
 Volume No: 2 (2015), Issue No: 6 (June) June 2015
 www.ijmetmr.com Page 610

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

ABSTRACT:

We present the algorithm and architecture of a BCD
parallel multiplier that exploits some properties of two
different redundant BCD codes to speedup its compu-
tation: the redundant BCD excess-3 code (XS-3), and
the overloaded BCD representation (ODDS). In addi-
tion, new techniques are developed to reduce signifi-
cantly the latency and area of previous representative
high performance implementations.

Partial products are generated in parallel using a
signed-digit radix-10 recoding of the BCD multiplier
with the digit set [-5, 5], and a set of positive multipli-
cand multiples (0X, 1X, 2X, 3X, 4X, 5X) coded in XS-3.
This encoding has several advantages. First, it is a self-
complementing code, so that a negative multiplicand
multiple can be obtained by just inverting the bits of
the corresponding positive one.

Also, the available redundancy allows a fast and sim-
ple generation of multiplicand multiples in a carryfree
way. Finally, the partial products can be recoded to the
ODDS representation by just adding a constant factor
into the partial product reduction treeSince the ODDS
uses a similar 4-bit binary encoding as non-redundant
BCD, conventional binary VLSI circuit techniques, such
as binary carry-save adders and compressor trees, can
be adapted efficiently to perform decimal operations.

To show the advantages of our architecture, we have
synthesized a RTL model for 16 16-digit and 34 34-digit
multiplications and performed a comparative survey
of the previous most representative designs. We show
that the proposed decimal multiplier has an area im-
provement roughly in the range 20-35 percent for simi-
lar target delays with respect to the fastest implemen-
tation.

Kanakam Srikanth
M.Tech (VLSI-SD),

Dept ECE,
TKREC, Meerpet, Hyderabad.

N. Rajkumar
Assistant Professor,

Dept ECE,
TKREC, Meerpet, Hyderabad.

Dr.P.Ram Mohan Rao
FIE,CE(I),MISTE,MISH,MISCEE,MASCE(I),MISNT,

Principal,
TKREC, Meerpet, Hyderabad.

1.INTRODUCTION:

The need for computing directly decimal numbers
(avoiding the decimal-to-binary conversion of input
data and the reverse conversion for output data, both
necessary with purely binary processors) has been
stressed by Cowlishaw. The most relevant data of a
future IEEE standard for decimal floating point num-
bers can be found in[2].Lang and Nannarelli proposed
a combinational 16×16-digit decimal multiplier in. The
unit of is organized as follows: the multiplier is recoded
in such a way that only multiples 2 and 5 of the multipli-
cand are required; the partial products are kept in a re-
dundant format; the partial product are accumulated
by a tree of redundant adders and the final product is
obtained by converting the carry-save tree’s outputs
into binary-coded decimal (BCD) format.

The unit of synthesized in a 90 nm library of standard
cells has an operation latency of 2.65 ns and a total area
of 300,000μm2.In this work, we will deal with the accu-
mulation of partial products by proposing a different
architecture for it.The partial product array of a 16×16-
digit multiplier, ob-tained from the partial product gen-
erator of the unit of , is shown in Fig. 1.The first row is
composed of 17 small discs, each representing a BCD
digit. The second row is composed of 17 small circles,
each representing a bit. The whole array is composed
by 16 pairs of such rows, suitable shifted, as shown in
the figure.In the value of the array is computed via a
tree of additions of rows. Each addition is performed
using a carry-free decimal adder similar to that pro-
posed by Erle and Schulte [4]. The product is the value
of such array, where the weights 10c of the digits of
each column assume the value 100 for the rightmost
column to 1031 for the leftmost column. We compute
the value of each decimal column assuming for the bi-
nary weights within each column the values 23, 22, 21,
20.

A Novel High Radix Booth Multiplication Algorithm for
High Speed Arithmetic Logics

 Volume No: 2 (2015), Issue No: 6 (June) June 2015
 www.ijmetmr.com Page 611

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

In the next sections the basis of the array reduction
scheme, implementation details and the results in
terms of delay and area are presented. The results
show that the variant of the multiplier proposed is
about 5% faster and has roughly the same area with re-
spect to the scheme.

II. THE CARRY-SAVE ADDITION OF THE COL-
UMNS:

The column sums can be computed using carry save
ad-ditions. We show them in dot-notation schemes, as
in Fig. 2. Such kind of schemes, introduced and extend-
ed for obtaining more compact versions, can be easily
drawn by hand or, to avoid mistakes, using a program
on a spreadsheet. The program for our specific case
can be freely downloaded from .

