

A Peer Reviewed Open Access International Journal

Satellite Image Resolution Enhancement By Using Discrete Wavelet Transform (DWT)

Mounika. Duggineni M.Tech (WMC), MIEEE, Anurag Engineering College, Kodad, India.

N.Ravi Kumar B.Tech, M.E., (Ph.D), MIETE Associate professor, Dept of ECE, Anurag Engineering College, Kodad, India.

Abstract:

This paper proposes a new satellite resolution enhancement technique based on the interpolation of highfrequency sub-bands obtained by the discrete wavelet transform (DWT) and of the input image. Because the resolution is main problem of the images, while we are using satellite images for research. The proposed system having the capability of decomposing of input image into different sub-bands by using DWT.

Then the high-frequency sub-band images and the input low-resolution image have been interpolated, and then by combining all images we can generate a new highly resoluted image by using inverse DWT. intermediate stage is used for estimating the high-frequency sub-bands to achieve sharper image. This proposed system is tested on satellite benchmark images. peak signal-to-noise ratio and root mean square error shows that advantages of proposed system over the existing conventional image resolution techniques.

Index Terms:

Discrete Wavelet Transform (DWT), cycle spinning (CS), wavelet zero padding (WZP) etc.

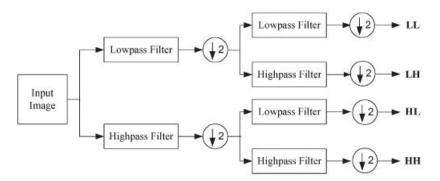
I. INTRODUCTION:

R ESOLUTION of an image has been always an very Important issue in many image- and video-processingapplications, such as video resolution enhancement [1], feature extraction [2], and satellite image resolution enhancement [3]. Interpolation in image processing is a method to increase the number of pixels in a digital image. Interpolation has been widely used in many image processing applications, such as facial reconstruction [4], multiple description coding [5], and image resolution enhancement [6]–[8].

The interpolation-based image resolution enhancement has been used for a long time and many interpolation techniques have been developed to increase the quality of this task. There are three well-known interpolation techniques, namely, nearest neighbor, bilinear, and bicubic.

Bicubic interpolation is more sophisticated than the other two techniques and produces smoother edges. Wavelets are also playing a significant role in many image processing applications. The 2-D wavelet decomposition of an image is performed by applying the 1-D discrete wavelet transform (DWT) along the rows of the image first, and then the results are decomposed along the columns. This operation results in four decomposed sub-band images referred to low-low (LL), low-high (LH), high-low (HL),

A Peer Reviewed Open Access International Journal



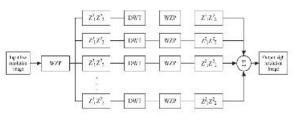


Fig. 2. LL, LH, HL, and HH subbands of a satellite image obtained by using DWT.

and high-high (HH). The frequency components of those sub-bands cover the full frequency spectrum of the original image. Theoretically, a filter bank shown in Fig. 1 should operate on the image in order to generate different sub-band frequency images.

Fig. 2 shows different sub-bands of a satellite image where the top left image is the LL sub-band, and the bottom right image is the HH sub-band. Image resolution enhancement using wavelets is a relatively new subject and recently many new algorithms have been proposed [9]–[15]. Carey et al. have attempted to estimate.

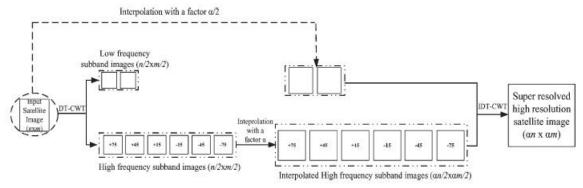


Fig. 4. Block diagram of the proposed resolution enhancement algorithm [3].

A Peer Reviewed Open Access International Journal

improve the sharpness of the reconstructed images [9]. Their estimation was carried out by investigating the evolution of wavelet transform extreme among the same type of sub-bands. Edges identified by an edge detection algorithm in lower frequency sub-bands were used to prepare a model for estimating edges in higher frequency sub-bands and only the coefficients with significant values were estimated as the evolution of the wavelet coefficients. In many researches, hidden Markov has been also implemented in order to estimate the coefficients [16].

