
 Volume No: 2 (2015), Issue No: 6 (June) June 2015
 www.ijmetmr.com Page 650

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

Abstract:

In this paper, we present PACK (Predictive ACKs), a
novel end-to-end traffic redundancy elimination (TRE)
system, designed for cloud computing customers.
Cloud-based TRE needs to apply a judicious use of
cloud resources so that the bandwidth cost reduction
combined with the additional cost of TRE computation
and storage would be optimized. PACK’s main advan-
tage is its capability of offloading the cloud- server TRE
effort to end-clients, thus minimizing the processing
costs induced by the TRE algorithm. Unlike previous
solutions, PACK does not require the server to continu-
ously maintain clients’ status.

This makes PACK very suitable for pervasive compu-
tation environments that combine client mobility and
server migration to maintain cloud elasticity. PACK is
based on a novel TRE technique, which allows the cli-
ent to use newly received chunks to identify previously
received chunk chains, which in turn can be used as reli-
able predictors to future transmitted chunks. We pres-
ent a fully functional PACK implementation, transpar-
ent to all TCP-based applications and net-work devices.
Finally, we analyze PACK benefits for cloud users, using
traffic traces from various sources.

Keywords:

Caching, Cloud Computing, Network Optimization,
Traffic,Redundancy Elimination.

I. Introduction:

Cloud computing offers its customers an economical
and convenient pay-as-you-go service model, known
also as usage-based pricing [2].

Radhika Chowdary G
PG Scholar,

Department of CSE,
Kasireddy Narayan Reddy College

of Engineering & Research,
Hayathnagar.

M.Lavanya
Assistant professor,
Department of CSE,

Kasireddy Narayan Reddy College
of Engineering & Research,

Hayathnagar.

P.Satish Reddy
HOD,

Department of CSE,
Kasireddy Narayan Reddy College

of Engineering & Research,
Hayathnagar.

Cloud customers1 pay only for the actual use of com-
puting resources, storage, and band-width, according
to their changing needs, utilizing the cloud’s scalable
and elastic computational capabilities. In particular,
data transfer costs (i.e., bandwidth) is an important
issue when trying to minimize costs [2]. Consequent-
ly, cloud customers, applying a judicious use of the
cloud’s resources, are motivated to use various traffic
reduction techniques, in particular traffic redundancy
elimination (TRE), for reducing bandwidth costs.Traffic
redundancy stems from common end-users’ activities,
such as repeatedly accessing, downloading, uploading
(i.e., backup), distributing, and modifying the same or
similar information items (documents, data, Web, and
video).

TRE is used to eliminate the transmission of redundant
content and, there-fore, to significantly reduce the
network cost. In most common TRE solutions, both
the sender and the receiver examine and compare sig-
natures of data chunks, parsed according to the data
content, prior to their transmission. When redundant
chunks are detected, the sender replaces the trans-
mission of each redundant chunk with its strong sig-
nature [3–5]. Commercial TRE solu-tions are popular at
enterprise networks, and involve the deployment of
two or more proprietary- protocol, state synchronized
middle-boxes at both the intranet entry points of data
centers and branch offices, eliminating repetitive traf-
fic between them (e.g., Cisco [6], Riverbed [7], Quan-
tum [8], Juniper [9], Blue Coat [10], Expand Networks
[11], and F5 [12]).In this paper, we present a novel
receiver-based end-to-end TRE solution that relies on
the power of predictions to eliminate redundant traffic
between the cloud and its end-users. In this solution,
each receiver observes the incoming stream and tries
to match its chunks with a previously received chunk
chain or a chunk chain of a local file.

A Novel Approach for Calculation Based Cloud Band Width
and Cost Diminution Method

 Volume No: 2 (2015), Issue No: 6 (June) June 2015
 www.ijmetmr.com Page 651

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

Using the long- term chunks’ meta-data information
kept locally, the receiver sends to the server predic-
tions that include chunks’ signatures and easy-to-verify
hints of the sender’s future data. The sender first ex-
amines the hint and performs the TRE operation only
on a hint- match.

