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ABSTRACT:

We present the algorithm and architecture of a BCD 
parallel multiplier that exploits some properties of two 
different redundant BCD codes to speedup its compu-
tation: the redundant BCD excess-3 code (XS-3), and 
the overloaded BCD representation (ODDS). In addi-
tion, new techniques are developed to reduce signifi-
cantly the latency and area of previous representative 
high performance implementations. 

Partial products are generated in parallel using a 
signed-digit radix-10 recoding of the BCD multiplier 
with the digit set [-5, 5], and a set of positive multipli-
cand multiples (0X, 1X, 2X, 3X, 4X, 5X) coded in XS-3. 
This encoding has several advantages. First, it is a self-
complementing code, so that a negative multiplicand 
multiple can be obtained by just inverting the bits of 
the corresponding positive one. 

Also, the available redundancy allows a fast and sim-
ple generation of multiplicand multiples in a carryfree 
way. Finally, the partial products can be recoded to the 
ODDS representation by just adding a constant factor 
into the partial product reduction treeSince the ODDS 
uses a similar 4-bit binary encoding as non-redundant 
BCD, conventional binary VLSI circuit techniques, such 
as binary carry-save adders and compressor trees, can 
be adapted efficiently to perform decimal operations. 

To show the advantages of our architecture, we have 
synthesized a RTL model for 16  16-digit and 34  34-digit 
multiplications and performed a comparative survey 
of the previous most representative designs. We show 
that the proposed decimal multiplier has an area im-
provement roughly in the range 20-35 percent for simi-
lar target delays with respect to the fastest implemen-
tation.
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1.INTRODUCTION:

The need for computing directly decimal numbers 
(avoiding the decimal-to-binary conversion of input 
data and the reverse conversion for output data, both 
necessary with purely binary processors) has been 
stressed by Cowlishaw. The most relevant data of a 
future IEEE standard for decimal floating point num-
bers can be found in[2].Lang and Nannarelli proposed 
a combinational 16×16-digit decimal multiplier in. The 
unit of is organized as follows: the multiplier is recoded 
in such a way that only multiples 2 and 5 of the multipli-
cand are required; the partial products are kept in a re-
dundant format; the partial product are accumulated 
by a tree of redundant adders and the final product is 
obtained by converting the carry-save tree’s outputs 
into binary-coded decimal (BCD) format. 

The unit of  synthesized in a 90 nm library of standard 
cells has an operation latency of 2.65 ns and a total area 
of 300,000μm2.In this work, we will deal with the accu-
mulation of partial products by proposing a different 
architecture for it.The partial product array of a 16×16-
digit multiplier, ob-tained from the partial product gen-
erator of the unit of , is shown in Fig. 1.The first row is 
composed of 17 small discs, each representing a BCD 
digit. The second row is composed of 17 small circles, 
each representing a bit. The whole array is composed 
by 16 pairs of such rows, suitable shifted, as shown in 
the figure.In the value of the array is computed via a 
tree of additions of rows. Each addition is performed 
using a carry-free decimal adder similar to that pro-
posed by Erle and Schulte [4]. The product is the value 
of such array, where the weights 10c of the digits of 
each column assume the value 100 for the rightmost 
column to 1031 for the leftmost column. We compute 
the value of each decimal column assuming for the bi-
nary weights within each column the values 23, 22, 21, 
20.

A Novel High Radix Booth Multiplication Algorithm for 
High Speed Arithmetic Logics
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In the next sections the basis of the array reduction 
scheme, implementation details and the results in 
terms of delay and area are presented. The results 
show that the variant of the multiplier proposed is 
about 5% faster and has roughly the same area with re-
spect to the scheme.

II. THE CARRY-SAVE ADDITION OF THE COL-
UMNS:

The column sums can be computed using carry save 
ad-ditions. We show them in dot-notation schemes, as 
in Fig. 2. Such kind of schemes, introduced  and extend-
ed  for obtaining more compact versions, can be easily 
drawn by hand or, to avoid mistakes, using a program 
on a spreadsheet. The program for our specific case 
can be freely downloaded from .

