

 Page 443

Group Data Sharing via Cloud Storage using Key Aggregate

Encryption Technique

Dileep Dias

M.Tech Student,

Department of CSE,

Malla Reddy College of Engineering and Technology.

P.Bikshapathy

Assistant Professor,

Department of CSE,

Malla Reddy College of Engineering and Technology.

ABSTRACT

The capability of selectively sharing encrypted data

with different users via public cloud storage may

greatly ease security concerns over inadvertent data

leaks in the cloud. A key challenge to designing such

encryption schemes lies in the efficient management of

encryption keys. The desired flexibility of sharing any

group of selected documents with any group of users

demands different encryption keys to be used for

different documents. However, this also implies the

necessity of securely distributing to users a large

number of keys for both encryption and search, and

those users will have to securely store the received keys,

and submit an equally large number of keyword

trapdoors to the cloud in order to perform search over

the shared data. The implied need for secure

communication, storage, and complexity clearly

renders the approach impractical. In this paper, we

address this practical problem, which is largely

neglected in the literature, by proposing the novel

concept of key aggregate searchable encryption

(KASE) and instantiating the concept through a

concrete KASE scheme, in which a data owner only

needs to distribute a single key to a user for sharing a

large number of documents, and the user only needs to

submit a single trapdoor to the cloud for querying the

shared documents. The security analysis and

performance evaluation both confirm that our

proposed schemes are provably secure and practically

efficient.

INTRODUCTION

Cloud storage has emerged as a promising solution for

providing ubiquitous, convenient, and on-demand

accesses to large amounts of data shared over the

Internet. Today, millions of users are sharing personal

data, such as photos and videos, with their friends

through social network applications based on cloud

storage on a daily basis. Business users are also being

attracted by cloud storage due to its numerous benefits,

including lower cost, greater agility, and better resource

utilization.

However, while enjoying the convenience of sharing

data via cloud storage, users are also increasingly

concerned about inadvertent data leaks in the cloud.

Such data leaks, caused by a malicious adversary or a

misbehaving cloud operator, can usually lead to serious

breaches of personal privacy or business secrets (e.g., the

recent high profile incident of celebrity photos being

leaked in iCloud). To address users’ concerns over

potential data leaks in cloud storage, a common

approach is for the data owner to encrypt all the data

before uploading them to the cloud, such that later the

encrypted data may be retrieved and decrypted by those

who have the decryption keys. Such cloud storage is

often called the cryptographic cloud storage. However,

the encryption of data makes it challenging for users to

search and then selectively retrieve only the data

containing given keywords. A common solution is to

employ a searchable encryption (SE) scheme in which

the data owner is required to encrypt potential keywords

and upload them to the cloud together with encrypted

data, such that, for retrieving data matching a keyword,

the user will send the corresponding keyword trapdoor to

the cloud for performing search over the encrypted data.

Although combining a searchable

Encryption scheme with cryptographic cloud storage can

achieve the basic security requirements of cloud storage,

 Page 444

implementing such a system for large scale applications

involving millions of users and billions of files may still

be hindered by practical issues involving the efficient

management of encryption keys, which, to the best of

our knowledge, are largely ignored in the literature. First

of all, the need for selectively sharing encrypted data

with different users (e.g., sharing a photo with certain

friends in a social network application, or sharing a

business document with certain colleagues on a cloud

drive) usually demands different encryption keys to be

used for different files. However, this implies the

number of keys that need to be distributed to users, both

for them to search over the encrypted files and to decrypt

the files, will be proportional to the number of such files.

Such a large number of keys must not only be distributed

to users via secure channels, but also be securely stored

and managed by the users in their devices. In addition, a

large number of trapdoors must be generated by users

and submitted to the cloud in order to perform a

keyword search over many files. The implied need for

secure communication, storage, and computational

complexity may render such a system inefficient and

impractical.

EXISTING SYSTEM:

 There is a rich literature on searchable encryption,

including SSE schemes and PEKS schemes. In

contrast to those existing work, in the context of

cloud storage, keyword search under the multi-

tenancy setting is a more common scenario. In such

a scenario, the data owner would like to share a

document with a group of authorized users, and each

user who has the access right can provide a trapdoor

to perform the keyword search over the shared

document, namely, the “multi-user searchable

encryption” (MUSE) scenario.

 Some recent work focus to such a MUSE scenario,

although they all adopt single-key combined with

access control to achieve the goal.