The purpose of this procedure is to avoid the expensive
TRE com-putation at the sender side in the absence of
traffic redundancy. When redundancy is detected, the
sender then sends to the receiver only the ACKs to the
predictions, instead of sending the data.

II. Related Work:

Several TRE techniques have been explored in recent
years. A protocol -independent TRE was proposed in
[4]. The paper describes a packet-level TRE, utilizing
the algorithms presented in [3].Several commercial
TRE solutions described in [6] and [7] have combined
the sender-based TRE ideas of [4] with the algorithmic
and implementation approach of [5] along with proto-
col specific optimizations for middle- boxes solutions.
In particular, [6] describes how to get away with three-
way handshake between the sender and the receiver if
a full state synchronization is maintained.

III. Pack Algorithm:

For the sake of clarity, we first describe the basic re-
ceiver-driven operation of the PACK protocol. Several
enhancements and optimizations are introduced in
Section IV.

A. Receiver Chunk Store:

PACK uses a new chains scheme, described in Fig. 1, in
which chunks are linked to other chunks according to
their last received order. The PACK receiver maintains
a chunk store, which is a large size cache of chunks and
their associated metadata.

Chunk’s metadata includes the chunk’s signature and
a (single) pointer to the successive chunk in the last
received stream containing this chunk. Caching and in-
dexing techniques are employed to efficiently maintain
and retrieve the stored chunks, their signatures, and
the chains formed by traversing the chunk pointers.

B. Receiver Algorithm:

Upon the arrival of new data, the receiver computes
the respective signature for each chunk and looks for a
match in its local chunk store. If the chunk’s signature
is found, the receiver determines whether it is a part
of a formerly received chain, using the chunks’ meta-
data. If affirmative, the receiver sends a prediction to
the sender for several next expected chain chunks. The
prediction carries a starting point in the byte stream
(i.e., offset) and the identity of several subsequent
chunks (PRED command).

Proc. 1: Receiver Segment Processing
2 if segment carries payload data then
3 calculate chunk
4 if reached chunk boundary then
5 activate predAttempt()
6 end if
7 else if PRED-ACK segment then
8 processPredAck()
9 activate predAttempt()
10 end if
Proc. 2: predAttempt()
8 if received chunk matches one in chunk store then 9
if foundChain(chunk) then
10 prepare PREDs
11 send single TCP ACK with PREDs according to Op-
tions free space
12	 exit
13	 end if
14	 else
15	 store chunk
16	 link chunk to current chain
17	 end if
18	 send TCP ACK only
Proc. 3: processPredAck() for all offset PRED-ACK do
read data from chunk store put data in TCP input buffer
end for

Fig. 1: From Stream to Chain

 Volume No: 2 (2015), Issue No: 6 (June) June 2015
 www.ijmetmr.com Page 652

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

C. Sender Algorithm:

When a sender receives a PRED message from the re-
ceiver, it tries to match the received predictions to its
buffered (yet to be sent) data. For each prediction, the
sender determines the corresponding TCP sequence
range and verifies the hint. Upon a hint match, the
sender calculates the more computationally intensive
SHA- 1 signature for the predicted data range and com-
pares the result to the signature received in the PRED
message. Note that in case the hint does not match,
a computationally expansive operation is saved. If the
two SHA-1 signatures match, the sender can safely as-
sume that the receiver’s prediction is correct. In this
case, it replaces the corresponding outgoing buffered
data with a PRED-ACK message.

D. Wire Protocol:

In order to conform with existing firewalls and mini-
mize overheads, we use the TCP Options field to carry
the PACK wire protocol. It is clear that PACK can also
be implemented above the TCP level while using simi-
lar message types and control fields.