Fig. 1. The partial product array of a 16×16 digits mul-
tiplier.

In Fig. 2, each scheme is marked with an integer c,
which is the number of digit-bit pairs composing a col-
umn of the array. In the example: 1 ≤ c ≤ 16. The first
row of each scheme is composed of 3 dots with a num-
ber n next to each dot and a fourth dot with a number
2n. The number n represents the

Fig. 2. The binary column adders for a 16×16 digit mul-
tiplier.

cardinality of dots having the same weight. A dot with
no number implies n = 1 and n is omitted for simplic-
ity. The same rule is used for the dots composing each
scheme. Each dot scheme (except the one marked c =
1) is composed from a number of compression stages
each of three rows (except the last composed from
two rows). The last row in each scheme is in general
composed from a number of dots (in the left part of
the row) connected with a thick line, and some isolated
dots to its right. The thick line represents a binary ad-
der, the connected dots represent the output variables
of such an adder, the inputs (at most two for each out-
put dots) are two variables (dots) per column to be
found in the last compression stages composed from
two lines only.The compression algorithm works as fol-
lows. Starting from the first row at the top, the number
of dots in each binary column is divided by three.

The (integer) quotient q represents the number of full
adders needed for the compression of the column.
They are represented in the three-rows stage that fol-
lows by two dots: the sum in the same column of the
inputs (same weight), and the carry in the column at
the right of the inputs, plus the number q written next
to them. A segment (representing the full adder) joins
the two dots. The remainder r of the division (r = {0, 1,
2}) is represented in the third row with a dot (r = 1) or
a dot with a 2 (r = 2) or without any dot (r = 0). Each
binary column in a stage has a value given by the sum
of the dots (at most three, some can be multiple dots)
composing it. The values of the (binary) columns are
decreasing through the succeeding stages. When the
maximum value of the columns becomes three we use
a specific new algorithm for obtaining the successive
last stage composed only of columns of at most two
dots.

 Volume No: 2 (2015), Issue No: 6 (June) June 2015
 www.ijmetmr.com Page 612

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

This algorithm is very simple: starting from the right
side we examine the successive columns: if their val-
ue is 1 or 2, we transfer the column to the next stage.
When a 3 is found we put in the next stage a full adder.
We continue with the column to the left, adding to it
the carry just generated. To keep the number of dots
in each column not higher than 2, a half adder must be
used if a 2 is found in the preceding stage. When a 1 is
found in that stage, we can simply transfer the corre-
sponding dot to the final 2-row stage.

The whole algorithm can be implemented via a spread-
sheet as shown in [8]. An interested reader can down-
load it. The program gives also the number of full and
half adders, the number of stages, the length in bits of
the output of the final binary adder.In the above carry-
free addition, we can also use half adders in the com-
pression stages for obtaining a number of single bits
(in the least significant part). This requires a smaller
number of stages in the binary parallel adder decreas-
ing both the cost and the total delay. The number of
such single bits in the final sum is also given by the
spreadsheet program.

Fig. 3. The BD converters for different values C of dig-
it-bit pairs in a column of Fig. 2 arrays.

III. THE BINARY-TO-DECIMAL CONVERSION:

The conversion from binary to decimal has been treat-
ed in [9] for the case of adding a number of BCD dig-
its. The same methodology can be applied to the case
considered here, of adding a number of BCD digit-bit
couples. The conversion schemes use a cell defined
by Nicoud. All modules in Fig. 3 are composed from a
number of identical cells connected in a nearest-neigh-
bor way. Each right inputs and left outputs are binary,
while the upper inputs and lower outputs are BCD dig-
its. We now briefly describe t The (upper) digit input di
is multiplied by 2 and added to the binary (right) input
bi obtaining S = 2di + bi. The maximum value of S is 19;
its minimum is obviously 0. he algorithms implemented
in a cell.

We then write the most significant digit of S (i.e. 0 or
1) at its binary output (the left side of the cell); and its
least significant digit (0 to 9) at its decimal output (the
lower side of the cell).The decimal input to the top-
most cell can either be 3 or 4 bits. If it is 4 bits the cor-
responding value is 1000 or 1001. In the other case, only
the bit of weight 8 in the BCD representation has value
0 and the three bits of weight 1, 2 and 4 determine a
value 0, . . . , 7 (see Fig. 3 examples).Note that the bi-
nary numbers input to the BD converters correspond
to the maximum values expected at the outputs of the
various columns, i.e. 10, 20, 30, . . . , 140, 150, 160. These
values are consequently found at the output of each
scheme, at its bottom. Note also that each scheme ex-
cept the first (C = 1) is valid for the range of C shown in
the figure.