In this paper, we propose a resolution-enhancement technique using interpolated DWT high-frequency sub-band images and the input low-resolution image. Inverse DWT (IDWT) has been applied to combine all these images to generate the final resolution-enhanced image. In order to achieve a sharper image, we propose to use an intermediate stage for estimating the high frequency sub-bands by utilizing the difference image obtained by subtracting the input image and its interpolated LL sub-band. The proposed technique has been compared with standard interpolation techniques, wavelet zero padding (WZP), where the unknown coefficients in high-frequency sub-bands are replaced with zeros, and state-of-art techniques, such as WZP and cycle spinning (CS) [17], and previously introduced complex wavelet transform (CWT)-based image resolution enhancement [3]. It is necessary to recall that in this paper the resolution enhancement is used as a process that enlarges the given input inthe way that the output is sharper. The performance of the proposed technique over performs all vailable state-ofart methods for image resolution enhancement. The visual and quantitative results are given in the results and discussions section. In all steps of the proposed satellite image resolution enhancement technique, Daubechies (db.9/7) wavelet transform as mother wavelet function and bicubic interpolation as interpolation technique have been used.

The paper is organized as follows. Section II gives an overview on the state-of-art image resolution enhancement techniques used for comparison purposes. Section III introduces the proposed wavelet based resolution enhancement technique. Section IV discusses the qualitative and quantitative results of the proposed method with the conventional and state-of-art resolution enhancement techniques. Conclusions are given in the final section.

II.WAVELET-BASED IMAGE RESOLUTION ENHANCEMENT:

There are several methods which have been used for satellite image resolution enhancement. In this paper, we have used two state-of-art techniques for comparison purposes. The first one is WZP and CS [17], and the second one is the previously introduced CWT-based image resolution enhancement [3].

A. CS Based Image Resolution Enhancement:

This method adopts the CS methodology in the wavelet domain [15]. The algorithm consists of two main steps as follows:

1)An initial approximation to the unknown high resolution image is generated using wavelet domain zero padding (WZP).

2)The cycle-spinning methodology is adopted to operate the following tasks:

a)A number of low resolution images are generated from the obtained estimated high resolution image in part (1) by spatial shifting, wavelet transforming, and discarding the high frequency sub-bands.

b)The WZP processing is applied to all those low resolution images yielding N high resolution images.

c)These intermediated high resolution images are realigned and averaged to give the final high resolution reconstructed image.

Fig. 3 shows the block diagram of the WZP- and CSbased image super resolution.

B. CWT-Based Image Resolution Enhancement:

In this technique, dual-tree CWT (DT-CWT) is used to decompose an input image into different sub-band images. DT CWT is used to decompose an input low resolution image into different sub-bands. Then, the high-frequency sub-band images and the input image are interpolated, followed by combining all these images to generate a new high-resolution image by using inverse DT-CWT.

A Peer Reviewed Open Access International Journal

The resolution enhancement is achieved by using directional selectivity provided by the CWT, where the high-frequency sub-bands in six different directions contribute to the sharpness of the high-frequency details, such as edges. Details of this technique are shown in Fig. 4, where the enlargement factor through the resolution enhancement is α .

III. DWT-BASED RESOLUTION ENHANCE-MENT:

As it was mentioned before, resolution is an important feature in satellite imaging, which makes the resolution enhancement of such images to be of vital importance as increasing the resolution of these images will directly affect the performance of the system using these images as input. The main loss of an image after being resolution enhanced by applying interpolation is on its high-frequency components, which is due to the smoothing caused by interpolation. Hence, in order to increase the quality of the enhanced image, preserving the edges is essential. In this paper, DWT [19] has been employed in order to preserve the high-frequency components of the image. DWT separates the image into different sub-band images, namely, LL, LH, HL, and HH. High-frequency sub-bands contain the high frequency. Component of the image. The interpolation can be applied to these four sub-band images.

In the wavelet domain, the low-resolution image is obtained by low-pass filtering of the high resolution image as in [14], [17], and [19]. The low resolution image (LL sub-band), without quantization (i.e., with double-precision pixel values) is used as the input for the proposed resolution enhancement process. In other words, low frequency sub-band images are the low resolution of the original image. Therefore, instead of using low-frequency sub-band images, which contains less information than the original input image, we are using this input image through the interpolation process.

Hence, the input low resolution image is interpolated with the half of the interpolation factor, $\alpha/2$, used to interpolate the high-frequency sub-bands, as shown in Fig. 5. In order to preserve more edge information, i.e., obtaining a sharper enhanced image, we have proposed an intermediate stage in high frequency sub-band interpolation process.