Fig. 1.   The partial product array of a 16×16 digits mul-
tiplier.

In Fig. 2, each scheme is marked with an integer c, 
which is the number of digit-bit pairs composing a col-
umn of the array. In the example: 1 ≤ c ≤ 16. The first 
row of each scheme is composed of 3 dots with a num-
ber n next to each dot and a fourth dot with a number 
2n. The number n represents the

Fig. 2.   The binary column adders for a 16×16 digit mul-
tiplier.

cardinality of dots having the same weight. A dot with 
no number implies n = 1 and n is omitted for simplic-
ity. The same rule is used for the dots composing each 
scheme. Each dot scheme (except the one marked c = 
1) is composed from a number of compression stages 
each of three rows (except the last composed from 
two rows). The last row in each scheme is in general 
composed from a number of dots (in the left part of 
the row) connected with a thick line, and some isolated 
dots to its right. The thick line represents a binary ad-
der, the connected dots represent the output variables 
of such an adder, the inputs (at most two for each out-
put dots) are two variables (dots) per column to be 
found in the last compression stages composed from 
two lines only.The compression algorithm works as fol-
lows. Starting from the first row at the top, the number 
of dots in each binary column is divided by three. 

The (integer) quotient q represents the number of full 
adders needed for the compression of the column. 
They are represented in the three-rows stage that fol-
lows by two dots: the sum in the same column of the 
inputs (same weight), and the carry in the column at 
the right of the inputs, plus the number q written next 
to them. A segment (representing the full adder) joins 
the two dots. The remainder r of the division (r = {0, 1, 
2}) is represented in the third row with a dot (r = 1) or 
a dot with a 2 (r = 2) or without any dot (r = 0). Each 
binary column in a stage has a value given by the sum 
of the dots (at most three, some can be multiple dots) 
composing it. The values of the (binary) columns are 
decreasing through the succeeding stages. When the 
maximum value of the columns becomes three we use 
a specific new algorithm for obtaining the successive 
last stage composed only of columns of at most two 
dots.
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This algorithm is very simple: starting from the right 
side we examine the successive columns: if their val-
ue is 1 or 2, we transfer the column to the next stage. 
When a 3 is found we put in the next stage a full adder. 
We continue with the column to the left, adding to it 
the carry just generated. To keep the number of dots 
in each column not higher than 2, a half adder must be 
used if a 2 is found in the preceding stage. When a 1 is 
found in that stage, we can simply transfer the corre-
sponding dot to the final 2-row stage.

The whole algorithm can be implemented via a spread-
sheet as shown in [8]. An interested reader can down-
load it. The program gives also the number of full and 
half adders, the number of stages, the length in bits of 
the output of the final binary adder.In the above carry-
free addition, we can also use half adders in the com-
pression stages for obtaining a number of single bits 
(in the least significant part). This requires a smaller 
number of stages in the binary parallel adder decreas-
ing both the cost and the total delay. The number of 
such single bits in the final sum is also given by the 
spreadsheet program.

Fig. 3. The BD converters for different values C of dig-
it-bit pairs in a column of Fig. 2 arrays.

III.  THE BINARY-TO-DECIMAL CONVERSION:

The conversion from binary to decimal has been treat-
ed in [9] for the case of adding a number of BCD dig-
its. The same methodology can be applied to the case 
considered here, of adding a number of BCD digit-bit 
couples. The conversion schemes use a cell defined 
by Nicoud. All modules in Fig. 3 are composed from a 
number of identical cells connected in a nearest-neigh-
bor way. Each right inputs and left outputs are binary, 
while the upper inputs and lower outputs are BCD dig-
its. We now briefly describe t The (upper) digit input di 
is multiplied by 2 and added to the binary (right) input 
bi obtaining S = 2di + bi. The maximum value of S is 19; 
its minimum is obviously 0. he algorithms implemented 
in a cell.