IV. THE ADDITION OF THE MAJOR PARTIAL
PRODUCTS:

Fig. 4 shows the scheme of a 16×16 digit decimal mul-
tiplier were the Partial Product Array feeds 32 column
adders, as-sumed to include the respective BD convert-
ers. The outputs of those converters are shown in a
skew-tiled form and compose the Major Partial Product
(MPP) array. This appears as a set of tree BCD numbers,
the topmost composed by the most significant digits
of the column sums, assuming the values 0 or 1 only.
The digits composing the second and the third Major
Partial Products are generic BCD digits. In order to ob-
tain the sum of the three MPPs we first compress each
column into an equivalent set of two digits, through a
compressor whose dot-scheme is shown in Fig. 5.

Compressors in dot-schemes have been introduced .
An extension to the decimal case has been shown in
[9] with a family of compressors applicable to decimal
columns with any number of digits, the decimal car-
ry-free addition being the simplest case.The scheme
of Fig. 5 shows an input of two BCD digits, each rep-
resented by 4 dots, and a single bits in the rightmost
place, that feeds the carry input of the first stage.The
scheme is composed from a 4-stage binary adder (a
carry-look-ahead adder, for speed reason), and a single
BD conversion cell. The cell decimal output represents
the digit d0 having the same decimal weight of the in-
put digits, while the single bit from the binary output
represents the digit with the weight of the column in-
put to the left of the column input to the compressor.

 Volume No: 2 (2015), Issue No: 6 (June) June 2015
 www.ijmetmr.com Page 613

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

Fig. 5. A decimal carry-save adder, or column com-
pressor.

TABLE I: Delay and Area for components in
multiplier:
Note that the columns from i = 11 to i = 24 (see Fig. 4)
can have a 1 in the first row of the MPP array. The col-
umn from i = 1 to i = 10 and from i = 25 to i = 31 (last) use
the same compressor, since it is desirable to have as
inputs to the final Decimal Adder one of the addends
composed of 0s or 1s only. The decimal adder is in this
case somewhat simpler.

Fig. 4. Top part: the scheme for a 16x16 digit multiplier,
with the delay and the area of each column. Bottom
part: the maximum values (in skew form) of the out-

puts of the column adders and of the compressors.

DECIMAL PARTIAL PRODUCT REDUCTION:

The PPR tree consists of three parts: (1) a regular bi-
nary CSA tree to compute an estimation of the decimal
partial product sum in a binary carry-save form (S, C),
(2) a sum correction block to count the carries gen-
erated between the digit columns, and (3) a decimal
digit 3:2 compressor which increments the carry-save
sum according to the carries count to obtain the final
double-word product (A;B), A being represented with
excess-6 BCD digits and B being represented with BCD
digits. The PPR tree can be viewed asadjacent columns
of h ODDS digits each, h being the columnheight (see
Fig. 4), and h _ d þ 1. Fig. 5 shows the high-level archi-
tecture of a column of the PPR tree (the ith column)
with h ODDS digits in [0, 15] (4 bits per digit).

Each digit column of the binary CSA tree (the gray col-
ored box in Fig. 5) reduces the h input digits and ncin
input carry bits, transferred from the previous column
of the binary CSA tree, to two digits, Si, Ci, with weight
10i. Moreover, a group of ncout carry outputs are gen-
erated and transferred to the next digit column of the
PPR tree. Roughly, the number of carries to the next
column is ncout ¼ h _ 2.The digit columns of the binary
CSA tree are implemented efficiently using 4-bit 3:2, 4:2
and higher order compressors made of full adders.

These compressors take advantage of the delay differ-
ence of the inputs and of the sum and carry outputs
of the full adders, allowing significant delay reductions.
The weight of the carry-outs generated at the ith col-
umn, ciþ1½0_; . . . ; ciþ1½ncout _ 1_, is 16 _ 10i because
the addition of the 4-bit digits is modulo 16. These car-
ries are transferred to the ði þ 1Þth column of the PPR
tree, with weight 10iþ1 ¼ 10 _ 10i.