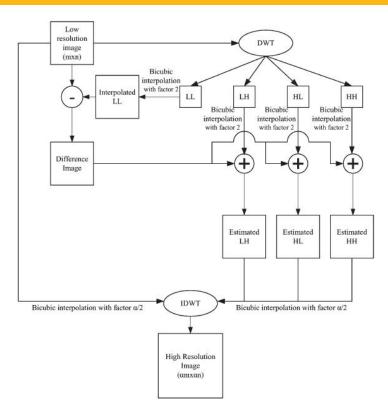
As shown in Fig. 5, the low-resolution input satellite image and the interpolated LL image with factor 2 are highly correlated. The difference between the LL subband image and the low-resolution input image are in their high-frequency components. Hence, this difference image can be use in the intermediate process to correct the estimated high-frequency components.

This estimation is performed by interpolating the high-frequency sub-bands by factor 2 and then including the difference image (which is high-frequency components on low-resolution input image) into the estimated high-frequency images, followed by another interpolation with factor $\alpha/2$ in order to reach the required size for IDWT process.

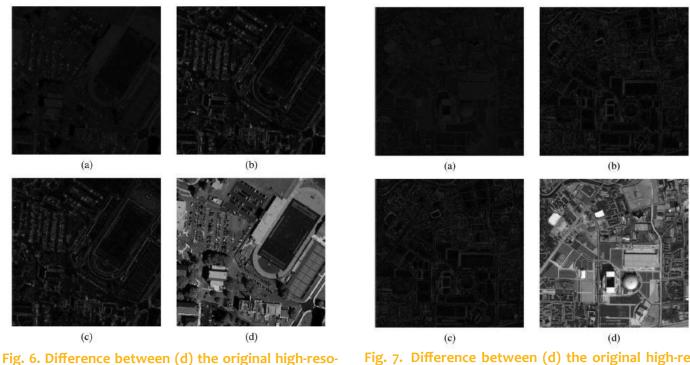
The intermediate process of adding the difference image, containing high-frequency components, generates significantly sharper and clearer final image. This sharpness is boosted by the fact that, the interpolation of isolated high-frequency components in HH, HL, and LH will preserve more high-frequency components than interpolating the low-resolution image directly.

Figs. 6 and 7(a)–(c) show the difference between the high-resolution images with the enhanced image by using the proposed resolution enhancement technique, the difference obtained by using bicubic interpolation directly, and the difference image with WZP- and CS-based image resolution enhancement technique, respectively. Figs. 6 and 7(a) shows that more high-frequency components have been preserved in the proposed technique.

IV. RESULTS AND DISCUSSIONS:

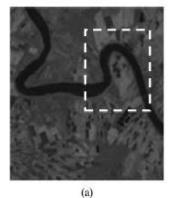

The proposed technique has been tested on several different satellite images. In order to show the superiority of the proposed method over the conventional and state-of-art techniques from visual point of view Figs. 8–10 are included. In those figures with low-resolution satellite images, the enhanced images by using bicubic interpolation, enhanced images

Volume No: 2 (2015), Issue No: 6 (June) www.ijmetmr.com


June 2015 Page 571

A Peer Reviewed Open Access International Journal

Fig. 5. Block diagram of the proposed resolution enhancement algorithm.



Interence between (d) the original high esselution satellite image and (a) the proposed enhanced image, (b) the standard bicubic interpolation, and
(c) the WZP- and CS-based image resolution enhancement technique.

Fig. 7. Difference between (d) the original high-resolution satellite image and (a) the proposed enhanced image, (b) the standard bicubic interpolation, and (c) the WZP- and CS-based image resolution enhancement technique.

A Peer Reviewed Open Access International Journal

(e)

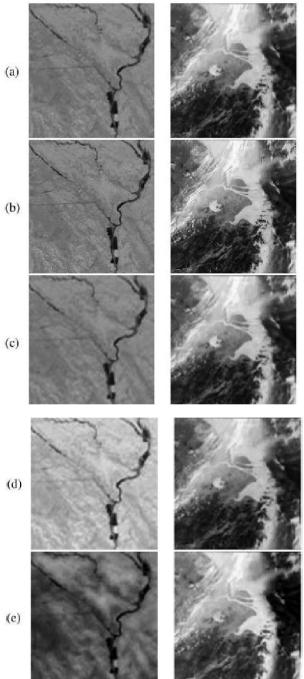

(d)

Fig. 8. (a), (b) Low-resolution image obtained from downsampling of the high-resolution image through DWT, (c) high-resolution image obtained by using bicubic interpolation with enlargement factor of four, (d) enhanced image obtained by WZP and CS technique, (e) and proposed method with the same enlargement factor. (f) The original high resolution image.

by using WZP-and CS-based image resolution enhancement, and also the enhanced images obtained by the proposed technique are shown. It is clear that the resultant image, enhanced by using the proposed technique, is sharper than the other techniques.