We then write the most significant digit of S (i.e. 0 or 
1) at its binary output (the left side of the cell); and its 
least significant digit (0 to 9) at its decimal output (the 
lower side of the cell).The decimal input to the top-
most cell can either be 3 or 4 bits. If it is 4 bits the cor-
responding value is 1000 or 1001. In the other case, only 
the bit of weight 8 in the BCD representation has value 
0 and the three bits of weight 1, 2 and 4 determine a 
value 0, . . . , 7 (see Fig. 3 examples).Note that the bi-
nary numbers input to the BD converters correspond 
to the maximum values expected at the outputs of the 
various columns, i.e. 10, 20, 30, . . . , 140, 150, 160. These 
values are consequently found at the output of each 
scheme, at its bottom. Note also that each scheme ex-
cept the first (C = 1) is valid for the range of C shown in 
the figure.

IV.  THE ADDITION OF THE MAJOR PARTIAL 
PRODUCTS:

Fig. 4 shows the scheme of a 16×16 digit decimal mul-
tiplier were the Partial Product Array feeds 32 column 
adders, as-sumed to include the respective BD convert-
ers. The outputs of those converters are shown in a 
skew-tiled form and compose the Major Partial Product 
(MPP) array. This appears as a set of tree BCD numbers, 
the topmost composed by the most significant digits 
of the column sums, assuming the values 0 or 1 only. 
The digits composing the second and the third Major 
Partial Products are generic BCD digits. In order to ob-
tain the sum of the three MPPs we first compress  each 
column into an equivalent set of two digits, through a 
compressor whose dot-scheme is shown in Fig. 5.

Compressors in dot-schemes have been introduced . 
An extension to the decimal case has been shown in 
[9] with a family of compressors applicable to decimal 
columns with any number of digits, the decimal car-
ry-free addition being the simplest case.The scheme 
of Fig. 5 shows an input of two BCD digits, each rep-
resented by 4 dots, and a single bits in the rightmost 
place, that feeds the carry input of the first stage.The 
scheme is composed from a 4-stage binary adder (a 
carry-look-ahead adder, for speed reason), and a single 
BD conversion cell. The cell decimal output represents 
the digit d0 having the same decimal weight of the in-
put digits, while the single bit from the binary output 
represents the digit with the weight of the column in-
put to the left of the column input to the compressor.
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Fig. 5.   A decimal carry-save adder, or column com-
pressor.

 
TABLE I: Delay  and  Area for components  in  
multiplier:   
Note that the columns from i = 11 to i = 24 (see Fig. 4) 
can have a 1 in the first row of the MPP array. The col-
umn from i = 1 to i = 10 and from i = 25 to i = 31 (last) use 
the same compressor, since it is desirable to have as 
inputs to the final Decimal Adder one of the addends 
composed of 0s or 1s only. The decimal adder is in this 
case somewhat simpler.

Fig. 4. Top part: the scheme for a 16x16 digit multiplier, 
with the delay and the area of each column. Bottom 
part: the maximum values (in skew form) of the out-

puts of the column adders and of the compressors.

DECIMAL PARTIAL PRODUCT REDUCTION:

The PPR tree consists of three parts: (1) a regular bi-
nary CSA tree to compute an estimation of the decimal 
partial product sum in a binary carry-save form (S, C), 
(2) a sum correction block to count the carries gen-
erated between the digit columns, and (3) a decimal 
digit 3:2 compressor which increments the carry-save 
sum according to the carries count to obtain the final 
double-word product (A;B), A being represented with 
excess-6 BCD digits and B being represented with BCD 
digits. The PPR tree can be viewed asadjacent columns 
of h ODDS digits each, h being the columnheight (see 
Fig. 4), and h _ d þ 1. Fig. 5 shows the high-level archi-
tecture of a column of the PPR tree (the ith column) 
with h ODDS digits in [0, 15] (4 bits per digit). 