 In MUSE schemes are constructed by sharing the

document’s searchable encryption key with all users

who can access it, and broadcast encryption is used

to achieve coarse-grained access control.

 In attribute based encryption (ABE) is applied to

achieve fine-grained access control aware keyword

search. As a result, in MUSE, the main problem is

how to control which users can access which

documents, whereas how to reduce the number of

shared keys and trapdoors is not considered.

DISADVANTAGES OF EXISTING SYSTEM:

 Unexpected privilege escalation will expose all

 It is not efficient.

 Shared data will not be secure.

PROPOSED SYSTEM:

 In this paper, we address this challenge by proposing

the novel concept of key-aggregate searchable

encryption (KASE), and instantiating the concept

through a concrete KASE scheme.

 The proposed KASE scheme applies to any cloud

storage that supports the searchable group data

sharing functionality, which means any user may

selectively share a group of selected files with a

group of selected users, while allowing the latter to

perform keyword search over the former.

 To support searchable group data sharing the main

requirements for efficient key management are

twofold. First, a data owner only needs to distribute

a single aggregate key (instead of a group of keys) to

a user for sharing any number of files. Second, the

user only needs to submit a single aggregate

trapdoor (instead of a group of trapdoors) to the

cloud for performing keyword search over any

number of shared files.

 We first define a general framework of key

aggregate searchable encryption (KASE) composed

of seven polynomial algorithms for security

parameter setup, key generation, encryption, key

extraction, trapdoor generation, trapdoor adjustment,

and trapdoor testing. We then describe both

functional and security requirements for designing a

valid KASE scheme.

 We then instantiate the KASE framework by

designing a concrete KASE scheme. After providing

detailed constructions for the seven algorithms, we

 Page 445

analyze the efficiency of the scheme, and establish

its security through detailed analysis.

 We discuss various practical issues in building an

actual group data sharing system based on the

proposed KASE scheme, and evaluate its

performance. The evaluation confirms our system

can meet the performance requirements of practical

applications.

ADVANTAGES OF PROPOSED SYSTEM:

 It is more secure.

 Decryption key should be sent via a secure channel

and kept secret.

 It is an efficient public-key encryption scheme

which supports flexible delegation.

 To the best of our knowledge, the KASE scheme

proposed in this paper is the first known scheme that

can satisfy requirements.

IMPLEMENTATION

MODULES:

1. Data Owner

2. Network Storage

3. Encrypted Aggregate Key and Searchable

Encryption key Transfer

4. Trapdoor Generation

5. File User

MODULES DESCRIPTION:

Data Owner:

In this module we executed by the data owner to setup

an account on an un trusted server. On input a security

level parameter 1
λ
and the number of ciphertext classes n

(i.e., class index should be an integer bounded by 1

andn), it outputs the public system parameter param,

which is omitted from the input of the other algorithms

for brevity.

Network Storage (Drop box):

With our solution, Alice can simply send Bob a single

aggregate key via a secure e-mail. Bob can download the

encrypted photos from Alice’s Dropbox space and then

use this aggregate key to decrypt these encrypted photos.

In this Network Storage is entrusted third party server or

dropbox.

Encrypted Aggregate Key and Searchable Encrypted

key Transfer:

The data owner establishes the public system parameter

via Setup and generates a public/master-secretkey pair

via KeyGen. Messages can be encrypted via Encrypt by

anyone who also decides what ciphertext class is

associated with the plaintext message to be encrypted.

The data owner can use the master-secret to generate an

aggregate decryption key for a set of cipher text classes

via Extract. The generated keys can be passed to

delegates securely (via secure e-mails or secure devices)

finally; any user with an aggregate key can decrypt any

cipher text provided that the cipher text’s class is

contained in the aggregate key via Decrypt

Trapdoor generation

Trapdoor generation algorithm is run by the user who

has the aggregate key to perform search. It takes as input

the aggregate searchable encryption key kagg and a

keyword w, then outputs only one trapdoor Tr.

File User:

The generated keys can be passed to delegates securely

(via secure e-mails or secure devices) finally; any user

with the Trapdoor keyword generation process can

decrypt any ciphertext provided that the ciphertext class

is contained in the Encrypted aggregate key and

Searchable Encrypted key via Decrypt.