Fig. 8 shows that a satellite image in (e) enhanced by using the proposed technique is clearly sharper than the low resolution input image in (a) and (b), as well as the interpolated image in (c) and enhanced image by WZP and CS technique in(d). Figs. 9 and 10 show the effectiveness of the proposed method over the standard bicubic interpolation, WZP, and the state ofart WZP- and CS-based image resolution enhancement techniques. Different benchmark images with different features are used for comparison.

Volume No: 2 (2015), Issue No: 6 (June) www.ijmetmr.com

June 2015 Page 573

A Peer Reviewed Open Access International Journal

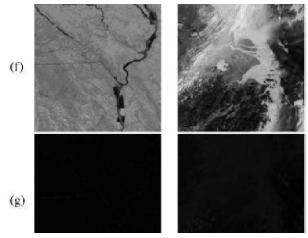


Fig. 9. (a) Low-resolution image obtained from down sampling of the high-resolution satellite image through two cascaded DWT, (b) original high resolution satellite image, (c) bicubic interpolation-based resolution enhancement, (d) WZP, (e) WZP and CS technique,(f) the proposed image resolution enhancement technique, and (g) the difference between the original high resolution satellite image and the image enhanced by the proposed technique with enlargement from 128 × 128 to 512 × 512.

TABLE I

PSNR (Decibels) Results for Resolution Enhancement From 128×128 to 512×512 ($\alpha = 4$) for the Proposed Technique Compared With Conventional and Some State-of-Art Techniques

Method \Image	PSNR (dB)								
	Fig. 6	Fig. 7	Fig. 8	Fig. 9-1	Fig. 9-2	Fig. 10-1	Fig. 10-2		
Bilinear	19.07	21.02	25.78	28.94	23.67	20.91	22.54		
Bicubic	20.16	22.87	26.29	29.54	24.05	21.30	22.92		
WZP (Db. 9/7)	19.26	22.35	26.67	28.14	22.91	21.76	23.13		
WZP and CS SR [15]	21.09	24.67	28.78	30.13	23.89	23.56	25.01		
Demirel and Anbarjafari [3]	24.08	28.01	31.11	31.54	27.08	24.73	28.17		
The proposed Method	24.97	29.33	32.67	33.49	30.22	26.03	30.11		

TABLE II

RMSE Results for Resolution Enhancement From 128×128 to 512×512 ($\alpha = 4$) for the Proposed Technique Compared With Conventional and Some State-of-Art Techniques

Method \ Image	RMSE								
	Fig. 6	Fig. 7	Fig. 8	Fig. 9-1	Fig. 9-2	Fig. 10-1	Fig. 10-2		
Bilinear	5.33	4.76	3.62	3.02	4.09	4.79	4.36		
Bicubic	5.00	4.28	3.52	2.92	4.00	4.69	4.27		
WZP (Db. 9/7)	5.27	4.41	3.44	3.16	4.27	4.56	4.22		
WZP and CS SR [15]	4.74	3.86	3.05	2.82	4.04	4.11	3.78		
Demirel and Anbarjafari [3]	3.99	3.18	2.66	2.60	3.36	3.85	3.16		
The proposed Method	3.79	2.95	2.44	2.32	2.80	3.57	2.82		

TABLE IV

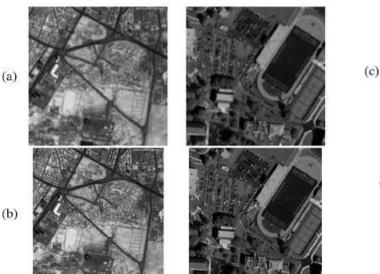
PSNR (Decibels) Results for Resolution Enhancement From 128×128 to 512×512 ($\alpha = 4$) Using the Proposed Technique for the Quantized Input Images (8-Bit Unsigned Integer), Compared With Conventional and Some State-of-Art Techniques