Each digit column of the binary CSA tree (the gray col-
ored box in Fig. 5) reduces the h input digits and ncin 
input carry bits, transferred from the previous column 
of the binary CSA tree, to two digits, Si, Ci, with weight 
10i. Moreover, a group of ncout carry outputs are gen-
erated and transferred to the next digit column of the 
PPR tree. Roughly, the number of carries to the next 
column is ncout ¼ h _ 2.The digit columns of the binary 
CSA tree are implemented efficiently using 4-bit 3:2, 4:2 
and higher order compressors made of full adders. 

These compressors take advantage of the delay differ-
ence of the inputs and of the sum and carry outputs 
of the full adders, allowing significant delay reductions. 
The weight of the carry-outs generated at the ith col-
umn, ciþ1½0_; . . . ; ciþ1½ncout _ 1_, is 16 _ 10i because 
the addition of the 4-bit digits is modulo 16. These car-
ries are transferred to the ði þ 1Þth column of the PPR 
tree, with weight 10iþ1 ¼ 10 _ 10i.

Thus, there is a difference between the value of the 
carry outs generated at the i-column and the value of 
the carries transferred to the (i þ 1)-column. This differ-
ence, T, is computed in the sum correction block of ev-
ery digit column and added to the partial product sum 
(S, C) in the decimal CSA.Defining
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Consequently, the sum correction block evaluates 
Wix6.This module is composed of a m-bit binary coun-
ter and ax6 operator. A straightforward implementa-
tion would usem ¼ ncout and a decomposition of the 
x6 operator into x5and x1 (both without long carry 
propagations), and then afour to two decimal reduc-
tion to add the correction to thePPR tree result.How-
ever, to balance paths and reduce the critical path 
delay we considered some optimizations. Specifically, 
the optimized implementation of this block heavily de-
pends on the precision of the decimal representation; 
therefore its implementation is merely outlined here, 
without going into details.

A detailed description of the implementation of the 
sum correction block is provided in Sections 5.1 and 
5.2 for the Decimal64 and Decimal128 formats, respec-
tively.To obtain Wi, the carries generated in the column 
are split into two parts: the m-bit counter adds the m 
first carries of the binary digit column and produces a 
binary sum Wmi of blog2ðm þ 1Þc bits. The counter is 
implemented with full adders. To reduce the delay, the 
different arrival times of the carries have been taken 
into account.Fig. 6a shows the dot-diagram represen-
tation of this reduction for a digit column with h ¼ 
17 (max. column height for Decimal64).On the other 
hand, the remaining ncout _m carries are introduced 
directly into the _6 block. Note that a suitable value for 
m minimizes the delay overhead due to the sum cor-
rection and simplifies the logic of the _6 operation. The 
best value formdepends basically on h, the height of 
the corresponding digit column. It was first estimated 
using the delay evaluation model described in Section 
7.1 and then validated by automated RTL synthesis of 
the VHDL model. 

Fig. 6. Dot-diagrams for the proposed decimal PPR (h 
¼ 17 inputs, 1-digit column)

Fig. 5. High-level architecture of the proposed decimal 
PPR tree (h inputs, 1-digit column).

The low-level implementation details of the _6 module 
depend on the number of carry-outs, ncout and on the 
size of the counter, m, and are explained in Sections 5.1 
and 5.2. However, it can be advanced that the _6 op-
eration generates at most two carry digits Wg½0_iþ1, 
Wg½1_iþ1 to the next column. Moreover, to illustrate 
the stage, we show the corresponding dot-diagram 
representation for h =17 (m =14) in Fig. 6b. An efficient 
implementation is obtained by representing the digit 
of Wi x6 with l ODDS digits, Wti[0]; . . .;Wti[l-1]), being 
l=1 for Decimal64, and l=2 for Decimal128.

