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Abstract: 

Reversible logic design has been one of the promising 

technologies gaining greater interest due to less 

dissipation of heat and low power consumption. 

Quantum computing necessitates the design of circuits 

via reversible logic gates. Efficient reversible circuit 

can be constructed by achieving low ancilla count, 

reducing logical depth and lowering Quantum costs. 

Generalized Peres gates have recently been realized 

with very low Quantum Cost (QC) by utilizing 

Quantum rotation gates. This is utilized in recent 

literature for efficient reversible circuit constructions 

for symmetric Boolean functions. In this paper, we 

extend this line of construction further by 

demonstrating efficient realization of adder circuits. In 

particular, we revisit the adder construction of Vedral, 

Barenco and Eckert to show that improvement of gate 

count and QC is achievable by exploiting a 

construction based only on Peres gates. We also report 

improved constructions of symmetric Boolean 

functions by following an approach recently proposed 

in the context of Boolean function complexity 

analysis. All the synthesis and simulation results of the 

Proposed Reversible Adder based on Per2 and its 4Bit 

Adders are performed using Verilog HDL on Xilinx 

ISE 14.7. 

 

Index Terms: Reversibility, reversible logic circuits, 

Boolean function, reversible gate. 

 

1. INTRODUCTION: 

The growing technologies have increased the demand 

of high performance computing. According to G. 

Moore’s low [1], number of transistor counts to be 

integrated per unit area in devices will almost double 

in one and half year.  

 

To achieve high speed computation, high packaging 

density in the logic circuits is required which results in 

more heat dissipation. The conventional computing is 

found unable to deal with low power, high compaction 

and heat dissipation issues of the current computing 

environment. For example, Shor’s factorization [1], 

has remained a key attraction for experimental 

Quantum computing groups for obvious reasons [2] 

and involves modular arithmetic operations [3]. 

Naturally, nvariable binary adder circuits have 

received significant research attention. Several adder 

realizations for Quantum circuits have been proposed 

in the literature [4], [5], [6], [7], [8], [9]. In this paper, 

we investigate potential improvements in the adder 

circuit realization. Considering a more general form, 

symmetric Boolean functions [10] represent an 

important subclass of Boolean functions, with specific 

applications in circuits dominant in arithmetic 

operations, and therefore, deserves closer attention as 

well. In the second part of this paper, we revisit a 

recently proposed construction of symmetric Boolean 

functions [11] and show that further improvements on 

this construction is possible. 

 

A. Preliminaries  

A Boolean function f is of the form f : {0, 1}n → {0, 

1} (or equivalently f : Vn 2 → V2). The output of the 

Boolean function f can be represented as a string s of 

ones and zeros. It can also be represented as a 

multivariate polynomial over GF(2). This polynomial 

can be expressed as an exclusive disjunction (EXOR) 

of a constant a0 and one or more conjunctions of the 

function argument. This is called the Exclusive Sum-

Of-Product (ESOP) representation. An alternative 

representation of the ESOP form is known as the 

Algebraic Normal Form (ANF).  
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The general ANF for a function f(x1, ..,xn) over n-

variables can be written as, 

 
The Hamming weight (or simply weight) of a binary 

string S is the number of 1’s present in it, which we 

denote as wt(S). Symmetric Boolean functions [10] 

form an important subclass of Boolean functions. A 

Boolean function f : {0, 1}n → {0, 1} is called 

symmetric if its output is invariant under any 

permutation of its input bits. Equivalently, we can say 

that the value of f(x) is constant for all x’s having the 

same weight. Reversible and Irreversible Boolean 

functions: An nvariablevectorial Boolean function is 

termed reversible if all its output patterns map 

uniquely to an input pattern and vice-versa. It can be 

expressed as an n-input, n-output bijection or 

alternatively, as a Boolean permutation function over 

the truth value set {0, 1,..., 2n−1}. An irreversible 

Boolean function firr : {0, 1}n → {0, 1}m with n = m 

can also be made reversible with the help of additional 

output lines, which adds distinguishing patterns to the 

irreversible output. Correspondingly, additional inputs 

are added. If an input line is constant-initialized and 

the constant is recovered after the circuit execution 

then, it is termed as ancilla. Otherwise, it is termed as 

garbage.  