Thus, there is a difference between the value of the
carry outs generated at the i-column and the value of
the carries transferred to the (i þ 1)-column. This differ-
ence, T, is computed in the sum correction block of ev-
ery digit column and added to the partial product sum
(S, C) in the decimal CSA.Defining

 Volume No: 2 (2015), Issue No: 6 (June) June 2015
 www.ijmetmr.com Page 614

 Volume No: 2 (2015), Issue No: 6 (June) June 2015
 www.ijmetmr.com Page 615

 ISSN No: 2348-4845 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

International Journal & Magazine of Engineering,
Technology, Management and Research

A Peer Reviewed Open Access International Journal

Consequently, the sum correction block evaluates
Wix6.This module is composed of a m-bit binary coun-
ter and ax6 operator. A straightforward implementa-
tion would usem ¼ ncout and a decomposition of the
x6 operator into x5and x1 (both without long carry
propagations), and then afour to two decimal reduc-
tion to add the correction to thePPR tree result.How-
ever, to balance paths and reduce the critical path
delay we considered some optimizations. Specifically,
the optimized implementation of this block heavily de-
pends on the precision of the decimal representation;
therefore its implementation is merely outlined here,
without going into details.

A detailed description of the implementation of the
sum correction block is provided in Sections 5.1 and
5.2 for the Decimal64 and Decimal128 formats, respec-
tively.To obtain Wi, the carries generated in the column
are split into two parts: the m-bit counter adds the m
first carries of the binary digit column and produces a
binary sum Wmi of blog2ðm þ 1Þc bits. The counter is
implemented with full adders. To reduce the delay, the
different arrival times of the carries have been taken
into account.Fig. 6a shows the dot-diagram represen-
tation of this reduction for a digit column with h ¼
17 (max. column height for Decimal64).On the other
hand, the remaining ncout _m carries are introduced
directly into the _6 block. Note that a suitable value for
m minimizes the delay overhead due to the sum cor-
rection and simplifies the logic of the _6 operation. The
best value formdepends basically on h, the height of
the corresponding digit column. It was first estimated
using the delay evaluation model described in Section
7.1 and then validated by automated RTL synthesis of
the VHDL model.

Fig. 6. Dot-diagrams for the proposed decimal PPR (h
¼ 17 inputs, 1-digit column)

Fig. 5. High-level architecture of the proposed decimal
PPR tree (h inputs, 1-digit column).

The low-level implementation details of the _6 module
depend on the number of carry-outs, ncout and on the
size of the counter, m, and are explained in Sections 5.1
and 5.2. However, it can be advanced that the _6 op-
eration generates at most two carry digits Wg½0_iþ1,
Wg½1_iþ1 to the next column. Moreover, to illustrate
the stage, we show the corresponding dot-diagram
representation for h =17 (m =14) in Fig. 6b. An efficient
implementation is obtained by representing the digit
of Wi x6 with l ODDS digits, Wti[0]; . . .;Wti[l-1]), being
l=1 for Decimal64, and l=2 for Decimal128.

After that, the sum correction digits (Wti[0]; . . .;Wti[l-1])
and the output digits of the binary CSA tree (Si, Ci) are
reduced to two ODDS digits Gi €[0; 15], and Zi €[0; 15],
using a 4-bit binary ðl þ 2Þ : 2 CSA. This CSA generates
l carry outs giþ1[0]; . . . ; giþ1[l -1] with weight 16 *10i,
which are transferred to the next column, and intro-
duced into the *6 block to produce another ODDS dig-
it, Wzi €[0; 15].The last step is the addition of digits Gi;
Zi;Wzi of the column, Gi þ Zi þ Wzi 2 ½0; 45_. We have
designed a decimal 3:2 digit compressor that reduces
digits Wzi, Gi and Zi to two digits Ai, Bi. The dot-diagram
of the decimal 3:2 digit compressor is shown in Fig. 6c.
To obtain the final BCD product by using a single BCD
carry propagate addition,that is, P ¼ A þ B, which is the
last step in the multiplication (see Fig. 1 and Section 3),
it is required that Ai þ Bi 2 ½0; 18_. Moreover, to reduce
the delay of the finalBCD carry-propagate adder (see
Section 6) operand A is obtained in excess-6, so that
we compute ½Ai_ ¼ Ai þ e in excess e ¼ 6 as defined
by Equation (2), being the output digits sum [Ai]+Bi€[6;
24].