Volume No: 2 (2015), Issue No: 6 (June) www.ijmetmr.com

A Peer Reviewed Open Access International Journal

Method \ Image	PSNR (dB)								
	Fig. 6	Fig. 7	Fig. 8	Fig. 9-1	Fig. 9-2	Fig. 10-1	Fig. 10-2		
Bicubic	19.89	17.23	24.37	23.69	18.27	17.72	17.42		
WZP (Db. 9/7)	17.30	18.07	20.05	22.03	21.78	17.33	18.16		
WZP and CS SR [15]	21.08	18.85	24.09	28.10	22.44	19.11	23.15		
Demirel and Anbarjafari [3]	18.11	24.17	24.36	31.17	26.10	19.61	21.84		
The proposed Method	22.02	24.40	24.58	32.58	28.97	22.32	29.86		

TABLE V


MSE Results for Resolution Enhancement From 128 \times 128 to 512 \times 512 ($\alpha = 4$) Using the Proposed Technique for the Quantized Input Images (8-Bit Unsigned Integer), Compared With Conventional and Some State-of-Art Techniques

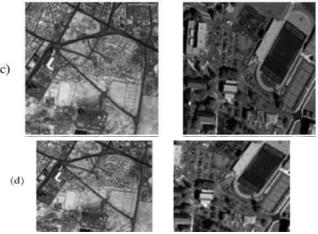

Method \ Image	PSNR (dB)								
	Fig. 6	Fig. 7	Fig. 8	Fig. 9-1	Fig. 9-2	Fig. 10-1	Fig. 10-2		
Bicubic	666.93	1230.50	237.73	278.02	968.46	1099.21	1177.82		
WZP (Db. 9/7)	1210.82	1014.10	642.81	407.46	431.60	1202.49	993.30		
WZP and CS SR [15]	507.08	847.38	253.56	100.71	370.75	798.14	314.83		
Demirel and Anbarjafari [3]	1004.80	248.93	238.28	49.67	159.62	711.35	425.68		
The proposed Method	408.39	236.09	226.51	35.90	82.43	381.14	67.16		

TABLE VI

RMSE Results for Resolution Enhancement From 128×128 to 512×512 ($\alpha = 4$) Using the Proposed Technique for the Quantized Input Images (8-Bit Unsigned Integer), Compared With Conventional and Some State-of-Art Techniques

Method \ Image	PSNR (dB)								
	Fig. 6	Fig. 7	Fig. 8	Fig. 9-1	Fig. 9-2	Fig. 10-1	Fig. 10-2		
Bicubic	25.82	35.08	15.42	16.67	31.12	33.15	34.32		
WZP (Db. 9/7)	34.80	31.84	25.35	20.19	20.77	34.68	31.52		
WZP and CS SR [15]	22.52	29.11	15.92	10.04	19.25	28.25	17.74		
Demirel and Anbarjafari [3]	31.70	15.78	15.44	7.05	12.63	26.67	20.63		
The proposed Method	20.21	15.37	15.05	5.99	9.08	19.52	8.19		

A Peer Reviewed Open Access International Journal

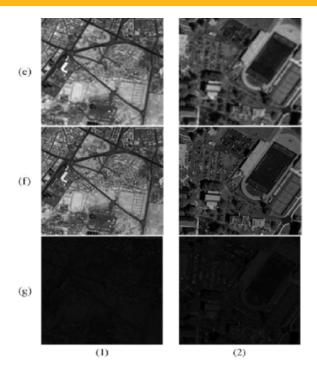
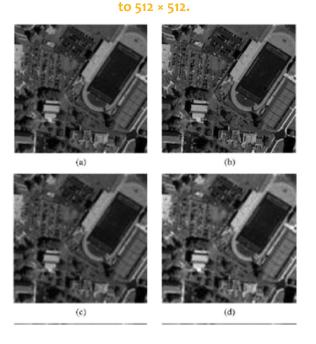



Fig. 10. (a) Low-resolution image obtained from down sampling of the high resolution satellite image through 2 cascaded DWT, (b) original high-resolution satellite image, (c) bicubic interpolation-based resolution enhancement, (d) WZP, (e) WZP and CS technique, (f) the proposed image resolution enhancement technique, and (g) the difference between the original high resolution satellite image and the image enhanced by the proposed technique with enlargement from 128 × 128

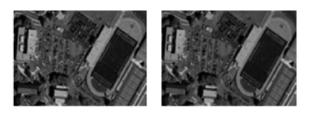


Fig. 11. (a) Quantized low-resolution image, (b) original high resolution satellite image, (c) bicubic interpolation-based resolution enhancement, (d) WZP, (e) WZP and CS technique, (f) the proposed image resolution enhancement technique, with enlargement from 128 \times 128 to 512 \times 512.