 

B. Reversible Logic Gates 

Reversible logic circuit is implemented with the 

elementary reversible logic gates. The gates are 

characterized by their implementation cost in quantum 

technologies, which is denoted as the Quantum Cost 

(QC). A reversible gate library is a complete set of 

reversible gates which can be used to implement any 

reversible circuit. For example the set of NOT, 

CNOT, controlled-V and Controlled-V +, known as 

NCV, is a reversible gate library widely used in the 

literature. Recently, there has been a significant 

research activity towards the realization of quantum 

circuits using Clifford+T gates, considering the 

importance of fault tolerance in quantum computing.  

Efficient synthesis for NCV circuits [12], [13], 

[14],Clifford+T circuits [15] and mapping of NCV 

circuits to Clifford+T gates [16] have been proposed 

in the literature. Few gates from these libraries are 

outlined below. For detailed discussion on primitive 

quantum gates and their universality, readers may 

refer to [17], [18]. 

 

 • NOT gate: This is represented using the matrix 0 1 

1 0 . 

 • CNOT gate: CNOT(a, b)=(a, a ⊕ b). This gate can 

be generalized with T ofn gate, where first n − 1 

variables are used as control lines. For 2 control lines 

and 1 target line, ed to as Multiple Control Toffoli 

(MCT) gate. When both positive control and negative 

control lines are permitted, the gate is denoted as 

Mixed-Polarity Multiple Control Toffoli (MPMCT) 

gate.  

• Peres gate: P er(a, b, c) = (a, a ⊕ b, ab⊕ c). This 

gate can be generalized with P ern gate (n > 2) [19], 

where first n − 1 variables are used as control lines. 

 

C. Cost Models  

For evaluating the performance of the synthesis tools 

and benchmark circuit implementations, different cost 

models have been proposed in the literature. The most 

basic cost model is the number of reversible logic 

gates needed for the implementation. However, the 

actual implementation cost of these logic gates could 

be, with varying number of control lines, can be very 

different. The QC value is computed for each of these 

gates, which is nothing but the number of 2-qubit gates 

[20] needed to implement these circuits. In recent 

faulttolerant Quantum circuit implementations, the 

cost is estimated in terms of T gates, corresponding to 

the realization of the circuits using Clifford+T library. 

Specifically, the logical depth in terms of the depth of 

T gates serve as a performance metric. Another 

important performance indicator is the total number of 

lines or ancilla/garbage count. In the following 

complexity analysis, we provide the complexity results 

in terms of the count of MPMCT gates and the total 

line count.  



 

 Page 254 
 

Further, we assume a conservative pergate estimate for 

T-depth, which is 3 × |C|, where |C| is the number of 

control lines [16]. 

 

2. REVERSIBLE CIRCUIT FOR ADDER  

For the first Quantum ripple-carry adder circuit 

proposed in [4], in fact, (2n − 1) Peres gates are 

deployed in the carry computation blocks, though it 

uses n ancilla lines. Among the ancilla-free n-bit 

binary adder circuits reported so far in the literature, 

[9] has the least gate cost with (7n − 6) gates, out of 

which, there are (2n − 1) T of3 (CCNOT) gates. In the 

following, we propose a simple ripple-carry adder 

construction that is fully based on Peres gates. Our 

design is motivated by two recent results. QC of P ern 

is n2 and QC of T ofn+1 is 2n2 − 2n + 1 [19]. An 

exemplary structure of cascaded P ern gates is shown 

graphically in Fig. 1. We report a lemma from [11] 

and show how that can be used for designing adder 

circuits with low QC. 

 

Lemma 2.1: 2 cascaded P ern gates require n2 + n 

elementary 1-QC gates. 

 
Fig.1. Cascaded Peres Gates 

 

Lemma 2.2: An n-bit adder circuit with n ancilla lines 

can be realized with 2n P er2 gates, where all the P 

er2 gates are in pairwise cascade form. 

