate from [29] 

All possible SMCFs for CNOT gates that do not result in 

entanglement, i. e., do not trigger a control line with a 

nonBoolean value, are labeled a, b, c, d, e in Fig. 5. 

Those resulting in non-Boolean intermediate states are 

labeled w, x, y, z. Let us briefly consider the first set of 

faults:  

a – Since the value of B will be always flip at the 

beginning, the parity is not preserved.  

b – Since this fault will only flip B, it will not preserve 

the parity,  

c – Similar to above.  

d – Since only R is inverted, the parity is not preserved.  

e – Since only Q is inverted, the parity is not preserved. 

For all these SMCF instances, Tab. I gives one 

respective input/output pattern for the correct circuit as 

well as the output for the faulty circuit. This shows that 

the circuit is not parity preserving for any of the 

considered faults. 

 

TABLE I POSSIBLE SMCFS WITHOUT 

ENTANGLEMENT PROBLEMS 

 
If one of the controls of w, x, y, z is missing, non-

Boolean outputs can appear which require a 

measurement of the qubits. Unfortunately, these 

measurements are non-deterministic and we can not 

make any safe statement. To be more precise, if none of 

the controls of the gates are missing, a measurement it 

not necessary because all values will be pure Boolean. 

However, if any control is missing and the measurement 

states that one calculation is parity preserving, we can 

make any statement, but if the measurement shows us an 

input-output pattern which is not parity preserving, we 

can know for sure that the circuit is faulty. 

 

Analyzing possible SMGFs has produced the results as 

shown in Tab. II. While a missing first gate does not 
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have any effect on the overall circuit, a missing gate at 

the position 6, 7, 8, or 9 would destroy the parity 

preservation. If one of the gates 2–5 is missing, again, 

non-Boolean values can be found at controls, thus, they 

are again omitted. As the tables show, using the quantum 

realization of Islam gives us a good fault detection rate 

by checking the parity preserving property. However, for 

each Toffoli gate one additional constant zero line has to 

be added which is impractical for larger circuits. Since 

the first CNOT gate of the quantum realization will 

never be activated because the control is on a constant 

zero input (unless the circuit has no faults), the quantum 

cost for the realization can be quantified with 8. 

Compared to the quantum cost of 5 of the normal Toffoli 

gate, the quantum cost of a final circuit would increased 

by a factor of 8/5 = 1.6. 

 

TABLE II POSSIBLE SMGFS WITHOUT 

ENTANGLEMENT PROBLEMS 

 
To the best of our knowledge, no method has been 

published that describes how, with only a fixed number 

of constant lines, more parity preserving Toffoli gates 

can be combined. In Fig. 6, we present such an 

embedding of a Toffoli gate. Unfortunately, all possible 

SMCF as well as SMGF would again cause non-Boolean 

signals, but without the usage of at least some V or V† 

gates, it would be impossible to realize the functionality. 

 
Fig. 6. Another parity preserving TG embedding 

SIMULATION RESULTS 

All the synthesis and simulation results of the Proposed 

Single Missing Gate Fault (SMGF) are performed using 

Verilog HDL. The synthesis and simulation are 

performed on Xilinx ISE 14.7. The corresponding 

simulation results of the Proposed Single Missing Gate 

Fault (SMGF) are shown below. 

 
Fig.7: RTL schematic of Top-level of Proposed Single 

Missing Gate Fault (SMGF) 

 
Fig.8: RTL schematic of Internal block of Proposed 

Single Missing Gate Fault (SMGF) 

 
Fig.9: Technology schematic of Proposed Single 

Missing Gate Fault (SMGF) 
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Fig.10: Synthesis report of Proposed Single Missing 

Gate Fault (SMGF) 

 
Fig.11: Simulated outputs for Proposed Single Missing 

Gate Fault (SMGF) 

 

CONCLUSIONS 

In this work, we considered the effectiveness of parity 

preserving reversible circuits with respect to established 

fault models. Our investigations show that parity 

preserving techniques are inadequate to cover single 

missing gate faults and single missing control faults. 

Deficiencies can be observed in terms of both, costs (i. 

e., they introduce large costs) as well fault coverage. 

Examples have been provided which show that barely 

half of the faults are covered. The lesson that we can 

learn from this investigation is that parity preserving 

circuits do no automatically ensure a reasonable fault 

coverage which always should be validated with a 

specific fault model. In the future, parity preserving 

might be beneficial when new (more realistic) faults 

models become available. But thus far, their benefit to 

reversible and quantum circuits is rather limited. 

REFERENCES  

[1] M. Nielsen and I. Chuang, Quantum Computation 

and Quantum Information.Cambridge Univ. Press, 2000. 