IV. Optimizations:

For the sake of clarity, Section III presents the most
basic version of the PACK protocol. In this section, we
describe additional options and optimizations.

A. Adaptive Receiver Virtual Window:

PACK enables the receiver to locally obtain the sender’s
data when a local copy is available, thus eliminating the
need to send this data through the network. We term
the receiver’s fetching of such local data as the recep-
tion of virtual data.

Proc. 4: predAttemptAdaptive()—obsoletes Proc. 2
1.{new code for Adaptive}
2.if received chunk overlaps recently sent prediction
then
3.if received chunk matches the prediction then
4.predSizeExponent()
5.else
6.predSizeReset()
7.end if

8.end if
9.if received chunk matches one in signature cache
then
10.if foundChain(chunk) then
11.{new code for Adaptive}
12.prepare PREDs according to predSize
13.send TCP ACKs with all PREDs
14.exit
15.end if
16.else
17.store chunk
18.append chunk to current chain
19.end if
20.send TCP ACK only

B. Cloud Server as a Receiver:

In a growing trend, cloud storage is becoming a domi-
nant player [13-14]—from backup and sharing services
[5] to the American National Library [6], and e -mail ser-
vices [7-8]. In many of these services, the cloud is often
the receiver of the data.

C. Hybrid Approach:

PACK’s receiver-based mode is less efficient if changes
in the data are scattered. In this case, the prediction
sequences are frequently interrupted, which, in turn,
forces the sender to revert to raw data transmission
until a new match is found at the receiver and reported
back to the sender. To that end, we present the PACK
hybrid mode of operation, described in Proc. 6 and
Proc. 7. When PACK recognizes a pattern of dispersed
changes, it may select to trigger a sender-driven ap-
proach in the spirit of [4], [6-7], and [12].

V. Motivating a Receiver-Based approach:

The objective of this section is twofold: evaluating the
po-tential data redundancy for several applications that
are likely to reside in a cloud, and to estimate the PACK
performance and cloud costs of the redundancy elimi-
nation process.Our evaluations are conducted using: 1)
video traces captured at a major ISP; 2) traffic obtained
from a popular social network service; and 3) genuine
data sets of real -life workloads. In this section, we re-
late to an average chunk size of 8 kB, although ouralgo-
rithm allows each client to use a different chunk size.

 Volume No: 2 (2015), Issue No: 6 (June) June 2015
 www.ijmetmr.com Page 653

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

VI. Implementation:

In this section, we present PACK implementation, its
performance analysis, and the projected server costs
derived from the implementation experiments.Our im-
plementation contains over 25 000 lines of C and Java
code. It runs on Linux with Net filter Queue [3].The
PACK implementation architecture. At the server side,
we use an Intel Core 2 Duo 3 GHz, 2 GB of RAM, and
a WD1600AAJS SATA drive desktop. The clients laptop
machines are based on an Intel Core 2 Duo 2.8 GHz, 3.5
GB of RAM, and a WD2500BJKT SATA drive.

A. Server Operational Cost:

We measured the server performance and cost as a
function of the data redundancy level in order to cap-
ture the effect of the TRE mechanisms in real environ-
ment. To isolate the TRE operational cost, we mea-
sured the server’s traffic volume and CPU utilization at
maximal throughput without operating a TRE.

We then used these numbers as a reference cost, based
on present Amazon EC2 [9] pricing. The server opera-
tional cost is com-posed of both the network traffic
volume and the CPU utiliza-tion, as derived from the
EC2 pricing.

B. PACK Impact on the Client CPU:

To evaluate the CPU effort imposed by PACK on a client,
we measured a random client under a scenario similar
to the one used for measuring the server’s cost, only
this time the cloud server streamed videos at a rate of
9 Mb/s to each client. Such a speed throttling is very
common in real-time video servers that aim to provide
all clients with stable bandwidth for smooth view.