Proof: For performing the addition, we repeatedly 

apply the following equations. 

sumi = xi ⊕yi⊕cin (1) 

cout = M ajority(xi, yi, cin) = xi · cin⊕ (yi · (xi 

⊕cin)) (2) 

The cout is treated as cin for the next level in a simple 

ripple-carry adder formation. The realization of these 

Boolean functions can be arranged in form of pairwise 

cascaded P er2 gates as shown in the Figure 2. For an 

n-bit adder, clearly 2n P er2 gates are required. 

 
Fig.2. Reversible Adder based on P er2 

 

Considering the state-of-the-art adder constructions, 

the proposed circuit offers lower QC at the expense of 

higher ancilla lines (Table I). For the Toffoli (T of3) 

and Peres (P er2) gates, QC values of 5 and 4 are used 

respectively [19]. Note that, we accounted for the P 

er2 gates in the adder structures of [9] and [4]. 

Furthermore, the input bits for the adder circuit 

remain unaltered at the output and therefore, can be 

used for subsequent circuit blocks. The total gate 

count is reported in MCT equivalence, where each 

Peres gate accounts for 2 MCT gates. 

 

TABLE I. PERFORMANCE OF ADDER 

CIRCUITS 

 
The proposed realization of adder circuit with only 

Peres gates reduces QC compared to [4], [9], [7] when 

n ≥ 2. A similar adder structure has been recently 

proposed in [21, Fig. 14a], where, however, the 

cascading of generalized Peres gates have not been 

explored. Thus, the QC is higher in that case.  

 

3. REVERSIBLE CIRCUITS FOR  

SYMMETRIC BOOLEAN FUNCTIONS 

Implementation of symmetric Boolean functions 

follows two steps. First, the computation of Hamming 

weight and second, the comparison of the Hamming 

weight with a specific outcome of 0 or 1.  
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It has been shown in [11] that, by using a ripple carry 

adder circuit, as described in the previous section 2, 

circuit with more efficient construction than stateof-

the-art implementations can be obtained. We improve 

this result with another implementation of the 

Hamming weight computation circuit. First, we 

present a general result for an n-input 1-output 

symmetric Boolean function.  

 

Lemma 3.1: The reversible circuit corresponding to an 

ninput 1-output symmetric Boolean function requires 

at most n + logn 2  garbage outputs.  

Proof: Maximum Hamming weight of an n-variable 

Boolean function can be n, which can be stored at logn 

2 output lines. Considering these lines to be different 

from the n input lines, no more than n+logn 2 + 1 

output is produced, out of which 1 output contains the 

result.  

In the following we study, two different circuit 

constructions for symmetric Boolean functions. 

 

A. Construction I  

The first construction, proposed in [11], computes the 

Hamming weights of the input variables in additional 

lines. The construction is presented in the Figure 3. 

The Hamming weight computation is followed by a 

series of Toffoli gates for deriving the output 

corresponding to each Hamming weight. 

 
Fig.3. Symmetric Boolean Function: Construction I 

 

A Quantum cost derivation for this circuit design 

approach is already presented in [11]. For the ease of 

future benchmarking, we also present the gate count, 

T-depth and line computations here. 

 Proposition 3.2: Reversible circuit realization of an 

nvariable 1-output symmetric Boolean function 

requires n + logn 2  − 1 garbage lines if construction I 

is used. The proof follows directly from the Fig. 3, 

which shows that the least significant bit of the 

Hamming weight is stored on one of the input lines. 

Note that, this upper bound is 1 less than the one 

derived at Lemma 3.1 since, one input line is reused 

for the output.  

 

Proposition 3.3: As per construction I, reversible 

circuit realization of an n-variable 1-output symmetric 

Boolean function needs at most n+ (n−1)×(log2 n + 1) 

MCT gates and has a T-depth of at most 1.5(n − 

1)(log2 n + 1)(log2 n + 2) + 3(n)(log2 n + 1). 

 

Proof: For an n-variable Boolean function, the 

Hamming weight computation requires (n − 1) 

cascaded P erk gates, where the maximum value of k 

can be log2 n + 1. Considering the worst case scenario, 

total (n − 1) cascaded P erlog2 n+1 gates are needed. 