 

[2] A. Berut, A. Arakelyan, A. Petrosyan, S. Ciliberto, 

R. Dillenschneider, and E. Lutz, ―Experimental 

verification of landauer’s principle linking information 

and thermodynamics,‖ Nature, vol. 483, pp. 187–189, 

2012. 

[3] A. De Vos, Reversible Computing: Fundamentals, 

Quantum Computing and Applications. Wiley, 2010. 

 

[4] R. Wille, R. Drechsler, C. Osewold, and A. G. Ortiz, 

―Automatic design of low-power encoders using 

reversible circuit synthesis,‖ in Design, Automation and 

Test in Europe, 2012, pp. 1036–1041.  

 

[5] L. Amaru, P.-E.Gaillardon, R. Wille, and G. D. 

Micheli, ―Exploiting inherent characteristics of 

reversible circuits for faster combinational equivalence 

checking,‖ in Design, Automation and Test in Europe, 

2016.  

 

[6] D. M. Miller, D. Maslov, and G. W. Dueck, ―A 

transformation based algorithm for reversible logic 

synthesis,‖ in Design Automation Conf., 2003, pp. 318–

323. 

 

[7] V. V. Shende, A. K. Prasad, I. L. Markov, and J. P. 

Hayes, ―Synthesis of reversible logic circuits,‖ IEEE 

Trans. on CAD, vol. 22, no. 6, pp. 710–722, 2003. 

 

[8] R. Wille and R. Drechsler, ―BDD-based synthesis of 

reversible logic for large functions,‖ in Design 

Automation Conf., 2009, pp. 270–275. 

 

[9] R. Wille, E. Schöborn, M. Soeken, and R. Drechsler, 

―SyReC: A hardware description language for the 

specification and synthesis of reversible circuits,‖ vol. 

53, no. 3, pp. 39–53, 2016.  

 

[10] M. Soeken, R. Wille, C. Hilken, N. Przigoda, and 

R. Drechsler, ―Synthesis of reversible circuits with 



 
 

 Page 364 
 

minimal lines for large functions,‖ in ASP Design 

Automation Conf., 2012, pp. 85–92. 

 

[11] D. Y. Feinstein, M. A. Thornton, and D. M. Miller, 

―Partially redundant logic detection using symbolic 

equivalence checking in reversible and irreversible logic 

circuits,‖ in Design, Automation and Test in Europe, 

2008, pp. 1378–1381. 

 

[12] D. M. Miller, R. Wille, and R. Drechsler, 

―Reducing reversible circuit cost by adding lines,‖ in 

Int’l Symp. on Multi-Valued Logic, 2010, pp. 217–222.  

 

[13] G. F. Viamontes, I. L. Markov, and J. P. Hayes, 

―Checking equivalence of quantum circuits and states,‖ 

in Int’l Conf. on CAD, 2007, pp. 69–74.  

 

[14] S.-A. Wang, C.-Y.Lu, I.-M.Tsai, and S.-Y. Kuo, 

―An XQDD-based verification method for quantum 

circuits,‖ IEICE Transactions, vol. 91- A, no. 2, pp. 584–

594, 2008. 

 

[15] J. Seiter, M. Soeken, R. Wille, and R. Drechsler, 

―Property checking of quantum circuits using quantum 

multiple-valued decision diagrams,‖ in Reversible 

Computation 2012, ser. Lecture Notes in Computer 

Science, vol. 7581, 2012, pp. 183–196.  

 

[16] R. Wille, D. Große, S. Frehse, G. W. Dueck, and R. 

Drechsler, ―Debugging of Toffoli networks,‖ in Design, 

Automation and Test in Europe, 2009, pp. 1284–1289.  

 

[17] R. Drechsler and R. Wille, ―From truth tables to 

programming languages: Progress in the design of 

reversible circuits,‖ in Int’l Symp. on Multi-Valued 

Logic, 2011, pp. 78–85. 

 

[18] M. Saeedi and I. L. Markov, ―Synthesis and 

optimization of reversible circuits - a survey,‖ ACM 

Computing Surveys, 2011. 

 

[19] L. M. K. Vandersypen, M. Steffen, G. Breyta, C. S. 

Yannoni, M. H. Sherwood, and I. L. Chuang, 

―Experimental realization of Shor’s quantum factoring 

algorithm using nuclear magnetic resonance,‖ Nature, 

vol. 414, p. 883, 2001. 

 

[20] B. Desoete and A. D. Vos, ―A reversible carry-

look-ahead adder using control gates,‖ INTEGRATION, 

the VLSI Jour., vol. 33, no. 1-2, pp. 89–104, 2002. 