C. Pack Messages Format:

In our implementation, we use two currently unused
TCP option codes, similar to the ones de fined in SACK
[2]. The first one is an enabling option PACK permitted
sent in a SYN segment to indicate that the PACK op-
tion can be used after the connection is established.
The other one is a PACK message that may be sent over
an established connection once permission has been
granted by both parties.

VII. Conclusion:

Cloud computing is expected to trigger high demand
for TRE solutions as the amount of data exchanged
between the cloud and its users is expected to dra-
matically increase. The cloud en-vironment redefines
the TRE system requirements, making pro-prietary
middle -box solutions inadequate. Consequently,
there is a rising need for a TRE solution that reduces
the cloud’s op-erational cost while accounting for ap-
plication latencies, user mobility, and cloud elasticity.In
this paper, we have presented PACK, a receiver-based,
cloud-friendly, end - to-end TRE that is based on novel
specula-tive principles that reduce latency and cloud
operational cost. PACK does not require the server to
continuously maintain clients’ status, thus enabling
cloud elasticity and user mobility while preserving long
-term redundancy. Moreover, PACK is capable of elimi-
nating redundancy based on content arriving to the cli-
ent from multiple servers without applying a three-way
handshake.

Our evaluation using a wide collection of content types
shows that PACK meets the expected design goals and
has clear advan-tages over sender -based TRE, espe-
cially when the cloud com-putationcost and buffering
requirements are important. More-over, PACK imposes
additional effort on the sender only when redundancy
is exploited, thus reducing the cloud overall cost.Two
interesting future extensions can provide additional
ben-efits to the PACK concept. First, our implementa-
tion maintains chains by keeping for any chunk only
the last observed sub-sequent chunk in an LRU fash-
ion. An interesting extension to this work is the sta-
tistical study of chains of chunks that would enable
multiple possibilities in both the chunk order and the
corresponding predictions. The system may also allow
making more than one prediction at a time, and it is
enough that one of them will be correct for successful
traffic elimination. A second promising direction is the
mode of operation optimization of the hybrid sender–
receiver approach based on shared decisions de-rived
from receiver’s power or server’s cost changes.

References:

E. Zohar, I. Cidon, O. Mokryn,“The power of prediction:
Cloud bandwidth and cost reduction”, In Proc. SIG-
COMM, 2011, pp. 86–97.

 Volume No: 2 (2015), Issue No: 6 (June) June 2015
 www.ijmetmr.com Page 654

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A.
Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, M.
Zaharia,“A view of cloud computing”, Commun. ACM,
Vol. 53, No. 4, pp. 50–58, 2010.

U. Manber,“Finding similar files in a large file system”,
in Proc. USENIX Winter Tech. Conf., 1994, pp. 1–10.

N. T. Spring, D. Wetherall,“A protocol-independent
technique for eliminating redundant network traffic”,
In Proc. SIGCOMM, 2000, Vol. 30, pp. 87–95.

A. Muthitacharoen, B. Chen, D. Mazières,“A low-band-
width net-work file system”, In Proc. SOSP, 2001, pp.
174–187.

E. Lev-Ran, I. Cidon, I. Z. Ben-Shaul,“Method and appa-
ratus for reducing network traffic over low bandwidth
links”, US Patent 7636767, Nov. 2009.

S. Mccanne and M. Demmer, “Content-based segmen-
tation scheme for data compression in storage and
transmission including hierarchical segment represen-
tation”, US Patent 6828925, Dec. 2004.

R. Williams,“Method for partitioning a block of data
into subblocks and for storing and communicating
such subblocks”, US Patent 5990810, Nov. 1999.

JuniperNetworks,Sunnyvale,CA, USA,“Application
accel-eration”, 1996 [Online] Available: http://www.ju-
niper.net/us/en/products-services/application-acceler
ation/ Blue Coat Systems, Sunnyvale, CA, USA,“MACH5”,
1996 [Online] Available: http://www.bluecoat.com/
products/ mach5