Since one P erk gate is equivalent to k MCT gates, we 

obtain a total (n−1)×(log2 n +1) MCT gates. The 

computation of Symmetric function is composed of 

Hamming weight calculation followed by a set of 

comparators. Each comparator is due to one Hamming 

weight value. There can be at most n different 

Hamming weights for a Symmetric function 

realization, as otherwise, it will become a constant 

function. Each comparator for a specific Hamming 

weight value require a mixed-polarity T ofk gate, 

where k is at most (log2 n + 1). Hence, another n 

MPMCT gates are required. In total n + (n − 1) × (log2 

n + 1) MPMCT gates are used, at most. 

 

For one P erk gate, k Toffoli gates are required, with 

the number of control lines ranging from k to 1 in 

decreasing order. Hence, the T-depth of a P erk gate is 

3 × k(k+1) 2 = 1.5 × k(k + 1). Considering the worst-

case value of k to be log2 n + 1 and total (n − 1) P erk 

gates, the T-depth for the Hamming weight 

computation is 1.5(n − 1)(log2 n + 1)(log2 n + 2).  
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For the comparator part, total T-depth is 3(n)(log2 n + 

1). Summing up, we get the result. 

 

B. Construction II 

Recently, Demenkov et al [22] presented a circuit of 

size 4.5n using which, the binary representation of the 

sum of n input bits can be computed. Note that, there, 

the size refers to 2-input Boolean functions from the 

set {∨, ∧, ⊕}. The overall complexity for a symmetric 

Boolean function is presented as 4.5n+O(n), where the 

O(n) is contributed by the comparator circuit, as 

discussed in the previous construction. Hence, we 

concentrate on the Hamming weight construction part 

and assume the comparator part to be implemented 

with exactly the same complexity as in construction I. 

 
Fig.4. Symmetric Boolean Function: Construction 

II 

 

The key circuit idea is presented in the Figure 4. An 

nvariable Hamming weight computing circuit uses n/2 

Modi- fied Double Full Adders (MDFAs), which is 

shown in detail at the bottom of the figure. Each 

MDFA is a 5-input, 3- output circuit, which is 

presented in form of a 8-gate circuit in [22, Figure 3]. 

In the Figure 5, we present the corresponding 

reversible circuit realization using MPMCT gates. As 

it can be observed, for each MDFA, 5 garbage lines 

are generated. From this construction, we can state the 

following.  

 

Proposition 3.4: Reversible circuit realization of an 

nvariable 1-output symmetric Boolean function 

requires 2.5n+ logn 2− 1 garbage lines if construction 

II is used.  

 

Proof: Construction II uses total n/2 MDFA blocks, 

resulting in 2.5n garbage lines. From the logn 2  lines 

storing the Hamming weight, except 1 output line, the 

rest lines are not useful. Hence, the result. 

 
Fig.5. Reversible Circuit Implementation of MDFA 

 

Proposition 3.5: As per construction II, reversible 

circuit realization of an n-variable 1-output symmetric 

Boolean function needs at most 6n MPMCT gates and 

has a T-depth of at most 19.5n + 3n(log2 n + 1).  

 

Proof: For an n-variable Boolean function, the 

Hamming weight computation requires n/2 MDFA 

blocks, each of which has 9 Toffoli gates. Hence, 4.5n 

Toffoli gates are needed. For the initial ⊕ operations, 

n/2 Toffoli gates are used. Altogether, for the 

Hamming weight circuit, 5n MPMCT gates are 

needed, at most. Adding with the previous results of 

comparator circuit complexity, we obtain the result.  

 

For each MDFA, including the initial ⊕ operations, a 

Tdepth of 3 × 13 = 39 is obtained. Hence, the total T-

depth for the Hamming weight computation circuit is 

39×n/2 = 19.5n. Summing up with the previously 

established T-depth for the comparator circuit, we get 

the result. In short, construction I provides an 

implementation with less garbage lines and 

construction II, provides an implementation with less 

gate count and T-depth. 