Not only visual comparison but also quantitative comparisons are confirming the superiority of the proposed method. Peak signal-to-noise ratio (PSNR) and root mean square error (RMSE) have been implemented in order to obtain some quantitative results for comparison. PSNR can be obtained by using the following formula [20].

$$PSNR = 10\log_{10}\left(\frac{R^2}{MSE}\right) \tag{1}$$

where R is the maximum fluctuation in the input image (255 in here as the images are represented by 8 bit, i.e., 8-bit grayscale representation have been used—radiometric resolution is 8 bit); and MSE is representing the MSE between the given input image lin and the original image lorg which can be obtained by the following:

$$MSE = \frac{\sum_{i,j} \left(I_{in}(i,j) - I_{org}(i,j) \right)^2}{M \times N}$$
(2)

where M and N are the size of the images. Clearly, RMSE is the square root of MSE, hence it can be calculated by the following:

$$RMSE = \sqrt{\frac{\sum_{i,j} (I_{in}(i,j) - I_{org}(i,j))^2}{M \times N}}.$$
 (3)

Table I is showing the comparison between the proposed method using Daubechies (db.9/7) wavelet transform with bicubic interpolation and some stateof-art resolution enhancement techniques, such as WZP, WZP and CS super-resolution technique [17], and also the formerly proposed resolution enhancement technique [3] by means of calculating PSNR. Table II is showing the comparison between the proposed method using Daubechies (db.9/7) wavelet transform with bicubic interpolation and aforementioned conventional and state-of-art techniques by means of RMSE.

A Peer Reviewed Open Access International Journal

The results in Table II are correlated with the results in Table I, which is expected due to the definition of the PSNR in (1). Overall, the results in Tables I and II show that the proposed method over performs the aforementioned state-of-art and conventional techniques. In order to show the improvement obtained by the proposed satellite image resolution enhancement from information content point of view, the entropy of Figs. 9(1) and (2) and 10(1) and (2) have been calculated. Table III is showing these entropy values. As expected, highest level of information content is embedded in the original images.

The main reason of having the relatively high information content level of the images generated by the proposed method is due to the fact that the un quantized input LL-sub-band images contain most of the information of the Original high-resolution image. A possible unsigned 8-bit representation of the LL-sub-band image would introduce irreversible quantization loss of information which is given in the first row of Table III. As it was mentioned in the previous section, the low resolution input images are obtained by down sampling the high-resolution images. This approach can be tolerated in some applications where there is no limitation in the number of bits for the representation of floating point numbers.

However, in some applications, the down sampled images have to go through a quantization process where the fractions are Removed to accommodate 8-bit unsigned integer representation. In order to show the effect of the quantization loss embedded in 8-bit unsigned integer representation, the proposed resolution enhancement technique has been applied to quantized images, and the results are reported in Tables IV–VI.The results are confirming the expectation of performance drop on the proposed algorithm due to the loss of information contained in the floating points. However, this drop is also encountered in other conventional and state-of-the-art techniques. The visual results corresponding to the quantized input image given in Fig. 10(2-a) are given in Fig. 11.

V. CONCLUSION:

This paper has proposed a new resolution enhancement technique based on the interpolation of the highfrequency sub-band images obtained by DWT and the input image. The proposed technique has been tested on wellknown benchmark images, where their PSNR and RMSE and visual results show the superiority of the proposed technique over the conventional and stateof-art image resolution enhancement techniques. The PSNR improvement of the proposed technique is up to 7.19 dB compared with the standard bicubic interpolation.

REFERENCES:

[1]H. Demirel, G. Anbarjafari, and S. Izadpanahi, "Improved motion-based localized super resolution technique using discrete wavelet transform for low resolution video enhancement," in Proc. 17th EUSIPCO, Edinburgh, U.K., Aug. 2009, pp. 1097–1101.