 

[21] J. P. Hayes, I. Polian, and B. Becker, ―Testing for 

missing-gate faults in reversible circuits,‖ in Asian Test 

Symp., 2004, pp. 100–105. 

 

[22] I. Polian, T. Fiehn, B. Becker, and J. P. Hayes, ―A 

Family of Logical Fault Models for Reversible Circuits,‖ 

in Asian Test Symposium. IEEE Computer Society, Dec. 

2005, pp. 422–427.  

 

[23] R. Wille, H. Zhang, and R. Drechsler, ―ATPG for 

reversible circuits using simulation, Boolean 

satisfiability, and pseudo Boolean optimization,‖ in 

IEEE Annual Symposium on VLSI, 2011.  

 

[24] M. Amy, D. Maslov, M. Mosca, and M. Roetteler, 

―A meet-in-the-middle algorithm for fast synthesis of 

depth-optimal quantum circuits,‖ IEEE Trans. on CAD 

of Integrated Circuits and Systems, vol. 32, no. 6, pp. 

818–830, 2013.  

 

[25] P. Niemann, S. Basu, A. Chakrabarti, N. K. Jha, and 

R. Wille, ―Synthesis of quantum circuits for dedicated 

physical machine descriptions,‖ in Conference on 

Reversible Computation, July 2015.  

 

[26] G. Paul, A. Chattopadhyay, and C. Chandak, 

―Designing parity preserving reversible circuits,‖ CoRR, 

vol. abs/1308.0840, 2013. [Online]. Available: 

http://arxiv.org/abs/1308.0840 

 

[27] M. Haghparast and K. Navi, ―A novel fault tolerant 

reversible gate for nanotechnology based systems,‖ 

American Journal of Applied Sciences, vol. 5, pp. 519–

523, 2008. 

 

http://arxiv.org/abs/1308.0840


 
 

 Page 365 
 

 [28] M. S. Islam, M. M. Rahman, Z. Begum, M. Z. 

Hafiz, and A. Al Mahmud, ―Synthesis of fault tolerant 

reversible logic circuits,‖ in Testing and Diagnosis, 

2009. ICTD 2009. IEEE Conference on Circuits and 

Systems International, 2009, pp. 1–4.  

 

[29] M. S. Islam, M. M. Rahman, Z. Begum, and M. Z. 

Hafiz, ―Realization of a novel fault tolerant reversible 

full adder circuit in nanotechnology.‖ Int. Arab J. Inf. 

Technol., vol. 7, no. 3, pp. 317–323, 2010.  

 

[30] R. Saligram, S. S. Hegde, S. A. Kulkarni, H. 

Bhagyalakshmi, and M. Venkatesha, ―Design of parity 

preserving logic based fault tolerant reversible arithmetic 

logic unit,‖ arXiv preprint arXiv:1307.3690, 2013. 

 

[31] S. Shoaei and M. Haghparast, ―Novel designs of 

nanometric parity preserving reversible compressor,‖ 

Quantum Information Processing, vol. 13, no. 8, pp. 

1701–1714, 2014. 

 

[32] M. Haghparast and S. Shoaei, ―Design of a new 

parity preserving reversible full adder,‖ Journal of 

Circuits, Systems and Computers, vol. 24, no. 01, 2015. 

 

[33] T. Toffoli, ―Reversible computing,‖ in Automata, 

Languages and Programming, W. de Bakker and J. van 

Leeuwen, Eds. Springer, 1980, p. 632, technical Memo 

MIT/LCS/TM-151, MIT Lab. for Comput. Sci. 

 

[34] A. Barenco, C. H. Bennett, R. Cleve, D. P. 

DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. A. 

Smolin, and H. Weinfurter, ―Elementary gates for 

quantum computation,‖ Phys. Rev. A, vol. 52, no. 5, pp. 

3457–3467, Nov. 1995. 

[35] D. M. Miller, R. Wille, and Z. Sasanian, 

―Elementary quantum gate realizations for multiple-

control toffolli gates,‖ in Int’l Symp. onMultiValued 

Logic, May 2011, pp. 217–222.  

 

[36] M. A. Thornton, ―Signed binary addition circuitry 

with inherent even parity outputs,‖ IEEE Trans. 

Comput., vol. 46, no. 7, pp. 811–816, July 1997. 

[37] B. Parhami, ―Parity-preserving transformations in 

computer arithmetic,‖ Proc. SPIE, vol. 4791, pp. 403–

411, 2002. 

 

[38] ——, ―Fault-tolerant reversible circuits,‖ in Signals, 

Systems and Computers, 2006. ACSSC’06. Fortieth 

Asilomar Conference on, 2006, pp. 1726–1729. 