 

4. SYNTHESIS AND SIMULATION RESULTS  

All the synthesis and simulation results of the 

Proposed Reversible Adder based on P er2 and its 4Bit 

Adders are performed using Verilog HDL.  
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The synthesis and simulation are performed on Xilinx 

ISE 14.7. The corresponding simulation results of the 

Proposed Reversible Adder based on P er2 and its 4Bit 

Adders are shown below. 

 
Fig.6: RTL schematic of Top-level of Proposed 

Reversible Adder based on P er2 and its 4Bit Adder 

 

 
Fig.7: RTL schematic of Internal block of Proposed 

Reversible Adder based on P er2 and its 4Bit Adder 

 

 
Fig.8: Technology schematic of Internal block of 

Proposed Reversible Adder based on P er2 and its 

4Bit Adder 

 
Fig.8: Synthesis Design report of Proposed 

Reversible Adder based on P er2 and its 4Bit Adder 

 

 
Fig.9: Test Bench for Proposed Reversible Adder 

based on P er2 and its 4Bit Adder 

 

 
Fig.10: Simulated outputs for Proposed Reversible 

Adder based on P er2 and its 4Bit Adder 

 

5. CONCLUSION 

In this paper, we propose a new reversible circuit 

construction for binary adder, which improves state-

of-the-art designs in terms of gate count and QC, 
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while admitting ancilla lines. We also performed a 

detailed analysis of symmetric Boolean function 

implementations in reversible circuits, and proposed 

an improved circuit construction. In future, we will 

follow similar implementation techniques for realizing 

further complex designs of relevance in Quantum 

algorithms.  

 

REFERENCES  

[1] P. W. Shor, “Polynomial-Time Algorithms for 

Prime Factorization and Discrete Logarithms on a 

Quantum Computer,” SIAM J. Comput., vol. 26, no. 

5, pp. 1484–1509, Oct. 1997. [Online]. Available:  

http://dx.doi.org/10.1137/S0097539795293172 

 

[2] M. K. L. Vandersypen, M. Steffen, G. Breyta, C. 

S. Yannoni, M. H. Sherwood and I. L. Chuang, 

“Experimental realization of Shor’s quantum factoring 

algorithm using nuclear magnetic resonance,” Nature, 

vol. 414, no. 6866, 2001. [Online]. Available:  

http://dx.doi.org/10.1038/414883a 

 

[3] I. L. Markov and M. Saeedi, “Faster quantum 

number factoring via circuit synthesis,” Phys. Rev. A, 

vol. 87, p. 012310, Jan 2013. [Online]. Available:  

http://link.aps.org/doi/10.1103/PhysRevA.87.012310 

 

[4] V. Vedral, A. Barenco, and A. Ekert, “Quantum 

networks for elementary arithmetic operations,” 

Physical Review A, vol. 54, no. 1, pp. 147–153, 1996. 

 

[5] T. G. Draper, “Addition on a quantum computer,” 

CoRR, vol. abs/quantph/0008033, 2000.  

 

[6] Y. Takahashi and N. Kunihiro, “A Linear-size 

Quantum Circuit for Addition with No Ancillary 

Qubits,” Quantum Info.Comput., vol. 5, no. 6, pp. 

440–448, Sep. 2005. [Online]. Available:  

http://dl.acm.org/citation.cfm?id=2011670.2011672 

 

[7] S. A. Cuccaro, T. G. Draper, S. A. Kutin, and D. 

P. Moulton, “A new quantum ripple-carry addition 

circuit,” CoRR, vol. abs/quantph/0410184, 2005.  

[8] C. H. Bennett, “Logical Reversibility of 

Computation,” IBM Journal of Research and 

Development, vol. 6, pp. 525–532, 1973. 

 

[9] Y. Takahashi, S. Tani, and N. Kunihiro, “Quantum 

Addition Circuits and Unbounded Fan-out,” Quantum 

Info.Comput., vol. 10, no. 9, pp. 872–890, Sep. 2010. 

[Online]. Available:  

http://dl.acm.org/citation. cfm?id=2011464.2011476 

 

[10] A. Canteaut and M. Videau, “Symmetric Boolean 

functions,” Information Theory, IEEE Transactions 

on, vol. 51, no. 8, pp. 2791–2811, Aug 2005. 