SCREEN SHOTS:

Fig: Home Page

 Page 446

Fig: Admin Login Page

Fig: File Upload Page

Fig: File Details Page

Fig: User Login Page

Fig: File Download Page

CONCLUSION

How to protect users’ data privacy is a central question

of cloud storage. With more mathematical tools,

cryptographic schemes are getting more versatile and

often involve multiple keys for a single application. In

this paper, we consider how to “compress” secret keys in

public-key cryptosystems which support delegation of

secret keys for different ciphertext classes in cloud

storage. No matter which one among the power set of

classes, the delegatee can always get an aggregate key of

constant size. Our approach is more flexible than

hierarchical key assignment which can only save spaces

if all key-holders share a similar set of privileges. A

limitation in our work is the predefined bound of the

 Page 447

number of maximum ciphertext classes. In cloud

storage, the number of ciphertexts usually grows rapidly.

So we have to reserve enough ciphertext classes for the

future extension.

Although the parameter can be downloaded with

ciphertexts, it would be better if its size is independent

of the maximum number of ciphertext classes. On the

other hand, when one carries the delegated keys around

in a mobile device without using special trusted

hardware, the key is prompt to leakage, designing a

leakage-resilient cryptosystem yet allows efficient and

flexible key delegation is also an interesting direction.

REFERENCES

[1] S.S.M. Chow, Y.J. He, L.C.K. Hui, and S.-M. Yiu,

“SPICE – Simple Privacy-Preserving Identity-

Management for Cloud Environment,” Proc. 10th Int’l

Conf. Applied Cryptography and Network Security

(ACNS), vol. 7341, pp. 526-543, 2012.

[2] L. Hardesty, Secure Computers Aren’t so Secure.

MIT press,

http://www.physorg.com/news176107396.html, 2009.

[3] C. Wang, S.S.M. Chow, Q. Wang, K. Ren, and W.

Lou, “Privacy-Preserving Public Auditing for Secure

Cloud Storage,” IEEE Trans. Computers, vol. 62, no. 2,

pp. 362-375, Feb. 2013.

[4] B. Wang, S.S.M. Chow, M. Li, and H. Li, “Storing

Shared Data on the Cloud via Security-Mediator,” Proc.

IEEE 33rd Int’l Conf. Distributed Computing Systems

(ICDCS), 2013.

[5] S.S.M. Chow, C.-K. Chu, X. Huang, J. Zhou, and

R.H. Deng, “Dynamic Secure Cloud Storage with

Provenance,” Cryptography and Security, pp. 442-464,

Springer, 2012.

[6] D. Boneh, C. Gentry, B. Lynn, and H. Shacham,

“Aggregate and Verifiably Encrypted Signatures from

Bilinear Maps,” Proc. 22
nd

 Int’l Conf. Theory and

Applications of Cryptographic Techniques

(EUROCRYPT ’03), pp. 416-432, 2003.

[7] M.J. Atallah, M. Blanton, N. Fazio, and K.B.

Frikken, “Dynamic and Efficient Key Management for

Access Hierarchies,” ACM Trans. Information and

System Security, vol. 12, no. 3, pp. 18:1-18:43, 2009.

[8] J. Benaloh, M. Chase, E. Horvitz, and K. Lauter,

“Patient Controlled Encryption: Ensuring Privacy of

Electronic Medical Records,” Proc. ACM Workshop

Cloud Computing Security (CCSW ’09), pp. 103-114,

2009.

[9] F. Guo, Y. Mu, Z. Chen, and L. Xu, “Multi-Identity

Single-Key Decryption without Random Oracles,” Proc.

Information Security and Cryptology (Inscrypt ’07), vol.

4990, pp. 384-398, 2007.

[10] V. Goyal, O. Pandey, A. Sahai, and B. Waters,

“Attribute-Based Encryption for Fine-Grained Access

Control of Encrypted Data,” Proc. 13th ACM Conf.

Computer and Comm. Security (CCS ’06), pp. 89-98,

2006.

[11] S.G. Akl and P.D. Taylor, “Cryptographic Solution

to a Problem of Access Control in a Hierarchy,” ACM

Trans. Computer Systems, vol. 1, no. 3, pp. 239-248,

1983.

[12] G.C. Chick and S.E. Tavares, “Flexible Access

Control with Master Keys,” Proc. Advances in

Cryptology (CRYPTO ’89), vol. 435, pp. 316-322, 1989.