After that, the sum correction digits (Wti[0]; . . .;Wti[l-1]) 
and the output digits of the binary CSA tree (Si, Ci) are 
reduced to two ODDS digits Gi €[0; 15], and Zi €[0; 15], 
using a 4-bit binary ðl þ 2Þ : 2 CSA. This CSA generates 
l carry outs giþ1[0]; . . . ; giþ1[l -1] with weight 16 *10i, 
which are transferred to the next column, and intro-
duced into the *6 block to produce another ODDS dig-
it, Wzi €[0; 15].The last step is the addition of digits Gi; 
Zi;Wzi of the column, Gi þ Zi þ Wzi 2 ½0; 45_. We have 
designed a decimal 3:2 digit compressor that reduces 
digits Wzi, Gi and Zi to two digits Ai, Bi. The dot-diagram 
of the decimal 3:2 digit compressor is shown in Fig. 6c. 
To obtain the final BCD product by using a single BCD 
carry propagate addition,that is, P ¼ A þ B, which is the 
last step in the multiplication (see Fig. 1 and Section 3), 
it is required that Ai þ Bi 2 ½0; 18_. Moreover, to reduce 
the delay of the finalBCD carry-propagate adder (see 
Section 6) operand A is obtained in excess-6, so that 
we compute ½Ai_ ¼ Ai þ e in excess e ¼ 6 as defined 
by Equation (2), being the output digits sum [Ai]+Bi€[6; 
24].

Fig. 7. Implementation of the PPR Tree Highest Col-
umn (h =17) for a 16 _ 16-digit multiplication

The evaluation is split in two parts:

Block A computes the sum of the two MSBS of the in-
put digits (the bits with weights 8 and 4), and a two-bit 
carry input Whi€{0,1, 2, 3}. This sum is in [0; 39]. The 
outputs ofthis block are a BCD digit Ai in excess-6 [Ai] 
€[6; 15] and a two-bit decimal carry output Whi+1€{0,1, 
2, 3} which is transferred to the next column (the i +1th 
column). Note that the LSB of the carry output Whi+1 
depends on the MSB of the input carry Whi. However, 
there is no further carry propagation since the LSB of 
Whiþ1 is just the LSB of [Ai+1], that is, [Ai+1,0].On the 
other hand, Block B implements the sum of the two 
LSB bits of the input digits (the bits with weights 2 and 
1). This sum is in[0, 9], so that Bi is evaluated as a regu-
lar binary addition.

V.RESULTS AND DISCUSSION:
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Consequently, the sum correction block evaluates 
Wix6.This module is composed of a m-bit binary coun-
ter and ax6 operator. A straightforward implementa-
tion would usem ¼ ncout and a decomposition of the 
x6 operator into x5and x1 (both without long carry 
propagations), and then afour to two decimal reduc-
tion to add the correction to thePPR tree result.How-
ever, to balance paths and reduce the critical path 
delay we considered some optimizations. Specifically, 
the optimized implementation of this block heavily de-
pends on the precision of the decimal representation; 
therefore its implementation is merely outlined here, 
without going into details.

A detailed description of the implementation of the 
sum correction block is provided in Sections 5.1 and 
5.2 for the Decimal64 and Decimal128 formats, respec-
tively.To obtain Wi, the carries generated in the column 
are split into two parts: the m-bit counter adds the m 
first carries of the binary digit column and produces a 
binary sum Wmi of blog2ðm þ 1Þc bits. The counter is 
implemented with full adders. To reduce the delay, the 
different arrival times of the carries have been taken 
into account.Fig. 6a shows the dot-diagram represen-
tation of this reduction for a digit column with h ¼ 
17 (max. column height for Decimal64).On the other 
hand, the remaining ncout _m carries are introduced 
directly into the _6 block. Note that a suitable value for 
m minimizes the delay overhead due to the sum cor-
rection and simplifies the logic of the _6 operation. The 
best value formdepends basically on h, the height of 
the corresponding digit column. It was first estimated 
using the delay evaluation model described in Section 
7.1 and then validated by automated RTL synthesis of 
the VHDL model. 

Fig. 6. Dot-diagrams for the proposed decimal PPR (h 
¼ 17 inputs, 1-digit column)

Fig. 5. High-level architecture of the proposed decimal 
PPR tree (h inputs, 1-digit column).