Fig. 7. Implementation of the PPR Tree Highest Col-
umn (h =17) for a 16 _ 16-digit multiplication

The evaluation is split in two parts:

Block A computes the sum of the two MSBS of the in-
put digits (the bits with weights 8 and 4), and a two-bit
carry input Whi€{0,1, 2, 3}. This sum is in [0; 39]. The
outputs ofthis block are a BCD digit Ai in excess-6 [Ai]
€[6; 15] and a two-bit decimal carry output Whi+1€{0,1,
2, 3} which is transferred to the next column (the i +1th
column). Note that the LSB of the carry output Whi+1
depends on the MSB of the input carry Whi. However,
there is no further carry propagation since the LSB of
Whiþ1 is just the LSB of [Ai+1], that is, [Ai+1,0].On the
other hand, Block B implements the sum of the two
LSB bits of the input digits (the bits with weights 2 and
1). This sum is in[0, 9], so that Bi is evaluated as a regu-
lar binary addition.

V.RESULTS AND DISCUSSION:

 Volume No: 2 (2015), Issue No: 6 (June) June 2015
 www.ijmetmr.com Page 614

 Volume No: 2 (2015), Issue No: 6 (June) June 2015
 www.ijmetmr.com Page 615

 ISSN No: 2348-4845 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

International Journal & Magazine of Engineering,
Technology, Management and Research

A Peer Reviewed Open Access International Journal

Consequently, the sum correction block evaluates
Wix6.This module is composed of a m-bit binary coun-
ter and ax6 operator. A straightforward implementa-
tion would usem ¼ ncout and a decomposition of the
x6 operator into x5and x1 (both without long carry
propagations), and then afour to two decimal reduc-
tion to add the correction to thePPR tree result.How-
ever, to balance paths and reduce the critical path
delay we considered some optimizations. Specifically,
the optimized implementation of this block heavily de-
pends on the precision of the decimal representation;
therefore its implementation is merely outlined here,
without going into details.

A detailed description of the implementation of the
sum correction block is provided in Sections 5.1 and
5.2 for the Decimal64 and Decimal128 formats, respec-
tively.To obtain Wi, the carries generated in the column
are split into two parts: the m-bit counter adds the m
first carries of the binary digit column and produces a
binary sum Wmi of blog2ðm þ 1Þc bits. The counter is
implemented with full adders. To reduce the delay, the
different arrival times of the carries have been taken
into account.Fig. 6a shows the dot-diagram represen-
tation of this reduction for a digit column with h ¼
17 (max. column height for Decimal64).On the other
hand, the remaining ncout _m carries are introduced
directly into the _6 block. Note that a suitable value for
m minimizes the delay overhead due to the sum cor-
rection and simplifies the logic of the _6 operation. The
best value formdepends basically on h, the height of
the corresponding digit column. It was first estimated
using the delay evaluation model described in Section
7.1 and then validated by automated RTL synthesis of
the VHDL model.

Fig. 6. Dot-diagrams for the proposed decimal PPR (h
¼ 17 inputs, 1-digit column)

Fig. 5. High-level architecture of the proposed decimal
PPR tree (h inputs, 1-digit column).

The low-level implementation details of the _6 module
depend on the number of carry-outs, ncout and on the
size of the counter, m, and are explained in Sections 5.1
and 5.2. However, it can be advanced that the _6 op-
eration generates at most two carry digits Wg½0_iþ1,
Wg½1_iþ1 to the next column. Moreover, to illustrate
the stage, we show the corresponding dot-diagram
representation for h =17 (m =14) in Fig. 6b. An efficient
implementation is obtained by representing the digit
of Wi x6 with l ODDS digits, Wti[0]; . . .;Wti[l-1]), being
l=1 for Decimal64, and l=2 for Decimal128.

After that, the sum correction digits (Wti[0]; . . .;Wti[l-1])
and the output digits of the binary CSA tree (Si, Ci) are
reduced to two ODDS digits Gi €[0; 15], and Zi €[0; 15],
using a 4-bit binary ðl þ 2Þ : 2 CSA. This CSA generates
l carry outs giþ1[0]; . . . ; giþ1[l -1] with weight 16 *10i,
which are transferred to the next column, and intro-
duced into the *6 block to produce another ODDS dig-
it, Wzi €[0; 15].The last step is the addition of digits Gi;
Zi;Wzi of the column, Gi þ Zi þ Wzi 2 ½0; 45_. We have
designed a decimal 3:2 digit compressor that reduces
digits Wzi, Gi and Zi to two digits Ai, Bi. The dot-diagram
of the decimal 3:2 digit compressor is shown in Fig. 6c.
To obtain the final BCD product by using a single BCD
carry propagate addition,that is, P ¼ A þ B, which is the
last step in the multiplication (see Fig. 1 and Section 3),
it is required that Ai þ Bi 2 ½0; 18_. Moreover, to reduce
the delay of the finalBCD carry-propagate adder (see
Section 6) operand A is obtained in excess-6, so that
we compute ½Ai_ ¼ Ai þ e in excess e ¼ 6 as defined
by Equation (2), being the output digits sum [Ai]+Bi€[6;
24].