 

[11] A. Chattopadhyay, S. Majumder, C. Chandak, 

and N. Chowdhury, “Constructive Reversible Logic 

Synthesis for Boolean Functions with Special 

Properties,” in Reversible Computation, ser. Lecture 

Notes in Computer Science, S. Yamashita and S.-i. 

Minato, Eds., 2014, vol. 8507, pp. 95–110.  

 

[12] M. Soeken and A. Chattopadhyay, “Fredkin-

Enabled TransformationBased Reversible Logic 

Synthesis,” in Multiple-Valued Logic (ISMVL), 2015 

IEEE International Symposium on, May 2015, pp. 

60–65. 

 

[13] R. Wille and R. Drechsler, “BDD-based 

Synthesis of Reversible Logic for Large Functions,” 

in Proceedings of the 46th Annual Design Automation 

Conference, ser. DAC ’09, 2009, pp. 270–275.  

 

[14] D. Grosse, R. Wille, G. Dueck, and R. Drechsler, 

“Exact MultipleControlToffoli Network Synthesis 

With SAT Techniques,” ComputerAided Design of 

Integrated Circuits and Systems, IEEE Transactions 

on, vol. 28, no. 5, pp. 703–715, May 2009. 

 

[15] M. Amy, D. Maslov, M. Mosca, and M. 

Roetteler, “A Meet-inthe-Middle Algorithm for Fast 

Synthesis of Depth-Optimal Quantum Circuits,” 

Computer-Aided Design of Integrated Circuits and 

http://dx.doi.org/10.1137/S0097539795293172
http://dx.doi.org/10.1038/414883a
http://link.aps.org/doi/10.1103/PhysRevA.87.012310
http://dl.acm.org/citation.cfm?id=2011670.2011672


 

 Page 259 
 

Systems, IEEE Transactions on, vol. 32, no. 6, pp. 

818–830, June 2013. 

 

[16] D. M. Miller, M. Soeken, and R. Drechsler, 

“Mapping NCV Circuits to Optimized Clifford+T 

Circuits,” in Reversible Computation, ser. Lecture 

Notes in Computer Science, S. Yamashita and S.-i. 

Minato, Eds., 2014, vol. 8507, pp. 163–175.  

 

[17] A. Barenco, C. H. Bennett, R. Cleve, D. P. 

DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. A. 

Smolin, and H. Weinfurter, “Elementary gates for 

quantum computation,” Phys. Rev. A, vol. 52, pp. 

3457–3467, Nov 1995. [Online]. Available:  

http://link.aps.org/doi/10.1103/PhysRevA. 52.3457 

 

[18] A. Barenco, “A Universal Two-Bit Gate for 

Quantum Computation,” Proceedings: Mathematical 

and Physical Sciences, vol. 449, no. 1937, pp. pp. 

679–683, 1995.  

 

[19] M. Szyprowski and P. Kerntopf, “Low quantum 

cost realization of generalized peres and toffoli gates 

with multiple-control signals,” in Nanotechnology 

(IEEE-NANO), 2013 13th IEEE Conference on, Aug 

2013, pp. 802–807.  

 

[20] “Reversible Logic Synthesis Benchmarks Page, 

howpublished = http:  

//webhome.cs.uvic.ca/∼dmaslov/, note = Accessed: 

2015-10-19.” 

 

[21] A. Banerjee and D. K. Das, “Efficient Squaring 

in Reversible Logic using Reduced Garbage and 

Ancillary Inputs,” in Work-in-Progress, 6th 

Conference on Reversible Computation, 2014.  

 

[22] E. Demenkov, A. Kojevnikov, A. Kulikov, and 

G. Yaroslavtsev, “New upper bounds on the boolean 

circuit complexity of symmetric functions,” 

Information Processing Letters, vol. 110, no. 7, pp. 

264 – 267, 2010. [Online].Available: 

http://www.sciencedirect.com/science/article/pii/S002

0019010000256. 

http://link.aps.org/doi/10.1103/PhysRevA.%2052.3457