The low-level implementation details of the _6 module 
depend on the number of carry-outs, ncout and on the 
size of the counter, m, and are explained in Sections 5.1 
and 5.2. However, it can be advanced that the _6 op-
eration generates at most two carry digits Wg½0_iþ1, 
Wg½1_iþ1 to the next column. Moreover, to illustrate 
the stage, we show the corresponding dot-diagram 
representation for h =17 (m =14) in Fig. 6b. An efficient 
implementation is obtained by representing the digit 
of Wi x6 with l ODDS digits, Wti[0]; . . .;Wti[l-1]), being 
l=1 for Decimal64, and l=2 for Decimal128.

After that, the sum correction digits (Wti[0]; . . .;Wti[l-1]) 
and the output digits of the binary CSA tree (Si, Ci) are 
reduced to two ODDS digits Gi €[0; 15], and Zi €[0; 15], 
using a 4-bit binary ðl þ 2Þ : 2 CSA. This CSA generates 
l carry outs giþ1[0]; . . . ; giþ1[l -1] with weight 16 *10i, 
which are transferred to the next column, and intro-
duced into the *6 block to produce another ODDS dig-
it, Wzi €[0; 15].The last step is the addition of digits Gi; 
Zi;Wzi of the column, Gi þ Zi þ Wzi 2 ½0; 45_. We have 
designed a decimal 3:2 digit compressor that reduces 
digits Wzi, Gi and Zi to two digits Ai, Bi. The dot-diagram 
of the decimal 3:2 digit compressor is shown in Fig. 6c. 
To obtain the final BCD product by using a single BCD 
carry propagate addition,that is, P ¼ A þ B, which is the 
last step in the multiplication (see Fig. 1 and Section 3), 
it is required that Ai þ Bi 2 ½0; 18_. Moreover, to reduce 
the delay of the finalBCD carry-propagate adder (see 
Section 6) operand A is obtained in excess-6, so that 
we compute ½Ai_ ¼ Ai þ e in excess e ¼ 6 as defined 
by Equation (2), being the output digits sum [Ai]+Bi€[6; 
24].

Fig. 7. Implementation of the PPR Tree Highest Col-
umn (h =17) for a 16 _ 16-digit multiplication

The evaluation is split in two parts:

Block A computes the sum of the two MSBS of the in-
put digits (the bits with weights 8 and 4), and a two-bit 
carry input Whi€{0,1, 2, 3}. This sum is in [0; 39]. The 
outputs ofthis block are a BCD digit Ai in excess-6 [Ai] 
€[6; 15] and a two-bit decimal carry output Whi+1€{0,1, 
2, 3} which is transferred to the next column (the i +1th 
column). Note that the LSB of the carry output Whi+1 
depends on the MSB of the input carry Whi. However, 
there is no further carry propagation since the LSB of 
Whiþ1 is just the LSB of [Ai+1], that is, [Ai+1,0].On the 
other hand, Block B implements the sum of the two 
LSB bits of the input digits (the bits with weights 2 and 
1). This sum is in[0, 9], so that Bi is evaluated as a regu-
lar binary addition.

V.RESULTS AND DISCUSSION:
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Synthesis Report:

  

RTL Schematic:

 

Internal RTL Schematic:

LUT Diagram:

 

CONCLUSION:
In this paper we have presented the algorithm and 
architecture of a new BCD parallel multiplier. The im-
provements of the proposed architecture rely on the 
use of certain redundant BCD codes, the XS-3 and 
ODDS representations.

Partial products can be generated very fast in the XS-3 
representation using the SD radix-10 PPG scheme: posi-
tive multiplicand multiples (0X, 1X, 2X, 3X, 4X, 5X) are 
precomputed in a carry-free way, while negative multi-
ples are obtained by bit inversion of the positive ones. 
On the other hand, recoding of XS-3 partial products to 
the ODDS representation is straightforward. The ODDS 
representation uses the redundant digit-set [0, 15] and 
a 4-bit binary encoding (BCD encoding), which allows 
the use of a binary carry-save adder tree to perform 
partial product reduction in a very efficient way. 
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