Fig. 7. Implementation of the PPR Tree Highest Col-
umn (h =17) for a 16 _ 16-digit multiplication

The evaluation is split in two parts:

Block A computes the sum of the two MSBS of the in-
put digits (the bits with weights 8 and 4), and a two-bit
carry input Whi€{0,1, 2, 3}. This sum is in [0; 39]. The
outputs ofthis block are a BCD digit Ai in excess-6 [Ai]
€[6; 15] and a two-bit decimal carry output Whi+1€{0,1,
2, 3} which is transferred to the next column (the i +1th
column). Note that the LSB of the carry output Whi+1
depends on the MSB of the input carry Whi. However,
there is no further carry propagation since the LSB of
Whiþ1 is just the LSB of [Ai+1], that is, [Ai+1,0].On the
other hand, Block B implements the sum of the two
LSB bits of the input digits (the bits with weights 2 and
1). This sum is in[0, 9], so that Bi is evaluated as a regu-
lar binary addition.

V.RESULTS AND DISCUSSION:

 Volume No: 2 (2015), Issue No: 6 (June) June 2015
 www.ijmetmr.com Page 616

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

Synthesis Report:

RTL Schematic:

Internal RTL Schematic:

LUT Diagram:

CONCLUSION:
In this paper we have presented the algorithm and
architecture of a new BCD parallel multiplier. The im-
provements of the proposed architecture rely on the
use of certain redundant BCD codes, the XS-3 and
ODDS representations.

Partial products can be generated very fast in the XS-3
representation using the SD radix-10 PPG scheme: posi-
tive multiplicand multiples (0X, 1X, 2X, 3X, 4X, 5X) are
precomputed in a carry-free way, while negative multi-
ples are obtained by bit inversion of the positive ones.
On the other hand, recoding of XS-3 partial products to
the ODDS representation is straightforward. The ODDS
representation uses the redundant digit-set [0, 15] and
a 4-bit binary encoding (BCD encoding), which allows
the use of a binary carry-save adder tree to perform
partial product reduction in a very efficient way.

REFERENCES:

[1] W. S. Brown and P. L. Richman, “The Choice of Base,”
Comm. of the ACM, vol. 12, pp. 560–561, Oct 1969.

[2] R. P. Brent, “On the Precision Attainable with
Various Floating-Point Number Systems,” IEEE Trans.
Comp., vol. C, pp. 601–607, Jan 1973.

[3] R. W. Hamming, “On the Distribution of Numbers,”
Bell Syst. Tech. J., vol. 49, pp. 1609–1625, Oct 1970.

[4] W. Buchholz, “Fingers or fists? (The Choice of Deci-
mal or Binary Representation),” Communications of
the ACM, vol. 2, no. 12, pp. 3–11, 1959.

[5] A. Tsang and M. Olschanowsky, “A Study of Da-
tabase 2 Customer Queries,” IBM Technical Report
03.413, IBM, San Jose, CA, Apr 1991.
[6] ——, “A compact dot notation for the design of bi-
nary adders, multipliers and adders of products,” AlaRI
internal report, Dec. 2005.

[7] ——. Spreadsheet tools for the design of a paral-
lel decimal multiplier. AlaRI internal report, Dec. 2005.
[Online]. Available: http://www.alari.ch/people/dadda/

[8] ——. Spreadsheet tools for the design of a radix-
10 combinational multiplier. AlaRI internal report,
2007. [Online]. Available: http://www.alari.csh/people/
dadda/

[9] ——, “Multi Operand Parallel Decimal Adders: a
mixed Binary and BCD Approach,” IEEE Transactions
on Computers, vol. 56, pp. 1320– 1328, Oct. 2007.

[10] J. Nicoud, “Iterative Arrays for Radix Conversion,”
IEEE Transactions on Computers, vol. C-20, pp. 1479–
1489, Nov. 1971.