[2]T. Celik, C. Direkoglu, H. Ozkaramanli, H. Demirel, and M. Uyguroglu, "Region-based super-resolution aided facial feature extraction from lowresolution video sequences," in Proc. IEEE ICASSP, Philadelphia, PA, Mar. 2005, vol. II, pp. 789–792.

[3]H. Demirel and G. Anbarjafari, "Satellite image resolution enhancement using complex wavelet transform," IEEE Geosci. Remote Sens. Lett., vol. 7, no. 1, pp. 123–126, Jan. 2010.

[4]L. Yi-bo, X. Hong, and Z. Sen-yue, "The wrinkle generation method for facial reconstruction based on extraction of partition wrinkle line features and fractal interpolation," in Proc. 4th ICIG, Aug. 22–24, 2007, pp. 933–937.

[5]Y. Rener, J. Wei, and C. Ken, "Downsample-based multiple description coding and post-processing of decoding," in Proc. 27th CCC, Jul. 16–18, 2008, pp. 253– 256.

[6]C. B. Atkins, C. A. Bouman, and J. P. Allebach, "Optimal image scaling using pixel classification," in Proc. ICIP, Oct. 7–10, 2001, vol. 3, pp. 864–867.

[7]Y. Piao, L. Shin, and H. W. Park, "Image resolution enhancement using inter-subband correlation in wavelet domain," in Proc. IEEE ICIP, 2007,

[8]G. Anbarjafari and H. Demirel, "Image super resolution based on interpolation of wavelet domain high frequency subbands and the spatial domain input image," ETRI J., vol. 32, no. 3, pp. 390– 394, Jun. 2010.

A Peer Reviewed Open Access International Journal

[10] X. Li and M. T. Orchard, "New edge-directed interpolation,"IEEE Trans. Image Process., vol. 10, no. 10, pp. 1521–1527, Oct. 2001.

[11]K. Kinebuchi, D. D. Muresan, and T.W. Parks, "Image interpolation using wavelet based hidden Markov trees," in Proc. IEEE ICASSP, 2001, vol. 3, pp. 7–11.

[12]M. S. Crouse, R. D. Nowak, and R. G. Baraniuk, "Wavelet-based statistical signal processing using hidden Markov models," IEEE Trans. Signal Process., vol. 46, no. 4, pp. 886–902, Apr. 1998.

[13]S. Zhao, H. Han, and S. Peng, "Wavelet domain HMT-based image super resolution," in Proc. IEEE ICIP, Sep. 2003, vol. 2, pp. 933–936.

[14]A. Temizel and T. Vlachos, "Image resolution upscaling in the wavelet domain using directional cycle spinning," J. Electron. Imaging, vol. 14, no. 4, p. 040501, 2005.

[15]A. Gambardella and M. Migliaccio, "On the superresolution of microwave scanning radiometer measurements," IEEE Geosci. Remote Sens. Lett., vol. 5, no. 4, pp. 796–800, Oct. 2008.

[16]V. A. Tolpekin and A. Stein, "Quantification of the effects of land-coverclass spectral separability on the accuracy of Markov-random-field-based superresolution mapping," IEEE Trans. Geosci. Remote Sens., vol. 47, no. 9, pp. 3283–3297, Sep. 2009.

[17]A. Temizel and T. Vlachos, "Wavelet domain image resolution enhancement using cycle-spinning," Electron. Lett., vol. 41, no. 3, pp. 119–121, Feb. 3, 2005.

[18]L. A. Ray and R. R. Adhami, "Dual tree discrete wavelet transform with application to image fusion," in Proc. 38th Southeastern Symp. Syst. Theory, Mar. 5–7, 2006, pp. 430–433.

[19]A. Temizel, "Image resolution enhancement using wavelet domain hidden Markov tree and coefficient sign estimation," in Proc. ICIP, 2007, vol. 5, pp. V-381–V-384.

[20]R. C. Gonzalez and R. E. Woods, Digital Image Processing. Englewood Cliffs, NJ: Prentice-Hall, 2007. **About Author's:**

Mounika.duggineni

currently pursuing her M.Tech in WMC from Anurag Engineering College,kodad,telangaana.she completed her B.tech in Electronics & Communication Engineering from Laqshya Engineering College in 2012.and also she is a member of MIEEE.

N.Ravi kumar

received his B.Tech., M.E. and Ph.D. degrees. He has been working in the field of image processing and is currently involved in many research projects. He is currently doing as Assoc. Prof at Anurag Engineering College Kodad, Telangaana. He is a member in MIETE.